Mitsubishi Electric MR-J2M-P8B, MR-J2M- DU, MR-J2M-BU, MELSERVO-J2M Instruction Manual

www.dadehpardazan.ir 88594014-15
General-Purpose AC Servo
MODEL
MR-J2M-P8B MR-J2M- DU MR-J2M-BU
SERVO AMPLIFIER INSTRUCTION MANUAL
SSCNET Compatible
J2M Series
G
ﺖﮐﺮﺷﮏﯾﺮﺘﮑﻟا ﯽﺸﯿﺑﻮﺴﺘﯿﻣ :ﯽﺘﻌﻨﺻ نﻮﯿﺳﺎﻣﻮﺗا تﻻﻮﺼﺤﻣ عاﻮﻧا هﺪﻨﻨﮐ ﺪﯿﻟﻮﺗ
- ﻮﯾارد وﺮﺳ و رﻮﺗﻮﻣ وﺮﺳ
- ﺮﺗرﻮﻨﯾا
- PLC
- ﯽﺘﻌﻨﺻ يﺎﻫﺮﮕﺸﯾﺎﻤﻧ
- ادﺎﮑﺳا ﻢﺘﺴﯿﺳ
- ﯽﺘﻌﻨﺻ يﺎﻫ تﺎﺑر
- لﺎﺘﻣ ﯽﺑ و رﻮﺘﮐﺎﺘﻨﮐ
- ﯽﺘﻇﺎﻔﺣ يﺎﻫ ﻪﻟر
- يﺮﯿﮔ هزاﺪﻧا يﺎﻫ ﻢﺘﺴﯿﺳ
ﺘﺸﭘ تﺎﻣﺪﺧ ﻪﺋارا ﺎﯿﻠﯾا ﺪﻨﻤﺷﻮﻫ نازادﺮﭘ هداد ﺖﮐﺮﺷ هﺪﻨﻨﮐ ﻦﯿﻣﺎﺗ و يا ﻪﻓﺮﺣ ﯽﻧﺎﺒﯿ
تاﺰﯿﻬﺠﺗ Mitsubishi Electric
ﯽﺷزﻮﻣآ يﺎﻫ هرود يراﺰﮔﺮﺑPLC – HMI – Servo – Sensor – Inverter – Industrial Network
ﯽﺘﻌﻨﺻ نﻮﯿﺳﺎﻣﻮﺗا يﺎﻫژوﺮﭘ مﺎﺠﻧا
ﯽﺘﻌﻨﺻ نﻮﯿﺳﺎﻣﻮﺗا تاودا ﻪﯿﻠﮐ ﯽﺼﺼﺨﺗ تاﺮﯿﻤﻌﺗ
: سﺎﻤﺗ يﺎﻫ ﻦﻔﻠﺗ15-88594014 : ﺲﮑﻓ88594013
بو : ﺖﯾﺎﺳwww.dphi.ir – www.indus.ir
www.dadehpardazan.ir 88594014-15
A - 1
Safety Instructions
(Always read these instructions before using the equipment.)
Do not attempt to install, operate, maintain or inspect the un its until you have read through this Instruction Manual, Installation Guide, Servo Motor Instruction Manual and appended documents carefully and can use the equipment properly. Do not use the units until you have a full knowledge of the equipment, safety information and instructions. In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".
WARNING
Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.
CAUTION
Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.
Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety. What must not be done and what must be done are indicated by the following diagrammatic symbols:
: Indicates what must not be done. For example, "No Fire" is indicated by
.
: Indicates what must be done. For example, grounding is indicated by
.
In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT". After reading this Instruction Manual, always keep it accessible to the operator.
www.dadehpardazan.ir 88594014-15
A - 2
1. To prevent electric shock, note the following:
WARNING
Before wiring or inspection, switch power off and wait for more than 15 minutes. Then, confirm the voltage is safe with voltage tester. Otherwise, you may get an electric shock.
Connect the base unit and servo motor to ground. Any person who is involved in wiring and inspection should be fully competent to do the work. Do not attempt to wire for each unit and the servo motor until they are installed. Otherwise, you can obtain
the electric shock. Operate the switches with dry hand to prevent an electric shock. The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric
shock. During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric
shock. Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area
are exposed and you may get an electric shock. Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the
power is off. The servo amplifier is charged and you may get an electric shock.
2. To prevent fire, note the following:
CAUTION
Do not install the base unit, servo motor and regenerative brake resistor on or near combustibles. Otherwise a fire may cause.
When each unit has become faulty, switch off the main base unit power side. Continuous flow of a large current may cause a fire.
