2-1. COOL OPERATION ··············································································7
2-2. DRY OPERATION ·················································································8
2-3. HEAT OPERATION ···············································································8
2-4. AUTO CHANGE OVER ··· AUTO MODE OPERATION ·····················10
2-5. OUTDOOR FAN MOTOR CONTROL ·················································11
2-6. AUTO VANE OPERATION ··································································11
2-7. INVERTER SYSTEM CONTROL ························································12
2-8.
OPERATIONAL FREQUENCY CONTROL OF OUTDOOR UNIT ·····17
2-9. EXPANSION VALVE CONTROL (LEV CONTROL) ···························18
3. MXZ MICROPROCESSOR CONTROL ·······················································21
Outdoor unit models
MXZ-2A20NA
MXZ-3A30NA
MXZ-4A36NA
3-1. INVERTER SYSTEM CONTROL ·························································21
3-2. EXPANSION VALVE CONTROL (LEV CONTROL) ···························· 23
3-3. OPERATIONAL FREQUENCY RANGE ·············································· 29
3-4. HEAT DEFROSTING CONTROL ·························································
3-5.
DISCHARGE TEMPERATURE PROTECTION CONTROL ·······················30
3-6. OUTDOOR FAN CONTROL ································································
3-7. PRE-HEAT CONTROL ·········································································
3-8.
DRY OPERATION ·································································· BACK COVER
3-10. HEAT OPERATION ···························································
BACK COVER
30
30
31
3
1
MS MICROPROCESSOR CONTROL
MS-A•WAMU-A•WA
1-1. COOL ( ) OPERATION
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature
Room temperature minus
Thermostat
set temperature (Initial)
ON-1.8 °F or more
-1.8 °F
OFFless
than
2. Indoor fan speed control
Indoor fan operates continuously at the set speed by FAN SPEED CONTROL button regardless of the thermostat’s OFFON.
In AUTO the fan speed is as follows.
Fan speed
Room temperature minus
set temperature (Initial)
High3.1 °F or more
Med.between 1.8 and 3.1 °F
Lowless than 1.8 °F
3. Coil frost prevention
Temperature control
When the indoor coil thermistor RT12 reads 37 °F or below the coil frost prevention mode starts immediately.
However, the coil frost prevention doesn’t work for 5 minutes since the compressor has started.
The indoor fan operates at the set speed and the compressor stops for 5 minutes.
After that, if the indoor coil thermistor still reads below 37 °F, this mode is prolonged until the indoor coil thermistor reads
over 37 °F.
Time control
When the three conditions as follows have been satisfied for 1 hour and 45 minutes, compressor stops for 3 minutes.
a. Compressor has been continuously operating.
b. Indoor fan speed is Low or Med.
c. Room temperature is below 79 °F.
When compressor stops, the accumulated time is cancelled and when compressor restarts, time counting starts from the
beginning.
Time counting also stops temporarily when the indoor fan speed becomes High or the room temperature exceeds 79 °F.
However, when two of the above conditions (b. and c.) are satisfied again. Time accumulation is resumed.
Room temperature minus
set temperature (During operation)
-1.8 °F
-1.3 °F
Room temperature minus
set temperature (During operation)
5.4 °F
1.8 °F
3.1 °F
Operation chart
Example
Compressor
Outdoor fan
Indoor fan
ON
OFF
ON
( Continuously at set speed)
1-2. DRY ( ) OPERATION
Set temperature is as shown on the right chart.
The system for dry operation uses the same refrigerant circuit as the
cooling circuit.
The compressor and the indoor fan are controlled by the room temperature.
By such controls, indoor flow amounts will be reduced in order to
lower humidity without much room temperature decrease.
4
Set temperature and
°F
initial room temperature in dry mode
95
86
77
68
Set temperature
59
50
50 59 68 77 86 95
Initial room temperature
°F
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Room temperature minus
Thermostat
set temperature (Initial)
ON-1.8 °F or more
OFFless
than
-1.8 °F
2. Indoor fan speed control
Indoor fan operates at the set speed by FAN SPEED CONTROL button.
When thermostat OFF (compressor OFF), fan speed becomes Very Low.
In AUTO the fan speed is as follows.
Room temperature minus
Fan speed
set temperature (Initial)
High3.1 F or more
Med.between 1.8 and 3.1 F
Lowless than 1.8 F
3. The operation of the compressor and indoor/ outdoor fan
Compressor operates by room temperature control and time control.
Set temperature is controlled to fall 4 °F from initial room temperature.
Indoor fan and outdoor fan operate in the same cycle as the compressor.
•When the room temperature is 73 °F or over:
When the thermostat is ON, the compressor repeats 8 minutes ON and 3 minutes OFF.
When the thermostat is OFF, the compressor repeats 4 minutes OFF and 1 minute ON.
•When the room temperature is under 73 °F.
When the thermostat is ON, the compressor repeats 2 minutes ON and 3 minutes OFF.
When the thermostat is OFF, the compressor repeats 4 minutes OFF and 1 minute ON.
Room temperature minus
set temperature (During operation)
-1.8 °F
-1.3 °F
Room temperature minus
set temperature (During operation)
4.5 F
1.8 F
3.1 F
Operation time chart
Example
ON
Thermostat
OFF
ON
Indoor fan
OFF
Outdoor fan
Compressor
ON
OFF
8 minutes
3 minutes
4 minutes
1 minute
4. Coil frost prevention
Coil frost prevention is as same as COOL mode. (2-1.3.)
The indoor fan maintains the actual speed of the moment. However ,when coil frost prevention works while the compressor
is not operating, its speed becomes the set speed.
5
1-3. AUTO VANE OPERATION
1. Horizontal vane
ECONO COOL (
When ECONO COOL button is pressed in COOL mode, set temperature is automatically set 3.6 °F higher than that in
COOL mode.
Also the horizontal vane swings in various cycle according to the temperature of indoor heat exchanger (indoor coil
thermistor).
SWING operation makes you feel cooler than set temperature. So, even though the set temperature is higher than that
in COOL mode, the air conditioner can keep comfort. As a result, energy can be saved.
ECONO COOL operation is cancelled when ECONO COOL button is pressed once again or VANE CONTROL button is
pressed or change to other operation mode.
<SWING operation>
In swing operation of ECONO COOL operation mode, the initial air flow direction is adjusted to “Horizontal”.
According to the temperature of indoor coil thermistor at starting of this operation, next downward blow time is decided.
Then when the downward blow has been finished, next horizontal blow time is decided.
For initial 10 minutes the swing operation is performed in table G~H for quick cooling.
Also, after 10 minutes when the difference of set temperature and room temperature is more than 3.6 °F, the swing
operation is performed in table D~H for more cooling.
The air conditioner repeats the swing operation in various cycle as follows.
