Please read the instructions carefully before using the equipment.
To use the equipment correctly, do not attempt to install, operate, maintain, or inspect the equipment until
you have read through this Instruction Manual, Installation guide, and appended documents carefully. Do not
use the equipment until you have a full knowledge of the equipment, safety information and instructions.
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".
WARNING
CAUTION
Note that the CAUTION level may lead to a serious consequence according to conditions.
Please follow the instructions of both levels because they are important to personnel safety.
What must not be done and what must be done are indicated by the following diagrammatic symbols.
Indicates that incorrect handling may cause hazardous conditions,
resulting in death or severe injury.
Indicates that incorrect handling may cause hazardous conditions,
resulting in medium or slight injury to personnel or may cause physical
damage.
Indicates what must not be done. For example, "No Fire" is indicated by
Indicates what must be done. For example, grounding is indicated by
In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so
on are classified into "POINT".
After reading this Instruction Manual, keep it accessible to the operator.
.
.
A - 1
1. To prevent electric shock, note the following
WARNING
Before wiring and inspections, turn off the power and wait for 15 minutes or more until the charge lamp
turns off. Then, confirm that the voltage between P+ and N- is safe with a voltage tester and others.
Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or
not, always confirm it from the front of the servo amplifier.
Ground the servo amplifier and servo motor securely.
Any person who is involved in wiring and inspection should be fully competent to do the work.
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, it
may cause an electric shock.
Do not operate switches with wet hands. Otherwise, it may cause an electric shock.
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric
shock.
During power-on or operation, do not open the front cover of the servo amplifier. Otherwise, it may cause
an electric shock.
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging
area are exposed and you may get an electric shock.
Except for wiring and periodic inspection, do not remove the front cover of the servo amplifier even if the
power is off. The servo amplifier is charged and you may get an electric shock.
To prevent an electric shock, always connect the protective earth (PE) terminal (marked ) of the servo
amplifier to the protective earth (PE) of the cabinet.
To avoid an electric shock, insulate the connections of the power supply terminals.
2. To prevent fire, note the following
CAUTION
Install the servo amplifier, servo motor, and regenerative resistor on incombustible material. Installing
them directly or close to combustibles will lead to smoke or a fire.
Always connect a magnetic contactor between the power supply and the main circuit power supply (L1/
L2/L3) of the servo amplifier, in order to configure a circuit that shuts down the power supply on the side
of the servo amplifier’s power supply. If a magnetic contactor is not connected, continuous flow of a large
current may cause smoke or a fire when the servo amplifier malfunctions.
Always connect a molded-case circuit breaker, or a fuse to each servo amplifier between the power
supply and the main circuit power supply (L1/L2/L3) of the servo amplifier, in order to configure a circuit
that shuts down the power supply on the side of the servo amplifier’s power supply. If a molded-case
circuit breaker or fuse is not connected, continuous flow of a large current may cause smoke or a fire
when the servo amplifier malfunctions.
When using the regenerative resistor, switch power off with the alarm signal. Otherwise, a regenerative
transistor malfunction or the like may overheat the regenerative resistor, causing smoke or a fire.
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible
matter from entering the servo amplifier and servo motor.
A - 2
3. To prevent injury, note the following
CAUTION
Only the power/signal specified in the Instruction Manual should be applied to each terminal. Otherwise,
it may cause an electric shock, fire, injury, etc.
Connect cables to the correct terminals. Otherwise, a burst, damage, etc., may occur.
Ensure that polarity (+/-) is correct. Otherwise, a burst, damage, etc., may occur.
The servo amplifier heat sink, regenerative resistor, servo motor, etc., may be hot while the power is on
and for some time after power-off. Take safety measures such as providing covers to avoid accidentally
touching them by hands and parts such as cables.
4. Additional instructions
The following instructions should also be fully noted. Incorrect handling may cause a malfunction, injury,
electric shock, fire, etc.
(1) Transportation and installation
CAUTION
Transport the products correctly according to their mass.
Stacking in excess of the specified number of product packages is not allowed.