When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.
3. To prevent injury, note the follow
CAUTION
Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst, damage, etc. may occur.
Connect the terminals correctly to prevent a burst, damage, etc. Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur. Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)
with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot while power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a parts may damaged.
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.
www.dadehpardazan.ir 88594014-15
A - 3
4. Additional instructions
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock, etc.
(1) Transportation and installation
CAUTION
Transport the products correctly according to their masses. Stacking in excess of the specified number of products is not allowed. Do not carry the servo motor by the cables, shaft or encoder. Do not hold the front cover to transport each unit. Each unit may drop. Install the each unit in a load-bearing place in accordance with the Instruction Manual. Do not climb or stand on servo equipment. Do not put heavy objects on equipment. The controller and servo motor must be installed in the specified direction. Leave specified clearances between the base unit and control enclosure walls or other equipment. Do not install or operate the unit and servo motor which has been damaged or has any parts missing. Provide adequate protection to prevent screws and other conductive matter, oil and other combustible
matter from entering each unit and servo motor. Do not drop or strike each unit or servo motor. Isolate from all impact loads. When you keep or use it, please fulfill the following environmental conditions.
Conditions
Environment
Each unit Servo motor
[ ] 0 to 55 (non-freezing) 0 to 40 (non-freezing)
During operation
[
] 32 to 131 (non-freezing) 32 to 104 (non-freezing)
[ ] 20 to 65 (non-freezing) 15 to 70 (non-freezing)
Ambient temperature
In storage
[
] 4 to 149 (non-freezing) 5 to 158 (non-freezing) During operation
90%RH or less (non-condensing) 80%RH or less (non-condensing)
Ambient humidity
In storage 90%RH or less (non-condensing)
Ambience Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt Altitude Max. 1000m (3280 ft) above sea level
[m/s2] 5.9 or less
HC-KFS Series HC-MFS Series
HC-UFS13 to 43
X Y : 49 (Note) Vibration
[ft/s
2
] 19.4 or less
HC-KFS Series HC-MFS Series
HC-UFS13 to 43
X Y : 161
Note. Except the servo motor with reduction gear.
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during operation.
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage. Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo
motor during operation. Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder
may become faulty. Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break. When the equipment has been stored for an extended period of time, consult Mitsubishi.
www.dadehpardazan.ir 88594014-15
A - 4
(2) Wiring
CAUTION
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate. Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo
motor and drive unit. Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W) directly. Do not let a magnetic contactor, etc. intervene.
U
Drive unit
V
W
U
V
W
Servo Motor
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur. The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in
the specified direction. Otherwise, the forced stop and other protective circuits may not operate.
Interface unit
Control output
signal
VIN
SG
VIN
SG
RARA
Interface unit
Control output
signal
(3) Test run adjustment
CAUTION
Before operation, check the parameter settings. Improper settings may cause some machines to perform unexpected operation.
The parameter settings must not be changed excessively. Operation will be insatiable.
www.dadehpardazan.ir 88594014-15
A - 5
(4) Usage
CAUTION
Provide a emergency stop circuit to ensure that operation can be stopped and power switched off immediately.
Any person who is involved in disassembly and repair should be fully competent to do the work. Before resetting an alarm, make sure that the run signal of the serv o amplifier is off to prevent an accident.
A sudden restart is made if an alarm is reset with the run signal on. Do not modify the equipment. Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by
electronic equipment used near MELSERVO-J2M.
Burning or breaking each unit may cause a toxic gas. Do not burn or break each unit.
Use the drive unit with the specified servo motor. The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used
for ordinary braking. For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.
(5) Corrective actions
CAUTION
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the purpose of prevention.
Configure the electromagnetic brake circuit so that it is activated not only by the interface unit signals bu t also by a forced stop (EM1).
EM1RA
24VDC
Contacts must be open when servo-off, when an alarm occurrence and when an electromagnetic brake interlock (MBR).
Electromagnetic brake
Servo motor
Circuit must be opened during forced stop (EM1).
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
When power is restored after an instantaneous power failure, keep away from the machine because the machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).
www.dadehpardazan.ir 88594014-15
A - 6
(6) Maintenance, inspection and parts replacement
CAUTION
With age, the electrolytic capacitor of the drive unit will deteriorate . To prevent a secondary accident due to a fault, it is recommended to replace the electrolytic capacitor ever y 10 years when used in general environment. Please consult our sales representative.
(7) General instruction
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Instruction Manual.
www.dadehpardazan.ir 88594014-15
A - 7
About processing of waste
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of each country (area).