A 59 or less223
B 59 to 63 520
C 63 to 64817
D 64 to 681114
E 68 to 701411
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature
Room temperature minus
Thermostat
ON-1.8 °F or more
OFFless
2. Indoor fan speed control
Indoor fan operates continuously at the set speed by FAN SPEED CONTROL button regardless of the thermostat’s OFFON.
In AUTO the fan speed is as follows.
MSZ-A
MSY-A
Fan speed
High3.1 °F or more
Med.between 1.8 and 3.1 °F
Lowless than 1.8 °F
set temperature (Initial)
-1.8 °F
than
Room temperature minus
set temperature (Initial)
Room temperature minus
set temperature (During operation)
-1.8 °F
Room temperature minus
set temperature (During operation)
1.8 °F
3.1 °F
-1.3 °F
5.4 °F
MSZ-FD
MSZ-D
MSY-D
3. Coil frost prevention
The compressor operational frequency is controlled to prevent the temperature of indoor heat exchanger from falling excessively.
The compressor is turned OFF for 5 minutes when the temperature of indoor coil thermistor continues 37 °F or less for 5
minutes or more.
The indoor fan maintains the actual speed of the moment.
4. Low outside temperature operation
If the outside temperature falls to 64 °F or less during operation in COOL mode, the unit will switch to the low outside temperature operation mode.
<Operation>
(1) Outdoor fan control
The outdoor fan rotation speed slows down to maintain sufficient cooling capacity.
NOTE: Even when the unit is in the "thermostat-off" status under the low outside temperature operation mode, the out-
door fan rotation does not stop.
(2) Dew drop prevention
When the ambient temperature thermistor reads 10 °F (MUZ-A MUY-A MUZ-D MUY-D), -4 °F (MUZ-FD) or less, as
coil frost or dew drop from indoor unit may occur, the compressor turns OFF with the outdoor fan ON for prevention of
them.
(3) Outdoor temperature detecting control
To detect the exact outdoor temperature in this mode, the compressor turns OFF but the outdoor fan stays ON for 3
minutes once 1 hour. If the outdoor temperature rises over 64 °F, the unit goes back to the normal COOL mode. If the
outside temperature stays below 64 °F, the unit continues to run in the low outside temperature operation mode.
Other protections work as well as in the normal COOL mode.
Fan speed
High2.7 °F or more
Med.between
Lowless than 1.8 °F
Room temperature minus
set temperature (Initial)
1.8 and 2.7 °F
Room temperature minus
set temperature (During operation)
5.4 °F
1.8 °F
2.7 °F
7
2-2. DRY ( ) OPERATION
Set temperature is as shown on the right chart.
The system for dry operation uses the same refrigerant circuit as the
cooling circuit.
The compressor and the indoor fan are controlled by the room temperature.
By such controls, indoor flow amounts will be reduced in order to
lower humidity without much room temperature decrease.
Set temperature and
°F
initial room temperature in dry mode
95
86
77
68
Set temperature
59
50
50 59 68 77 86 95
Initial room temperature
°F
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Thermostat
Room temperature minus
set temperature (Initial)
Room temperature minus
set temperature (During operation)
ON-1.8 °F or more
OFFless than
-1.8 °F
-1.8 °F
-1.3 °F
2. Indoor fan speed control
Indoor fan operates at the set speed by FAN SPEED CONTROL button.
When thermostat OFF (compressor OFF), fan speed becomes Very Low.
In AUTO the fan speed is as follows.
Fan speed
Room temperature minus
set temperature (Initial)
Room temperature minus
set temperature (During operation)
High3.1 F or more
Med.between 1.8 and 3.1 F
Lowless than 1.8 F
1.8 F
4.5 F
3.1 F
3. Coil frost prevention
Coil frost prevention is as same as COOL mode. (2-1.3.)
The indoor fan maintains the actual speed of the moment. However ,when coil frost prevention works while the compressor
is not operating, its speed becomes the set speed.
4. Low outside temperature operation
Low outside temperature operation is as same as COOL mode. (2-1.4.)
2-3. HEAT ( ) OPERATION (MSZ)
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Thermostat
ONless than 3.6 °F
OFF3.6
2. Indoor fan speed control
(1) Indoor fan operates at the set speed by FAN SPEED CONTROL button.
In Auto the fan speed is as follows.
Fan speed
High
Med.between 0.4 and 3.6 °F
Low
Room temperature minus
set temperature (Initial)
°F or more
Room temperature minus
set temperature (Initial)
3.6 °F
or more
less than
0.4 °F
8
Room temperature minus
set temperature (During operation)
3 °F
3.6 °F
Room temperature minus
set temperature (During operation)
7.2 °F
0.4 °F
3.6 °F
3 °F
(2) Cold air prevention control
MSZ-A09/12/15/17 MSZ-FD MSZ-D
When the compressor is not operating,
(
) if the temperature of room temperature thermistor is less than 66 °F, the fan stops.
) if the temperature of room temperature thermistor is 66 °F or more and
(
) if the temperature of indoor coil themistor is less than 32 °F, the fan stops.
(
) if the temperature of indoor coil themistor is 32 °F or more, the fan operates at Very Low.
(
When the compressor is operating,
(
) if the temperature of indoor coil themistor is 104 °F or more, the fan operates at set speed.
) if the temperature of indoor coil themistor is less than 104 °F and
(
) if heating operation starts after defrosting, the fan stops.
(
) if the temperature of room temperature thermistor is 66 °F or less, the fan stops.
(
) if the temperature of room temperature thermistor is more than 66 °F, the fan operates at Very Low.
(
NOTE : When 3 minutes have passed since the compressor started operation, this control is released regardless of the
temperature of room temperature thermistor and indoor coil thermistor.
MSZ-A24
When the compressor is not operating,
) if the temperature of room temperature thermistor is 59 °F or less, or temperature of indoor coil thermistor is
(
less than 64 °F, the fan stops.
(
) if the temperature of room temperature thermistor is more than 59 °F, or temperature of indoor coil themistor is
more than 64 °F, the fan operates at Very Low.
When the compressor is operating,
) if the temperature of indoor coil themistor is 64 °F or more, the fan operates at set speed.
(
(
) if the temperature of indoor coil themistor is less than 64 °F and
( ) if heating operation starts after defrosting, the fan stops.
() if the temperature of room temperature thermistor is 59 °F or less, the fan stops.
() if the temperature of room temperature thermistor is more than 59 °F, the fan operates at Very Low.
NOTE : When 3 minutes have passed since the compressor started operation, this control is released regardless of the
temperature of room temperature thermistor and indoor coil thermistor.