Do not hold the front cover, cables, or connectors when carrying the servo amplifier. Otherwise, it may
drop.
Install the servo amplifier and the servo motor in a load-bearing place in accordance with the Instruction
Manual.
Do not get on or put heavy load on the equipment. Otherwise, it may cause injury.
The equipment must be installed in the specified direction.
Maintain specified clearances between the servo amplifier and the inner surfaces of a control cabinet or
other equipment.
Do not install or operate the servo amplifier and servo motor which have been damaged or have any
parts missing.
Do not block the intake and exhaust areas of the servo amplifier. Otherwise, it may cause a malfunction.
Do not drop or apply heavy impact on the servo amplifiers and the servo motors. Otherwise, it may cause
injury, malfunction, etc.
Do not strike the connector. Otherwise, it may cause a connection failure, malfunction, etc.
When you keep or use the equipment, please fulfill the following environment.
Item Environment
Ambient
temperature
Storage -20 °C to 65 °C (non-freezing)
Ambient
humidity
Storage Ambience Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust, and dirt Altitude 2000 m or less above sea level (Contact your local sales office for the altitude for options.) Vibration resistance 5.9 m/s2, at 10 Hz to 55 Hz (X, Y, Z axes)
When the product has been stored for an extended period of time, contact your local sales office.
When handling the servo motor, be careful with the sharp edges of the servo motor.
The servo amplifier must be installed in a metal cabinet.
Operation 0 °C to 55 °C (non-freezing)
Operation
5 %RH to 90 %RH (non-condensing)
A - 3
CAUTION
When fumigants that contain halogen materials, such as fluorine, chlorine, bromine, and iodine, are used
for disinfecting and protecting wooden packaging from insects, they cause a malfunction when entering
our products. Please take necessary precautions to ensure that remaining materials from fumigant do not
enter our products, or treat packaging with methods other than fumigation, such as heat treatment.
Additionally, disinfect and protect wood from insects before packing the products.
To prevent a fire or injury in case of an earthquake or other natural disasters, securely install, mount, and
wire the servo motor in accordance with the Instruction Manual.
(2) Wiring
CAUTION
Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.
Make sure to connect the cables and connectors by using the fixing screws and the locking mechanism.
Otherwise, the cables and connectors may be disconnected during operation.
Do not install a power capacitor, surge killer, or radio noise filter (optional FR-BIF(-H)) on the servo
amplifier output side.
To avoid a malfunction, connect the wires to the correct phase terminals (U/V/W) of the servo amplifier
and servo motor.
Connect the servo amplifier power output (U/V/W) to the servo motor power input (U/V/W) directly. Do
not connect a magnetic contactor and others between them. Otherwise, it may cause a malfunction.
Servo amplifier
U
V
W
Servo motor
U
V
W
Servo motorServo amplifier
U
M
V
W
U
V
W
M
The connection diagrams in this Instruction Manual are shown for sink interfaces, unless stated
otherwise.
The surge absorbing diode installed to the DC relay for control output should be fitted in the specified
direction. Otherwise, the converter unit and the drive unit will malfunction and will not output signals,
disabling the emergency stop and other protective circuits.
Servo amplifier
DOCOM
Control output
signal
For sink output interface
24 V DC
RA
Servo amplifier
24 V DC
DOCOM
Control output
signal
For source output interface
RA
When the wires are not tightened enough to the terminal block, the wires or terminal block may generate
heat because of the poor contact. Be sure to tighten the wires with specified torque.
Connecting a servo motor of the wrong axis to U, V, W, or CN2 of the servo amplifier may cause a
malfunction.
Configure a circuit to turn off EM2 or EM1 when the main circuit power supply is turned off to prevent an
unexpected restart of the servo amplifier.
To prevent malfunction, avoid bundling power lines (input/output) and signal cables together or running
them in parallel to each other. Separate the power lines from the signal cables.
A - 4
(3) Test run and adjustment
CAUTION
When executing a test run, follow the notice and procedures in this instruction manual. Otherwise, it may
cause a malfunction, damage to the machine, or injury.