(3) Warm air control (MSZ-FD)
When the following any condition of (a. ~ c.) and the condition of are satisfied at the same time, warm air control
works.
a.) Fan speed is used in MANUAL.
b.) When cold air prevention has been released.
c.) When defrosting has been finished.
When the temperature of indoor coil thermistor is less than 104 °F.
When warm air control works, the fan speed changes as follows to blow out warm air gradually.
Gradation of fan speed in initial
<Time condition> <Indoor fan speed>
Less than 2 minutes ------------ Low
2 minutes to 4 minutes -------- Med.
More than 4 minutes -----------High or Super high
The upper limit of the fan speed in MANUAL is the set speed.
When the temperature of indoor coil thermistor has been 104 °F or more, or when the set speed has been changed, this
control is released and the fan speed is the set speed.
3. Overload starting
When the room temperature thermistor reads 64 °F or more, the compressor runs with its maximum frequency regulated for
10 minutes after the start-up.
4. Defrosting
(1) Starting conditions of defrosting
When the following conditions a) ~ c) are satisfied, the defrosting starts.
a) The defrost thermistor reads 27 °F or less.
b) The cumulative operation time of the compressor has reached any of the set values
(40, 45, 55, 65, 75, 85, 95, 105,
115, 125, 150 minutes.
c) More than 5 minutes have passed since the start-up of the compressor.
Set value of compressor operation time (here in after referred to as defrost interval)
This is decided by the temperature of defrost thermistor, ambient temperature thermistor, and the previous defrosting
time. For example, the first defrost interval is 40 minutes long, and the second is 45 minutes long. The third and subsequent intervals are set to be longer, and less frequent, depending on defrosting time.
The third and subsequent defrost intervals follow any of the three patterns …5 or 10 to 20 minutes longer, the same,
or 5 or 10 to 20 minutes shorter compared with the previous defrost interval … with the longest 125 minutes and the
shortest 40 minutes.
9
(2) Releasing conditions of defrosting
Defrosting is released when any of the following conditions is satisfied:
a) The defrost thermistor continues to read 50 °F or more (MUZ-A09/12 MUZ-D) / 41 °F or more (MUZ-A15/17 MUZ-FD) /
59 °F or more (MUZ-A24) for 30 seconds.
b) Defrosting time has exceeded 10 minutes.
c) Any other mode than HEAT mode is set during defrosting.
Time chart of defrosting in HEAT mode (reverse type)
<Indoor unit>
Horizontal vane
Indoor fan
<Outdoor unit>
Compressor normal
Outdoor fan
set position
set speed
40
seconds
ONON
horizontal (temperature of indoor coil thermistor < 102 °F)
Very Low (temperature of indoor coil thermistor > 64 °F)
30
seconds
Maximum frequency
OFF
30
seconds
5 seconds5 seconds
horizontal
OFF
OFF
40
seconds
OFF
30
seconds
set position
set speed
R.V. coil
(21S4)
ON (HEAT)
OFF (COOL)
ON (HEAT)
2-4. AUTO CHANGE OVER ··· AUTO MODE OPERATION (MSZ)
Once desired temperature is set, unit operation is switched automatically between COOL and HEAT operation.
1. Mode selection
(1) Initial mode
At first indoor unit operates only indoor fan with outdoor unit OFF for 3 minutes to detect present room temperature.
Following the conditions below, operation mode is selected.
If the room temperature thermistor reads more than set temperature, COOL mode is selected. If the room temperature thermistor reads set temperature or less, HEAT mode is selected.
10
(2) Mode change
In case of the following conditions, the operation mode is changed.
COOL mode changes to HEAT mode when 15 minutes have passed with the room temperature 4 °F below the set
temperature.
HEAT mode changes to COOL mode when 15 minutes have passed with the room temperature 4 °F above the set
temperature.
In the other cases than the above conditions, the present operation mode is continued.
NOTE1: Mode selection is performed when multi standby (refer to NOTE2) is released and the unit starts operation with
ON-timer.
NOTE2: If two or more indoor units are operating in multi system, there might be a case that the indoor unit, which is
operating in AUTO ( ), cannot change over the other operating mode (COOL HEAT) and becomes a state
of standby.
(3) Indoor fan control/ Vane control
As the indoor fan speed and the horizontal vane position depend on the selected operation mode, when the operation
mode changes over, they change to the exclusive ones.
2-5. OUTDOOR FAN MOTOR CONTROL
Fan speed is switched according to the compressor frequency.
Fan speed
High
Low
DownUp
Compressor frequencyMin.
Max.
<Relation between compressor frequency and fan speed>
Compressor frequency (Hz)
DownUp
MUZ-A
MUY-A
MUZ-FD3344
3344
MUZ-D
MUY-D
3954
2-6. AUTO VANE OPERATION
1. Horizontal vane
(1) Cold air prevention in HEAT operation (MUZ)
When any of the following conditions occurs in HEAT operation, the vane angle changes to Horizontal position automatically to prevent cold air blowing on users.
Compressor is not operating.
Defrosting is performed.
Indoor coil thermistor temperature does not exceed 102 °F within about 3 minutes after compressor starts.
NOTE: When 2 or more indoor units are operated with multi outdoor unit, even if any indoor unit turns thermostat off,
this control doesn’t work in the indoor unit.
(2) ECONO COOL ( ) operation (ECONOmical operation)
When ECONO COOL button is pressed in COOL mode, set temperature is automatically set 3.6 °F higher than that in
COOL mode.
Also the horizontal vane swings in various cycle according to the temperature of indoor heat exchanger (indoor coil
thermistor).
SWING operation makes you feel cooler than set temperature. So, even though the set temperature is higher than that
in COOL mode, the air conditioner can keep comfort. As a result, energy can be saved.
ECONO COOL operation is cancelled when ECONO COOL button is pressed once again or VANE CONTROL button is
pressed or change to other operation mode.
11
<SWING operation>
In swing operation of ECONO COOL operation mode, the initial air flow direction is adjusted to “Horizontal”.
According to the temperature of indoor coil thermistor RT12 at starting of this operation, next downward blow time is
decided. Then when the downward blow has been finished, next horizontal blow time is decided.
For initial 10 minutes the swing operation is performed in table G~H for quick cooling.
Also, after 10 minutes when the difference of set temperature and room temperature is more than 3.6 °F, the swing
operation is performed in table D~H for more cooling.
The air conditioner repeats the swing operation in various cycle as follows.
Temperature of indoor
coil thermistor (°F)
A 59 or less223
B 59 to 63520
C 63 to 64817
D 64 to 681114
E 68 to 701411
F 70 to 72178
G 72 to 75205
H more than 75232
2-7. INVERTER SYSTEM CONTROL
2-7-1. Inverter main power supply circuit
MUZ-A09/12/15/17
MUY-A15/17
MUZ-FD
POWER
SUPPLY
NOISE
FILTER
CIRCUIT
RESISTOR
RELAY
Downward blow time
(second)
REACTOR
DIODE
MODULE1
~~
Horizontal blow time
(second)
CURRENT
TRANSFORMER
U
+
-
+
SMOOTHING
CAPACITOR
P
N
V
W
IPM
U
MS
3~
V
W
COMPRESSOR
+
~~
DIODE
MODULE2
BOOSTER CHOPPER CIRCUIT
-
SWITCHING
POWER
TRANSISTOR
Function of main parts
NAMEFUNCTION
INTELLIGENT POWER MODULE (IPM)It supplies three-phase AC power to compressor.
SMOOTHING CAPACITORIt stabilizes the DC voltage and supply it to IPM.
CURRENT TRANSFORMERIt measures the current of the compressor motor.
DIODE MODULE 1It converts the AC voltage to DC voltage.
RESISTOR
RELAY
It absorbs the rush current not to run into the main power supply circuit when
the electricity turns ON.
It short-circuits the resistance which restricts rush current during the normal
operation after the compressor startup.
DIODE MODULE 2
BOOSTER
CHOPPER
CIRCUIT
SWITCHING POWER TRANSISTOR
REACTOR
It improves power factor.
It controls the bus-bar voltage.
12
MUZ-A24
MUY-A24
MUZ-D
MUY-D
POWER
SUPPLY
NOISE
FILTER
CIRCUIT
RESISTOR
RELAY
REACTOR
PFC
+
SMOOTHING
CAPACITOR
P
N
U
V
W
IPM
Function of main parts
NAMEFUNCTION
INTELLIGENT POWER MODULE (IPM)It supplies three-phase AC power to compressor.
SMOOTHING CAPACITORIt stabilizes the DC voltage and supplies it to IPM.
CURRENT TRANSFORMER
REACTOR
POWER FACTOR CORRECTION MODULE (PFC)
It measures the current of the compressor motor.
It measures the current of the main power supply circuit.
It rectifi es AC, controls its voltage and improves the power factor of power
supply.
CURRENT
TRANSFORMER
V
W
COMPRESSOR
U
MS
3~
RESISTORIt restricts rush current with the resistance.
RELAY
It short-circuits the resistance which restricts rush current during the compressor operates.
13
2-7-2. Outline of main power supply circuit
MUZ-A09/12/15/17 MUY-A15/17 MUZ-FD
1. At the start of operation
Main power supply circuit is formed when RELAY is turned ON at COMPRESSOR startup.
To prevent rush current from running into the circuit when power supply is turned ON,
RESISTOR is placed in sub circuit.
2. At normal operation
When AC runs into POWER P.C. board, its external noise is eliminated in NOISE FILTER CIRCUIT.
After noise is eliminated from AC, it is rectifi ed to DC by DIODE MODULE 1.
DC voltage, to which AC has been rectifi ed by process , is stabilized by SMOOTHING CAPACITOR and supplied to IPM.
DC voltage, which has been stabilized in process , is converted to three-phase AC by IPM and supplied to COMPRES-
SOR.
CURRENT TRANSFORMER, which is placed in the power supply circuit to COMPRESSOR, are used to measure the val-
ue of phase current and locate the polar direction of rotor with algorithm. PWM (Pulse width modulation) controls impressed
voltage and frequency with those information.
3. Purpose of PAM adoption
PAM : Pulse Amplitude Modulation
PAM has been adopted for the effi ciency improvement and the adaptation to IEC harmonic current emission standard
Outline of simple partial switching method
In conventional inverter models, DIODE MODULE rectifi es AC voltage to DC voltage, SMOOTHING CAPACITOR makes its
DC waveform smooth, and IPM converts its DC voltage to imitated AC voltage again in order to drive the compressor motor.
However, it has been difficult to meet IEC harmonic current emission standard by above circuit because harmonic gets
generated in the input current waveform and power factor gets down. The simple partial switching method with PAM, which
has been adopted this time, places and utilizes BOOSTER CHOPPER CIRCUIT before rectifying AC voltage in the general
passive-method converter circuit. As harmonic gets suppressed and the peak of waveform gets lower by adding BOOSTER
CHOPPER CIRCUIT as mentioned above and by synchronizing the timing of switching with the zero-cross point of waveform,
the input current waveform can be improved and the requirement of IEC harmonic current emission standard can be satisfi ed.
Since the switching synchronized with the zero cross point, this simple partial switching method has the feature of lower energy loss compared to active fi lter method. In addition, output and effi ciency is enhanced by combining with vector-controlled
inverter in order to boost the voltage of power supplied to IPM.
Input current waveform without PAMInput current waveform with PAM
Due to the time of no electricity;
· Power factor gets worse.
· Harmonic gets increased.
Input voltage
No electricity runs into
diode module because the
voltage at both sides of smoothing
capacitor is higher than input voltage.
Input current
Energized time is short in
case L inductance is small.
Owing to the increase of energized time;
· Power factor gets better.
· Harmonic gets suppressed.
14
4. Intelligent power module
IPM consists of the following components
· IGBT (x6) : Converts DC waveform to three-phase AC waveform and outputs it.
· Drive Circuit : Drives transistors.
· Protection circuit : Protects transistors from overcurrent.
Since the above components are all integrated in IPM, IPM has a merit to make the control circuit simplify and miniaturize.
5. Elimination of electrical noise
NOISE FILTER CIRCUIT, which is formed by *CMC COILS capacitors placed on the POWER P.C. board, eliminates electrical noise of AC power that is supplied to main power supply circuit. And this circuit prevents the electrical noise generated in
the inverter circuit from leaking out.
*CMC COILS; Common mode choke coils
MUZ-A24 MUY-A24 MUZ-D MUY-D
1. At the start of operation
Main power supply circuit is formed when RELAY is turned ON at COMPRESSOR startup.
To prevent rush current from running into the circuit when power supply is turned ON, RESISTOR are placed in sub circuit.
2. At normal operation
When AC runs into noise filter P.C. board, its external noise is eliminated in NOISE FILTER CIRCUIT.
After noise being eliminated from AC, it is rectified to DC by REACTOR and PFC. If the operating frequency becomes 25
Hz or more, DC voltage rises to 370 V.
DC voltage, to which has AC been rectified by process , is stabilized by SMOOTHING CAPACITOR and supplied to IPM.
The DC (Bus voltage), which has been stabilized in process , is converted to three-phase AC by IPM and supplied to
COMPRESSOR.
CURRENT TRANSFORMER, which is placed in the power supply circuit to COMPRESSOR, are used to measure the
value of phase current and locate the polar direction of rotor with algorithm. PWM (Pulse width modulation) controls im-
pressed voltage and frequency with those information.