Before operation, check and adjust the parameter settings. Improper settings may cause some machines
to operate unexpectedly.
Never make a drastic adjustment or change to the parameter values as doing so will make the operation
unstable.
Do not get close to moving parts during the servo-on status.
(4) Usage
CAUTION
Provide an external emergency stop circuit to stop the operation and shut the power off immediately.
For equipment in which the moving part of the machine may collide against the load side, install a limit
switch or stopper to the end of the moving part. The machine may be damaged due to a collision.
Do not disassemble, repair, or modify the product. Otherwise, it may cause an electric shock, fire, injury,
etc. Disassembled, repaired, and/or modified products are not covered under warranty.
Before resetting an alarm, make sure that the run signal of the servo amplifier is off in order to prevent a
sudden restart. Otherwise, it may cause an accident.
Use a noise filter, etc., to minimize the influence of electromagnetic interference. Electromagnetic
interference may affect the electronic equipment used near the servo amplifier.
Do not burn or destroy the servo amplifier. Doing so may generate a toxic gas.
Use the servo amplifier with the specified servo motor.
Wire options and peripheral equipment, etc. correctly in the specified combination. Otherwise, it may
cause an electric shock, fire, injury, etc.
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be
used for ordinary braking.
For such reasons as incorrect wiring, service life, and mechanical structure (e.g. where a ball screw and
the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft.
To ensure safety, install a stopper on the machine side.
If the dynamic brake is activated at power-off, alarm occurrence, etc., do not rotate the servo motor by an
external force. Otherwise, it may cause a fire.
A - 5
(5) Corrective actions
CAUTION
Ensure safety by confirming the power off, etc. before performing corrective actions. Otherwise, it may
cause an accident.
If it is assumed that a power failure, machine stoppage, or product malfunction may result in a hazardous
situation, use a servo motor with an electromagnetic brake or provide an external brake system for
holding purpose to prevent such hazard.
Configure an electromagnetic brake circuit which is interlocked with an external emergency stop switch.
Contacts must be opened when ALM
(Malfunction) or MBR (Electromagnetic
brake interlock) turns off.
Contacts must be opened with
the emergency stop switch.
Servo motor
B
Electromagnetic brake
When an alarm occurs, eliminate its cause, ensure safety, and deactivate the alarm to restart operation.
If the molded-case circuit breaker or fuse is activated, be sure to remove the cause and secure safety
before switching the power on. If necessary, replace the servo amplifier and recheck the wiring.
Otherwise, it may cause smoke, fire, or an electric shock.
Provide an adequate protection to prevent unexpected restart after an instantaneous power failure.
After an earthquake or other natural disasters, ensure safety by checking the conditions of the
installation, mounting, wiring, and equipment before switching the power on to prevent an electric shock,
injury, or fire.
RA
24 V DC
(6) Maintenance, inspection and parts replacement
CAUTION
Make sure that the emergency stop circuit operates properly such that an operation can be stopped
immediately and a power is shut off by the emergency stop switch.
It is recommended that the servo amplifier be replaced every 10 years when it is used in general
environment.
When using the servo amplifier that has not been energized for an extended period of time, contact your
local sales office.
(7) General instruction
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn
without covers and safety guards. When the equipment is operated, the covers and safety guards must
be installed as specified. Operation must be performed in accordance with this Instruction Manual.
A - 6
DISPOSAL OF WASTE
Please dispose a servo amplifier, battery (primary battery) and other options according to your local laws and
regulations.
EEP-ROM life
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If
the total number of the following operations exceeds 100,000, the servo amplifier may malfunction when the
EEP-ROM reaches the end of its useful life.
Write to the EEP-ROM due to parameter setting changes
Write to the EEP-ROM due to device changes
STO function of the servo amplifier
The servo amplifier complies with safety integrity level 3 (SIL 3) of the IEC 61508:2010 functional safety
standard.
Refer to app. 14 for schedule.
When using the STO function of the servo amplifier, refer to chapter 13.