3. Power factor improvement
Booster coil reactor and power factor controller rectify AC to DC and control its voltage.
In the motor drive system of sine wave control, power factor can be improved by reducing harmonics. PFC and reactor stabilize the voltage of DC supplied to inverter circuit and make its waveform smooth.
4. Power transistor module
IPM consists of the following components.
· Power Transistors (x6) : Converts DC waveform to three-phase AC waveform and outputs it.
· Drive Circuit : Drives transistors.
· Protection circuit : Protects transistors from over current.
Since the above components are all integrated in IPM, IPM has a merit that can get the control circuit simplified and miniaturized.
5. Elimination of electrical noise
NOISE FILTER CIRCUIT, which is formed by *CMC COILS and capacitors placed on the noise filter P.C. board, eliminates
electrical noise of AC power that is supplied to main power supply circuit. In short, common mode noise is absorbed in this
circuit.
Moreover, normal mode noise is absorbed in another NOISE FILTER CIRCUIT which is formed by *NMC COILS and capacitors.
Both NOISE FILTER CIRCUIT exists for preventing the electrical noise generated in the inverter circuit from leaking out.
*CMC COILS; Common mode choke coils
*NMC COILS; Normal mode choke coils
15
2-7-3. Sine wave control
In these air conditioners, compressor equips brushless DC motor which doesn't have Hall element.
In short, the motor is sensorless. However, it's necessary to locate the polar direction of rotor in order to drive brushless DC motor effi ciently. The general detection method of the polar direction for such a DC motor is to locate it from the voltage induced by
unenergized stator.
Therefore, it is necessary to have a certain period of time in which the stator is being unenergized for the rotor position detection
when the voltage of supplied power is impressed.
So the motor has been driven by square wave control (the conventional motor drive system) which energizes the motor only
when the range of electrical angle is within 120° because it is forced to be unenergized within 30° at start & end of one heap in
one waveform cycle (180°) when the voltage is impressed.
However, torque pulsation occurs at rotation in this method when the current-carrying phases are switched over to other phases
in sequence. Therefore, sine wave control system is adopted for these air conditioners because it can make the phase-to-phase
current waveform smoother (sine wave) in order to drive the motor more effi ciently and smoothly.
2-7-4. Characteristics of sine wave control in case of brushless DC motor
Although ordinary three-phase induction motor requires energy to excite the magnetic fi eld of rotor, brushless DC motor
●
doesn't need it. So, higher effi ciency and torque are provided.
This control provides the most effi cient waveform corresponding to the rotation times of compressor motor.
●
The rotation can be set to higher compared to the conventional motor drive system. So, the time in which air conditioner
●
can be operated with energy saved is longer than conventional models. This can save annual electric consumption.
Compared to square wave control, the torque pulsation is reduced at rotation so that the motor operates more quietly.
●
Since response and effi ciency of motor are enhanced in sine wave control, fi ner adjustment can be provided.
●
DC MotorAC Motor
RotorPermanent magnet is embeddedExcited by magnetic fi eld of stator
Rotor Position SignalNecessaryUnnecessary
In brushless DC motor, permanent magnet is embedded in the rotor. Therefore, it doesn't require energy to excite the rotor
like AC motor does. However, it's necessary to control the frequency of three-phase AC current supplied to the stator according to the polar direction of magnet embedded in the rotor so as to drive the motor effi ciently. Controlling 3 phase AC current
frequency also means controlling the timing to switch the polarity of stator. Therefore, the polar direction of rotor needs to be
detected.
2-7-5. Control Method of Rotation Times
Sine wave control makes the current transformers conduct real time detection of the value of the current running into the motor, locates the rotor position from the detected value, and decides if voltage should be impressed and if frequency should be
changed.
Compared to the conventional control and rotor position detection method, sine wave control can provide fi ner adjustment of the
voltage of supplied power. The value of the current running into the motor is determined by each motor characteristic.
16
2-8. OPERATIONAL FREQUENCY CONTROL OF OUTDOOR UNIT
1. Outline
The operational frequency is as following:
First, the target operational frequency is set based on the difference between the room temperature and the set temperature.
Second, the target operational frequency is regulated by discharge temperature protection, high pressure protection,
electric current protection and overload protection and also by the maximum/minimum frequency.
2. Maximum/minimum frequency in each operation mode.
The operation frequency in COOL mode is restricted by the upper limit frequency after 1 hour or 0.5 ~ 1 hour as
shown below for dew prevention.
It is rated frequency or less.
Minimum
frequency
108215931068
108715931068
151101510815102
Maximum
frequency
Maximum
frequency
Minimum
frequency
Maximum
frequency
Minimum
frequency
Maximum
frequency
Upper limit
frequency
1 hour
or
0.5~1 hour
Rated frequency or less
Time
17
2-9. EXPANSION VALVE CONTROL (LEV CONTROL)
(1) Outline of LEV control
The LEV basic control is comprised of setting LEV opening degree to the standard opening °F set for each operational
frequency of the compressor. However, when any change in indoor/outdoor temperatures or other factors cause air conditioning load fluctuation, the LEV control also works to correct LEV opening degree based on discharge temperature
(Shell temperature) of the compressor, developing the unit’s performance.
Minimum : 33 pulse (MUZ-A09/12/15/17 MUY-A15/17)
59 pulse (MUZ-A24 MUY-A24)
Control range
Maximum : 500 pulse
Actuating speed
Opening degree adjustmentLEV opening degree is always adjusted in opening direction.
Standard specification
Unit OFFLEV remains at maximum opening degree (reaches maximum
Remote controller ONLEV is positioned. (first full-closed at zero pulse and then posi-
COOL · DRY MODE
During 1 to 5 minutes after compressor starts
Open : 40 pulse/second
Close : 90 pulse/second.
(When reducing the opening degree, LEV is once over-closed,
and then adjusted to the proper degree by opening.
opening degree approximate in 15 minutes after compressor
stops)
tioned.)
LEV is fixed to standard opening degree according to opera-
tional frequency of compressor.
54 pulse (MUZ-FD)
58 pulse (MUZ-D MUY-D)
HEAT MODE
During 1 to 15 minutes after compressor starts
More than 5 (COOL, DRY), 15 (HEAT (MUZ)) minutes
have passed since compressor start-up
General operation
Thermostat OFF
Thermostat ON
Defrosting in HEAT modeLEV is adjusted to open 500 pulse.
LEV opening degree is corrected to get target discharge temperature of compressor.
(For lower discharge temperature than target temperature,
LEV is corrected in closing direction.)
(For higher discharge temperature than target temperature,
LEV is corrected in opening direction.)
It may take more than 30 minutes to reach target tempera-
ture, depending on operating conditions.
LEV is adjusted to exclusive opening degree for thermostat
OFF.
LEV is controlled in the same way as that after the compressor has started up.
18
(2) Time chart
Air conditioner ON
Air conditioner OFF
(thermostat off)
LEV opening degree
of the compressor
Operational frequency
(3) Control data
06
05
04
03
02
01
LEV opening degree
Positioning
Standard
opening
degree
about 5 minutes <COOL, DRY>
about 15 minutes <HEAT>
ON
Opening degree is
corrected according
to discharge
temperature.
E
D
C
B
A(target discharge temperature)
Time
OFF Time
F
Commanded
to open
305070
Operational frequency of the compressor
90110130
(Hz)
(a) Reference value of target discharge temperature
(COOL / HEAT (MUZ) F)
Applied modelABCDEF
MUZ-A09/12
MUZ-A15/17
MUY-A15/17
MUZ-A24
MUY-A24
MUZ-FD
MUZ-D
MUY-D
COOL122127140151158158
HEAT113126138154169169
COOL129136147158158158
HEAT120136151165180185
COOL140140140145147153
HEAT140145149153158158
COOL120131142153162169
HEAT109124138156167176
COOL126135149167183187
HEAT131140149154162167
In COOL operation, the two indoor coil thermistors (one main and one sub) sense temperature ununiformity (super
heat) at the heat exchanger, and when temperature difference have developed, the indoor coil thermistors adjust
LEV opening degree to get approximate 10 degrees lower temperature than the target temperature in the table
above, thus diminishing super heat.
19
(b) Reference value of LEV standard opening degree (pulse)
Applied modelABCDEF
MUZ-A09/12
MUZ-A15/17
MUY-A15/17
MUZ-A24
MUY-A24
MUZ-FD
MUZ-D
MUY-D
COOL130190240260260260
HEAT100130170210230230
COOL290300350350370370
HEAT130150220250280300
COOL150166186206230260
HEAT130150170196210226
COOL180240300320320320
HEAT130180240270300300
COOL150170210250280300
HEAT100120140190240280
20
3
MXZ MICROPROCESSOR CONTROL
MXZ-A•NA
3-1. INVERTER SYSTEM CONTROL
3-1-1. Inverter main power supply circuit
CURRENT
REACTOR
POWER
SUPPLY
NOISE
FILTER
CIRCUIT
RESISTOR
RELAY
PFC
+
SMOOTHING
CAPACITOR
Function of main parts
NAMEFUNCTION
INTELLIGENT POWER MODULE (IPM)It supplies three-phase AC power to compressor.
SMOOTHING CAPACITORIt stabilizes the DC voltage and supplies it to IPM.
CURRENT TRANSFORMER
REACTOR
POWER FACTOR CORRECTION MODULE (PFC)
It measures the current of the compressor motor.
It measures the current of the main power supply circuit.
It rectifi es AC, controls its voltage and improves the power factor of power
supply.
P
N
U
V
W
IPM
TRANSFORMER
U
MS
3~
V
W
COMPRESSOR
RESISTORIt restricts rush current with the resistance.
RELAY
It short-circuits the resistance which restricts rush current during the compressor operates.
3-1-2. Outline of main power supply circuit
1. At the start of operation
Main power supply circuit is formed when RELAY is turned ON at COMPRESSOR startup.
To prevent rush current from running into the circuit when power supply is turned ON, RESISTOR are placed in sub circuit.
2. At normal operation
When AC runs into noise fi lter P.C. board, its external noise is eliminated in NOISE FILTER CIRCUIT.
After noise being eliminated from AC, it is rectifi ed to DC by REACTOR and PFC. If the operating frequency becomes 25
Hz or more, DC voltage rises to 370 V.
DC voltage, to which has AC been rectifi ed by process , is stabilized by SMOOTHING CAPACITOR and supplied to IPM.
The DC (Bus voltage), which has been stabilized in process , is converted to three-phase AC by IPM and supplied to
COMPRESSOR.
CURRENT TRANSFORMER, which is placed in the power supply circuit to COMPRESSOR, are used to measure the val-
ue of phase current and locate the polar direction of rotor with algorithm. PWM (Pulse width modulation) controls impressed
voltage and frequency with those information.
21
3. Power factor improvement
Booster coil reactor and PFC rectify AC to DC and control its voltage.
In the motor drive system of sine wave control, power factor can be improved by reducing harmonics. PFC and reactor stabilize the voltage of DC supplied to inverter circuit and make its waveform smooth.
4. Power transistor module
IPM consists of the following components.
· Power Transistors (x6) : Converts DC waveform to three-phase AC waveform and outputs it.
· Drive Circuit : Drives transistors.
· Protection circuit : Protects transistors from over current.
Since the above components are all integrated in IPM, IPM has a merit that can get the control circuit simplifi ed and miniatur-
ized.
5. Elimination of electrical noise
NOISE FILTER CIRCUIT, which is formed by *CMC COILS and capacitors placed on the noise fi lter P.C. board, eliminates
electrical noise of AC power that is supplied to main power supply circuit. In short, common mode noise is absorbed in this
circuit.
Moreover, normal mode noise is absorbed in another NOISE FILTER CIRCUIT which is formed by *NMC COILS and capacitors.
Both NOISE FILTER CIRCUIT exists for preventing the electrical noise generated in the inverter circuit from leaking out.
*CMC COILS; Common mode choke coils
*NMC COILS; Normal mode choke coils
3-1-3. Sine wave control
In these air conditioners, compressor equips brushless DC motor which doesn't have Hall element.
In short, the motor is sensorless. However, it's necessary to locate the polar direction of rotor in order to drive brushless DC motor effi ciently. The general detection method of the polar direction for such a DC motor is to locate it from the voltage induced by
unenergized stator.
Therefore, it is necessary to have a certain period of time in which the stator is being unenergized for the rotor position detection
when the voltage of supplied power is impressed.
So the motor has been driven by square wave control (the conventional motor drive system) which energizes the motor only
when the range of electrical angle is within 120° because it is forced to be unenergized within 30° at start & end of one heap in
one waveform cycle (180°) when the voltage is impressed.
However, torque pulsation occurs at rotation in this method when the current-carrying phases are switched over to other phases
in sequence. Therefore, sine wave control system is adopted for these air conditioners because it can make the phase-to-phase
current waveform smoother (sine wave) in order to drive the motor more effi ciently and smoothly.
3-1-4. Characteristics of sine wave control in case of brushless DC motor
Although ordinary three-phase induction motor requires energy to excite the magnetic fi eld of rotor, brushless DC motor
●
doesn't need it. So, higher effi ciency and torque are provided.
This control provides the most effi cient waveform corresponding to the rotation times of compressor motor.
●
The rotation can be set to higher compared to the conventional motor drive system. So, the time in which air conditioner can
●
be operated with energy saved is longer than conventional models. This can save annual electric consumption.