For the MR-J3-D05 safety logic unit, refer to app. 5.
Compliance with global standards
For the compliance with global standards, refer to app. 4.
«About the manuals»
You must have this Instruction Manual and the following manuals to use this servo. Ensure to prepare
them to use the servo safely.
Relevant manuals
Manual name Manual No.
MELSERVO MR-D30 Instruction Manual (Note 5) SH(NA)030132ENG
MELSERVO MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual (Note 6) SH(NA)030153ENG
MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting) SH(NA)030109ENG
MELSERVO Servo Motor Instruction Manual (Vol. 3) (Note 1) SH(NA)030113ENG
MELSERVO Linear Servo Motor Instruction Manual (Note 2) SH(NA)030110ENG
MELSERVO Direct Drive Motor Instruction Manual (Note 3) SH(NA)030112ENG
MELSERVO Linear Encoder Instruction Manual (Note 2, 4) SH(NA)030111ENG
MELSERVO EMC Installation Guidelines IB(NA)67310ENG
Note 1. It is necessary for using a rotary servo motor.
2. It is necessary for using a linear servo motor.
3. It is necessary for using a direct drive motor.
4. It is necessary for using a fully closed loop system.
5. It is necessary for using an MR-D30 functional safety unit.
6. It is necessary for using an MR-CV_ power regeneration converter unit/MR-CR_ resistance regeneration
converter unit, and MR-J4-DU_B_(-RJ) drive unit.
A - 7
«Wiring»
Wires mentioned in this Instruction Manual are selected based on the ambient temperature of 40 °C.
«U.S. customary units»
U.S. customary units are not shown in this manual. Convert the values if necessary according to the
following table.
Quantity SI (metric) unit U.S. customary unit
Mass 1 [kg] 2.2046 [lb]
Length 1 [mm] 0.03937 [inch]
Torque 1 [N•m] 141.6 [oz•inch]
Moment of inertia 1 [(× 10-4 kg•m2)] 5.4675 [oz•inch2]
Load (thrust load/axial load) 1 [N] 0.2248 [lbf]
Temperature N [°C] × 9/5 + 32 N [°F]
1.2 Function block diagram ..................................................................................................................... 1- 3
1.3 Servo amplifier standard specifications ........................................................................................... 1-13
1.4 Combinations of servo amplifiers and servo motors ....................................................................... 1-19
1.5 Function list ...................................................................................................................................... 1-21
1.6 Model designation ............................................................................................................................ 1-23
2.6 Parts having service life .................................................................................................................... 2- 7
2.7 Restrictions when using this product at altitude exceeding 1000 m and up to 2000 m
3.1 Input power supply circuit ................................................................................................................. 3- 3
3.1.1 200 V class ................................................................................................................................. 3- 4
3.1.2 400 V class ................................................................................................................................ 3-10
3.1.3 100 V class ................................................................................................................................ 3-14
3.2 I/O signal connection example ......................................................................................................... 3-15
3.2.1 For sink I/O interface ................................................................................................................. 3-15
3.2.2 For source I/O interface ............................................................................................................ 3-17
3.3 Explanation of power supply system ............................................................................................... 3-18
3.3.1 Signal explanations ................................................................................................................... 3-18
4.3.3 Status display of an axis ........................................................................................................... 4-12
4.4 Test operation .................................................................................................................................. 4-14
4.5 Test operation mode ........................................................................................................................ 4-14
4.5.1 Test operation mode in MR Configurator2 ................................................................................ 4-15
4.5.2 Motor-less operation in controller .............................................................................................. 4-18
5. PARAMETERS 5- 1 to 5-56
5.1 Parameter list .................................................................................................................................... 5- 1
6.2.2 Display transition and operation procedure of one-touch tuning ............................................... 6- 7
6.2.3 Caution for one-touch tuning ..................................................................................................... 6-17
6.3 Auto tuning ....................................................................................................................................... 6-18
6.3.1 Auto tuning mode ...................................................................................................................... 6-18
6.3.2 Auto tuning mode basis ............................................................................................................. 6-19
6.3.3 Adjustment procedure by auto tuning ....................................................................................... 6-20
6.3.4 Response level setting in auto tuning mode ............................................................................. 6-21
7.3.2 Instantaneous power failure tough drive function ..................................................................... 7-26
7.4 Compliance with SEMI-F47 standard .............................................................................................. 7-30
7.5 Model adaptive control disabled ...................................................................................................... 7-33
7.6 Lost motion compensation function ................................................................................................. 7-34
7.7 Super trace control .......................................................................................................................... 7-37
8. TROUBLESHOOTING 8- 1 to 8-16
8.1 Explanation for the lists ..................................................................................................................... 8- 1
8.2 Alarm list ........................................................................................................................................... 8- 2
8.3 Warning list ...................................................................................................................................... 8-12
8.4 Troubleshooting at power on ........................................................................................................... 8-15
12.1.1 Features ................................................................................................................................. 12- 1
The Mitsubishi Electric MELSERVO-J4 series general-purpose AC servo has further higher performance
and higher functions compared to the previous MELSERVO-J3 series.