Compared to square wave control, the torque pulsation is reduced at rotation so that the motor operates more quietly.
●
Since response and effi ciency are enhanced in sine wave control, fi ner adjustment can be provided.
●
DC MotorAC Motor
RotorPermanent magnet is embeddedExcited by magnetic fi eld of stator
Rotor Position SignalNecessaryUnnecessary
In brushless DC motor, permanent magnet is embedded in the rotor. Therefore, it doesn't require energy to excite the rotor
like AC motor does. However, it's necessary to control the frequency of three-phase AC current supplied to the stator according to the polar direction of magnet embedded in the rotor so as to drive the motor effi ciently. Controlling 3 phase AC current
frequency also means controlling the timing to switch the polarity of stator. Therefore, the polar direction of rotor needs to be
detected.
3-1-5. Control Method of Rotation Times
Sine wave control makes the current transformers conduct real time detection of the value of the current running into the motor, locates the rotor position from the detected value and decides if voltage should be impressed and if frequency should be
changed.
Compared to the conventional control and rotor position detection method, sine wave control can provide fi ner adjustment of the
voltage of supplied power. The value of the current running into the motor is determined by each motor characteristic.
22
3-2. EXPANSION VALVE CONTROL (LEV CONTROL)
Linear expansion valve (LEV) is controlled by “Thermostat ON” commands given from each unit.
Indoor unit status LEV opening
Stop of all indoor unit Opening before stop → 500 pulse in 15 minutes
When the outdoor unit operates (When the other indoor unit operates) : 5 pulse.
When outdoor unit stops. (When the other indoor unit stops or thermo off) :
Maintain LEV opening before stop → 500 pulse in 15 minutes
• LEV opening for each indoor unit is determined by adding adjustment in accordance
with the number of operating unit and the capacity class to standard opening, based
on the operation frequency:
Ex.) Opening 130 pulse in standard opening 1 → Minimum 80 pulse, Maximum 205
pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 3 units operation)
Thermostat ON in COOL or DRY
mode
• After starting operation, adjustment in accordance with intake super heat, discharge
temperature is included in standard opening.
1
NOTE: LEV opening in each frequency at DRY operation and COOL operation is the
same. However, velocity and compressor operation frequency controls are different. See 3-3. OPERATIONAL FREQUENCY RANGE
(As far as the indoor unit velocity control goes, refer to DRY operation in MICROPROCESSOR CONTROL in indoor unit.)
• When the outdoor unit operates. (When the other indoor unit operates) : 140 pulse.
Thermostat OFF in HEAT mode
• When the outdoor unit stops. (When the other indoor unit stops or thermo off) : Maintain LEV opening before stop → 500 pulse in 15 minutes. “
• LEV opening for each indoor unit is determined by adding adjustment in accordance
with the number of operating unit and the capacity class to standard opening, based
on the operation frequency:
Thermostat ON in HEAT mode
Ex.) Opening 120 pulse in standard opening 1 → Minimum 70 pulse, Maximum 165
pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 3 units operation)
• After starting operation, opening becomes the one that adjustment in accordance with
discharge temperature was added to basic opening.
1 “
1 LEV opening when the outdoor unit is operating: Upper limit 500 pulse, Lower limit 53pulse (MXZ-2A / 3A30NA), 59 pulse
1
(MXZ-3A30NA-
/ 4A).
23
MXZ-2A20NA/3A30NA
The table below shows the role of Exclusive LEV and Receiver LEV in each operation mode.
Discharge
Temperature
Protection
High Pressure
Protection
COOL
HEAT
Exclusive LEV
Receiver LEV
Exclusive LEV
Receiver LEV
Circulation Amount
Control
○○○○ ○
××○○○
×○○○○×○○
Capacity Distribution
Evaporation
Temperature
Protection
—
—
Indoor heat
exchanger
(MXZ-3A30NA)
Exclusive
LEV
Receiver
Outdoor
heat
exchanger
Receiver
LEV
In COOL mode, the two indoor coil thermistors (one main and one sub) sense temperature ununiformity (super heat) at the
heat exchanger, and when temperature difference have developed, the indoor coil thermistors adjust LEV opening to diminish the super heat. This action is called Evaporation Temperature Protection.
The opening pulse of the Receiver LEV is fixed to the standard No.3 in cooling operation, and so is that of each Exclusive
LEV in heating operation.
However the opening pulse will be changed to the standard No.4 or No.5 when the discharge temperature protection or highpressure protection is working.
In addition to that, it will also be changed to standard No.2 or No.1 when the opening pulse of the each Exclusive LEV
becomes 100 pulse or less in cooling operation or so does that of Receiver LEV in heating operation.
Determination of LEV standard opening in each indoor unit
• The standard opening is on the straight line, which connects an each standard point in the section where divided into
seven according to the operation frequency of compressor as shown in the figure below.
(LEV opening is controlled in proportion to the operation frequency.)
NOTE: Opening is adjusted at the standard opening according to the indoor unit conditions.
However, inclination of standard opening in each point of opening does not change with the original curve.
• Add opening provided in Difference in capacity in the table below to the standard opening from 1 to 8, when capacity
of the indoor unit is excluding code 1.
• Add opening provided in Difference in operation number in the table below to determined LEV opening for each
indoor unit, when 2 or 3 indoor units are operated at the same time.
NOTE: Even when the adjusted standard opening exceeds the driving range from 59 to 500 pulse, actual driving out-
Correct the LEV opening according to the difference between target discharge temperature and discharge temperature.
COOLHEAT
Number of operating unit
4 units
(MXZ-4A36)
1 unit2 unit3 units
4 units
(MXZ-4A36)
MXZ-2A
Discharge temperature (°F)
More than Target discharge temperature+18 58
Target discharge temperature + 18 to Target discharge temperature + 9 43
Target discharge temperature + 9 to Target discharge temperature + 3.6 21
Target discharge temperature + 3.6 to Target discharge temperature - 3.6 00
Target discharge temperature - 3.6 to Target discharge temperature - 9 -1-1
Target discharge temperature - 9 to Target discharge temperature - 18 -3-2
Target discharge temperature - 18 or less -4-3
LEV opening correction (pulse)
COOL HEAT
MXZ-3A MXZ-4A
Discharge temperature (°F)
More than Target discharge temperature + 21.6 46
Target discharge temperature + 21.6 to Target discharge temperature + 9 22
Target discharge temperature + 9 to Target discharge temperature + 5.4 11
Target discharge temperature + 5.4 to Target discharge temperature - 5.4 00
Target discharge temperature - 5.4 to Target discharge temperature - 9 -1-1
Target discharge temperature - 9 to Target discharge temperature - 21.6 -3-2
Target discharge temperature - 21.6 or less -8-8
(2) Separate correction (COOL,DRY)
(Correction by the separate super heat)
a) Correct the LEV separately by temperature difference between each gas pipe temperature and the minimum gas pipe
temperature of all.