MR-J4-_B_ servo amplifier is connected to controllers, including a servo system controller, on the highspeed synchronous network SSCNET III/H. The servo amplifier directly receives a command from a
controller to drive a servo motor.
MELSERVO-J4 series compatible rotary servo motor is equipped with 22-bit (4194304 pulses/rev) highresolution absolute encoder. In addition, speed frequency response is increased to 2.5 kHz. Thus, faster and
more accurate control is enabled as compared to MELSERVO-J3 series.
MR-J4-_B_ servo amplifier operates MELSERVO-J4 series compatible rotary servo motors, linear servo
motors, and direct drive motors as standard.
With one-touch tuning and real-time auto tuning, you can automatically adjust the servo gains according to
the machine.
The tough drive function and the drive recorder function, which are well-received in the MELSERVO-JN
series, have been improved. The MR-J4 servo amplifier supports the improved functions. Additionally, the
preventive maintenance support function detects an error in the machine parts. This function provides strong
support for the machine maintenance and inspection.
SSCNET III/H achieves high-speed communication of 150 Mbps full duplex with high noise tolerance due to
the SSCNET III optical cables. Large amounts of data are exchanged in real-time between the controller and
the servo amplifier. Servo monitor information is stored in the upper information system and is used for
control.
On the SSCNET III/H network, the stations are connected with a maximum distance of 100 m between them.
This allows you to create a large system.
The MR-J4-_B_ servo amplifier supports the STO (Safe Torque Off) function. When the servo amplifier is
connected to a SSCNET III/H-compatible servo system controller, in addition to the STO function, the servo
amplifier also supports the SS1 (Safe Stop 1), SS2 (Safe Stop 2), SOS (Safe Operating Stop), SLS (SafelyLimited Speed), SBC (Safe Brake Control) and SSM (Safe Speed Monitor) functions.
The servo amplifier has a USB communication interface. Therefore, you can connect the servo amplifier to
the personal computer with MR Configurator2 installed to perform the parameter setting, test operation, gain
adjustment, and others.
In MELSERVO-J4 series, servo amplifiers with CN2L connector is also available as MR-J4-_B_-RJ. By using
CN2L connector, an A/B/Z-phase differential output method external encoder can be connected to the servo
amplifier. In a fully closed loop system, a four-wire type external encoder is connectable as well. The
following table indicates the communication method of the external encoder compatible with MR-J4-_B_ and
MR-J4-_B_-RJ servo amplifiers.
1 - 1
1. FUNCTIONS AND CONFIGURATION
Table 1.1 Connectors to connect external encoders
Operation
mode
Linear servo
motor system
Fully closed
loop system
Scale
measurement
function
Note 1. The MR-J4THCBL03M branch cable is necessary.
2. The MR-J4FCCBL03M branch cable is necessary.
3. When the communication method of the servo motor encoder is four-wire type,
MR-J4-_B_ cannot be used. Use an MR-J4-_B_-RJ.
4. This is used with servo amplifiers with software version A3 or later.
5. This is used with servo amplifiers with software version A8 or later.
6. Connect a thermistor to CN2.
External encoder
communication
method
Two-wire type
Four-wire type
A/B/Z-phase
differential output
method
Two-wire type
Four-wire type
A/B/Z-phase
differential output
method
Two-wire type
Four-wire type
A/B/Z-phase
differential output
method
Connector
MR-J4-_B_ MR-J4-_B_-RJ
CN2 (Note 1) CN2 (Note 1)
CN2L (Note 6)
CN2
(Note 2, 3, 4)
CN2L
CN2
(Note 2, 3, 5)
CN2L (Note 5)
1 - 2
1. FUNCTIONS AND CONFIGURATION
1.2 Function block diagram
The function block diagram of this servo is shown below.
Regenerative
option
(1) 200 V class
(a) MR-J4-500B(-RJ) or less
POINT
The diagram shows for MR-J4-_B_-RJ as an example. MR-J4-_B_ servo
amplifier does not have CN2L connector.
(Note 6)
Power factor improving
DC reactor
(Note 2)
Power
supply
STO
switch
Servo amplifier
MCMCCB
L1
U
L2
U U
L3
L11
L21
CN8
P3P4
Diode
stack
Position
command
input
+
(Note 4)
Relay
Cooling fan
(Note 3)
Control
circuit
power
supply
Model
position
control
+
CHARGE
lamp
STO
circuit
Base
amplifier
P+
(Note 1)
Regenerative
TR
Model
speed
control
Voltage
detection
N-CD
Overcurrent
protection
Virtual
motor
detection
Virtual
encoder
Dynamic
brake
circuit
Current
encoder
Current
Stepdown
circuit
U
V
W
RA
24 V DC
CN2
Servo motor
U
V
W
B1
B
B2
M
Electromagnetic
brake
Encoder
position
I/F Control
CN1ACN1B
Servo system
controller or
servo amplifier
Model position
Actual
control
Servo
amplifier
or cap
Model speed Model torque
Actual
speed
control
Personal
computer
USB
USB
CN5
Analog monitor
(2 channels)
Current
control
1 - 3
D/A
CN3
Digital I/O
control
CN4
Battery
(for absolute position
detection system)
External encoder
CN2L
(Note 5)
1. FUNCTIONS AND CONFIGURATION
Note 1. The built-in regenerative resistor is not provided for MR-J4-10B(-RJ).
2. For 1-phase 200 V AC to 240 V AC, connect the power supply to L1 and L3. Leave L2 open.
Refer to section 1.3 for the power supply specifications.
3. Servo amplifiers MR-J4-70B(-RJ) or more have a cooling fan.
4. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
5. This is for MR-J4-_B-RJ servo amplifier. MR-J4-_B servo amplifier does not have CN2L connector.
6. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
1 - 4
1. FUNCTIONS AND CONFIGURATION
(b) MR-J4-700B(-RJ)
(Note 4)
Power factor improving
DC reactor
Regenerative
option
(Note 1)
Power
supply
STO
switch
Servo amplifier
MCMCCB
L1
U
L2
U U
L3
L11
L21
CN8
P3P4
Diode
stack
Position
command
input
+
(Note 2)
Relay
Cooling fan
Control
circuit
power
supply
Model
position
control
+
CHARGE
lamp
STO
circuit
Base
amplifier
P+
Regenerative
TR
Model
speed
control
Voltage
detection
N-C
Overcurrent
Virtual
motor
protection
detection
Virtual
encoder
Dynamic
brake
circuit
Current
encoder
Current
Stepdown
circuit
U
V
W
RA
24 V DC
CN2
Servo motor
U
V
W
B1
B
B2
M
Electromagnetic
brake
Encoder
CN4
Battery
(for absolute position
detection system)
External encoder
CN2L
(Note 3)
position
I/F Control
CN1ACN1B
Servo system
controller or
servo amplifier
Model position
Actual
control
Servo
amplifier
or cap
Model speed Model torque
Actual
speed
control
Current
control
USB
CN5
Personal
computer
Analog monitor
(2 channels)
USB
D/A
CN3
Digital I/O
control
Note 1. Refer to section 1.3 for the power supply specifications.
2. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
3. This is for MR-J4-_B-RJ servo amplifier. MR-J4-_B servo amplifier does not have CN2L connector.
4. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
Note 1. Refer to section 1.3 for the power supply specifications.
2. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
3. This is for MR-J4-_B-RJ servo amplifier. MR-J4-_B servo amplifier does not have CN2L connector.
4. Use an external dynamic brake for this servo amplifier. Failure to do so will cause an accident because the servo motor does
not stop immediately but coasts at an alarm occurrence for which the servo motor does not decelerate to stop. Ensure the
safety in the entire equipment. For alarms for which the servo motor does not decelerate to stop, refer to chapter 8.
5. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
6. The external dynamic brake cannot be used for compliance with SEMI-F47 standard. Do not assign DB (Dynamic brake
interlock) in [Pr. PD07] to [Pr. PD09]. Failure to do so will cause the servo amplifier to become servo-off when an
instantaneous power failure occurs.
1 - 7
1. FUNCTIONS AND CONFIGURATION
(2) 400 V class
(a) MR-J4-350B4(-RJ) or less
(Note 5)
Power factor
improving
DC reactor
Regenerative
option
(Note 1)
Power
supply
STO
switch
Servo amplifier
MCMCCB
L1
U
L2
U U
L3
L11
L21
CN8
P3P4 (Note 3)
Diode
stack
+
Position
command
input
Relay
(Note 2)
Control
circuit
power
supply
Model
position
control
+
Cooling fan
STO
circuit
Base
amplifier
P+
Regenerative
TR
Charge
lamp
Model
speed
control
Voltage
detection
N-CD
Overcurrent
protection
Virtual
motor
detection
Virtual
encoder
Dynamic
brake
circuit
Current
detector
Current
Stepdown
circuit
U
V
W
RA
24 V DC
CN2
Servo motor
U
V
W
B1
B
B2
M
Electromagnetic
brake
Encoder
CN4
Battery
(For absolute
position detection
system)
External encoder
CN2L
(Note 4)
position
IF Control
CN1ACN1B
Servo system
controller or
servo amplifier
Model position
Actual
control
Servo
amplifier
or cap
Model speed Model torque
Actual
speed
control
Current
control
USB
CN5
Personal
computer
Analog monitor
(2 channels)
USB
D/A
CN3
Digital I/O
control
Note 1. Refer to section 1.3 for the power supply specification.
2. Servo amplifiers MR-J4-200B4(-RJ) or more have a cooling fan.
3. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
4. This is for MR-J4-_B4-RJ servo amplifier. MR-J4-_B4 servo amplifier does not have CN2L connector.
5. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
1 - 8
1. FUNCTIONS AND CONFIGURATION
(b) MR-J4-500B4(-RJ)/MR-J4-700B4(-RJ)
(Note 4)
Power factor
improving
DC reactor
Regenerative
option
(Note 1)
Power
supply
STO
switch
Servo amplifier
MCMCCB
L1
U
L2
U U
L3
L11
L21
CN8
P3P4 (Note 2)
Diode
stack
+
Position
command
input
Relay
Control
circuit
power
supply
Model
position
control
+
Cooling fan
STO
circuit
Base
amplifier
P+
Regenerative
TR
Charge
lamp
Model
speed
control
Voltage
detection
N-C
Overcurrent
Virtual
motor
protection
detection
Virtual
encoder
Dynamic
brake
circuit
Current
detector
Current
Stepdown
circuit
U
V
W
RA
24 V DC
CN2
Servo motor
U
V
W
B1
B
B2
M
Electromagnetic
brake
Encoder
CN4
Battery
(For absolute
position detection
system)
External encoder
CN2L
(Note 3)
position
IF Control
CN1ACN1B
Servo system
controller or
servo amplifier
Model position Model speed Model torque
Actual
control
Actual
speed
control
USB
CN5
Servo
amplifier
or cap
Personal
computer
USB
Analog monitor
(2 channels)
Current
control
D/A
CN3
Digital I/O
control
Note 1. Refer to section 1.3 for the power supply specification.
2. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
3. This is for MR-J4-_B4-RJ servo amplifier. MR-J4-_B4 servo amplifier does not have CN2L connector.
4. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
Note 1. Refer to section 1.3 for the power supply specification.
2. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and
P2 of MR-J3 servo amplifiers.
3. This is for MR-J4-_B4-RJ servo amplifier. MR-J4-_B4 servo amplifier does not have CN2L connector.
4. Use an external dynamic brake for this servo amplifier. Failure to do so will cause an accident because the servo motor does
not stop immediately but coasts at an alarm occurrence for which the servo motor does not decelerate to stop. Ensure the
safety in the entire equipment. For alarms for which the servo motor does not decelerate to stop, refer to chapter 8.
5. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used.
When not using the power factor improving DC reactor, short P3 and P4.
6. The external dynamic brake cannot be used for compliance with SEMI-F47 standard. Do not assign DB (Dynamic brake
interlock) in [Pr. PD07] to [Pr. PD09]. Failure to do so will cause the servo amplifier to become servo-off when an
instantaneous power failure occurs.
1 - 11
1. FUNCTIONS AND CONFIGURATION
(3) 100 V class
Regenerative
option
(Note 2)
Power
supply
STO
switch
Servo amplifier
MCMCCB
L1
U
L2
L11
L21
CN8
Relay
Diode stack
Position
command
input
+
Control
circuit
power
supply
Model
position
control
U
V
W
RA
Servo motor
M
B1
Electromagnetic
B
brake
B2
P+
(Note 1)
N-CD
Dynamic brake
circuit
U
+
Charge
lamp
Regene-
+
rative TR
Current
encoder
V
W
24 V DC
STO
circuit
Base
amplifier
Voltage
detection
Overcurrent
protection
Current
detection
CN2
Encoder
Model
speed
control
Virtual
encoder
Virtual
Stepdown
circuit
motor
Model speed Model torque
Actual
speed
control
Current
control
USB
CN5
Personal
computer
Analog monitor
(two channel)
USB
D/A
CN3
Digital I/O
control
IF Control
CN1ACN1B
Servo system
controller or
servo amplifier
Model position
Actual
position
control
Servo
amplifier
or cap
Note 1. The built-in regenerative resistor is not provided for MR-J4-10B1(-RJ).
2. Refer to section 1.3 for the power supply specifications.
3. This is for MR-J4-_B1-RJ servo amplifier. MR-J4-_B1 servo amplifier does not have CN2L connector.
Control method Sine-wave PWM control, current control method
Dynamic brake Built-in
SSCNET III/H communication cycle
(Note 8)
Fully closed loop control Compatible (Note 7)
Scale measurement function Compatible (Note 10)
Load-side encoder interface (Note 5) Mitsubishi Electric high-speed serial communication
Communication function USB: connection to a personal computer or others (MR Configurator2-compatible)
Encoder output pulses Compatible (A/B/Z-phase pulse)
Analog monitor Two channels
Protective functions
Functional safety STO (IEC/EN 61800-5-2)
Rated voltage 3-phase 170 V AC
Rated current [A] 1.1 1.5 2.8 3.2 5.8 6.0 11.0 17.0 28.0 37.0 68.0 87.0 126.0
3-phase or 1-
At AC
Voltage/
Frequency
Rated current
(Note 11)
Permissible
voltage
fluctuation
Permissible frequency
fluctuation
Power supply capacity
Inrush current [A] Refer to section 10.5.
Voltage/
Frequency
Rated current [A] 0.2 0.3
Permissible
voltage
fluctuation
Permissible frequency
fluctuation
Power consumption [W] 30 45
Inrush current [A] Refer to section 10.5.
Voltage 24 V DC ± 10%
Current capacity [A] 0.3 (including CN8 connector signals) (Note 1)