Calculate each super heat of the unit from the expression below;
(Super heat) = (Each gas pipe temperature) - (Minimum gas pipe temperature)
Separate correction is performed according to each super heat in the table below.
MXZ-2A20NA
Superheat
more than 16.23
10.8 to 16.22
5.4 to 10.81
5.4 or less0
correction (pulse)
LEV opening
MXZ-3A30NA
Superheat
more than 16.212
10.8 to 16.28
5.4 to 10.84
5.4 or less0
LEV opening correction (pulse)
COOL HEAT
LEV opening
correction (pulse)
28
b) Correct the LEV separately by temperature difference “ ∆RT” between main/sub indoor coil thermistor.
∆RT
∆RT2
10.8
LEV opening
correction (pulse)
7.2 ∆RT < 10.81∆RT < 7.21
In addition, decrease the target discharge temperature corresponding ∆RT.
When the following conditions a) ~ c) are satisfied, the defrosting starts.
a) The defrost thermistor reads 26.6 °F or less.
b) The cumulative operation time of the compressor has reached any of the set values
105, 115, 150 minutes).
c) More than 5 minutes have passed since the start-up of the compressor.
Set value of compressor operation time (hereinafter referred to as defrost interval)
This is decided by the temperature of defrost thermistor and ambient temperature thermistor, the previous defrosting
time. For example, the first defrost interval is 40 minutes long, and the second is 45 minutes long. The third and subsequent intervals are set to be longer, and less frequent, depending on defrosting time.
The third and subsequent defrost intervals follow any of the three patterns …5 or 10 to 20 minutes longer, the same,
or 5 or 10 to 20 minutes shorter compared with the previous defrost interval … with the longest 125 minutes and the
shortest 40 minutes.
(2) Releasing conditions of defrosting
Defrosting is released when any of the following conditions is satisfied:
a) The defrost thermistor continues to read 50.7 °F.
b) Defrosting time exceeds 10 minutes.
c) Any other mode than HEAT mode is set during defrosting.
(31, 35, 45, 55, 65, 75, 85, 95,
3-5. DISCHARGE TEMPERATURE PROTECTION CONTROL
This protection controls the compressor ON/OFF and operation frequency according to temperature of the discharge temperature thermistor.
(1) Compressor ON/OFF
When temperature of the discharge temperature thermistor exceeds 240.8 °F, the control stops the compressor.
When temperature of the discharge temperature thermistor is 176 °F (2A/3A30NA)/ 212 °F (3A30NA-
/4A) or less, the
1
controls starts the compressor.
(2) Compressor operation frequency
When temperature of the discharge temperature thermistor is expected to be higher than 240.8 °F, the control decreases
12 Hz from the current frequency.
When temperature of the discharge temperature thermistor is expected to be higher than 231.8 °F and less than 240.8 °F,
the control decreases 6 Hz from the current frequency.
When temperature of the discharge temperature thermistor is expected to be higher than 219.2 °F and less than 231.8 °F,
the control is set at the current frequency.
3-6. OUTDOOR FAN CONTROL
Fan speed is switched according to the number of operating indoor unit and the compressor frequency.
Fan speed
High
Down
Up
Low
Compressor frequencyMin.Max.
NOTE : When the indoor coil thermistor is 134.6 ˚F or more on HEAT operation, fan speed is fixed to Low speed.Or, the indoor coil thermistor is 113 ˚F or less on HEAT operation, fan speed is back to normal.
<Relation between compressor frequency and fan speed>
Compressor frequency (Hz)
DownUp
MXZ-2A
MXZ-3A30NA
MXZ-3A30NA
MXZ-4A
1
-
3040
4050
30
3-7. PRE-HEAT CONTROL
MXZ-2A20NA-
The compressor is energized even while it is not operating.
This is to generate heat at the winding to improve the compressor's start-up condition.
PowerON
Compressor ON
Outside temperature
MXZ-3A30NA-1 MXZ-4A36NA
1
OFF
OFF
68 °F
Pre-heatON
OFF
30min.
Breaker ON
Start
operation
30 min.30 min.30 min.30 min.30 min. 15 min. 30 min.15 min. 30 min.
Stop
operation
When outside
temperature is
above 68 °F
1. Pre-heat control is turned ON for 15 or 30 min, after the breaker is turned ON.
2. 30 min. after the unit is stopped, pre-heat control is turned ON for 15 or 30 min. and turned OFF for 30 min."
This is repeated as shown in the graph until the breaker is turned OFF.
When outside temperature is 68 °F or below, pre-heat control is ON for 30 min."
When outside temperature is 69.8 °F or above, pre-heat control is ON for 15 min."
NOTE: When the unit is started with the remote controller, pre-heat control is turned OFF."
Compressor uses 50 W when pre-heat control is turned ON.
3-8. COOL OPERATION
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Room temperature minus
Thermostat
set temperature (Initial)
ON-1.8 °F or more
OFFless
than
-1.8 °F
Room temperature minus
set temperature (During operation)
-1.8 °F
-1.3 °F
2. Coil frost prevention
The compressor operational frequency is controlled to prevent the indoor heat exchanger temperature from falling excessively.
Compressor is turned OFF for 5 minutes when temperature of indoor coil thermistor continues 37.4 °F or less for 5 minutes or more.
31
3-9. DRY OPERATION
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Thermostat
Room temperature minus
set temperature (Initial)
Room temperature minus
set temperature (During operation)
ON-1.8 °F or more
OFFless
than
-1.8 °F
-1.8 °F
-1.3 °F
2. Coil frost prevention
Coil frost prevention is as same as COOL mode. (3-8.2.)
3-10. HEAT OPERATION
1. Thermostat control
Thermostat is ON or OFF by difference between room temperature and set temperature.
Thermostat
ONless than 3.6
OFF3.6
Room temperature minus
set temperature (Initial)
°F
°F or more
2. High pressure protection
In HEAT operation the indoor coil thermistor detects the temperature of the indoor heat exchanger. The compressor operational frequency is controlled to prevent the condensing pressure from increasing excessively.
Room temperature minus
set temperature (During operation)
3 °F
3.6 °F
HEAD OFFICE: TOKYO BLDG.,2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
Copyright 2006 MITSUBISHI ELECTRIC ENGINEERING CO.,LTD
Distributed in Feb. 2008. No. OBT16 REVISED EDITION-B 6
Distributed in May 2007. No. OBT16 REVISED EDITION-A 7
Distributed in Apr. 2006. No. OBT16 7
Made in Japan
New publication, effective Feb. 2008
Specifications subject to change without notice.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.