FOR MAXIMUM SAFETY
These products have been manufactured as a general-purpose part for general industries, and have not
been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
Before using the products for special purposes such as nuclear power, electric power, aerospace,
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.
These products have been manufactured under strict quality control. However, when installing the product
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.
EEP-ROM life
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may fail when the EEP-ROM reaches the end of its useful life.
Write to the EEP-ROM due to parameter setting changes
Precautions for Choosing the Products
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi; machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage, accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other than Mitsubishi products; and to other duties.
www.dadehpardazan.ir 88594014-15
A - 8
COMPLIANCE WITH EC DIRECTIVES
1. WHAT ARE EC DIRECTIVES?
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,
1997) of the EC directives require that products to be sold should meet their fundamental safety requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment into which servo (MELSERVO-J2M is contained) have been installed.
(1) EMC directive
The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment. This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation Guidelines (IB(NA)67310).
(2) Low voltage directive
The low voltage directive applies also to MELSERVO-J2M. Hence, they are designed to comply with the low voltage directive. MELSERVO-J2M is certified by TUV, third-party assessment organization, to comply with the low voltage directive.
(3) Machine directive
Not being machines, MELSERVO-J2M need not comply with this directive.
2. PRECAUTIONS FOR COMPLIANCE
(1) Unit and servo motors used
Use each units and servo motors which comply with the standard model.
Drive unit :MR-J2M-
DU Interface unit :MR-J2M-P8B Base unit :MR-J2M-BU Servo motor :HC-KFS
HC-MFS HC-UFS
(2) Configuration
Reinforced insulating transformer
NFB
MC
M
No-fuse breaker
Magnetic contactor
Reinforced insulating type
24VDC power supply
MELSERVO­J2M
Servo motor
Control box
www.dadehpardazan.ir 88594014-15
A - 9
(3) Environment
Operate MELSERVO-J2M at or above the contamination level 2 set forth in IEC60664-1. For this purpose, install MELSERVO-J2M in a control box which is protected against water, oil, carbon, dust, dirt, etc. (IP54).
(4) Power supply
(a) Operate MELSERVO-J2M to meet the requirements of the overvoltage category II set forth in
IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC or EN standard should be used in the power input section.
(b) When supplying interface power from external, use a 24VDC power supply which has been
insulation-reinforced in I/O.
(5) Grounding
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked
) of the
base unit to the protective earth (PE) of the control box.
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the
cables to the terminals one-to-one.
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals
of the base unit must be connected to the corresponding earth terminals.
(d) The protective earth (PE) of the servo motor is connected to the protective earth of the base unit via
the screw which fastens the drive unit to the base unit. When fixing the drive unit to the base unit, therefore, tighten the accessory screw securely.
(6) Auxiliary equipment and options
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant
products of the models described in Section 12.2.2.
(b) The sizes of the cables described in Section 12.2.1 meet the following requirements. To meet the
other requirements, follow Table 5 and Appendix C in EN60204-1.
Ambient temperature: 40 (104) [ ( )] Sheath: PVC (polyvinyl chloride) Installed on wall surface or open table tray
(c) Use the EMC filter for noise reduction.
(7) Performing EMC tests
When EMC tests are run on a machine/device into which MELSERVO-J2M has been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the operating environment/electrical equipment specifications. For the other EMC directive guidelines on MELSERVO-J2M, refer to the EMC Installation Guidelines(IB(NA)67310).
www.dadehpardazan.ir 88594014-15
A - 10
CONFORMANCE WITH UL/C-UL STANDARD
The MELSERVO-J2M complies with UL508C.
(1) Unit and servo motors used
Use the each units and servo motors which comply with the standard model.
Drive unit :MR-J2M-
DU Interface unit :MR-J2M-P8B Base unit :MR-J2M-BU Servo motor :HC-KFS
HC-MFS HC-UFS
(2) Installation
Install a fan of 100CFM (2.8m
3
/min)air flow 4 in (10.16 cm) above MELSERVO-J2M or provide cooling
of at least equivalent capability.
(3) Short circuit rating
MELSERVO-J2M conforms to the circuit whose peak current is limited to 5000A or less. Having been subjected to the short-circuit tests of the UL in the alternating-current circuit, MELSERVO-J2M conforms to the above circuit.
(4) Capacitor discharge time
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for 15 minutes after power-off.
Base unit Discharge time [min]
MR-J2M-BU4 3 MR-J2M-BU6 4 MR-J2M-BU8 5
(5) Options and auxiliary equipment
Use UL/C-UL standard-compliant products.
(6) Attachment of a servo motor
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.
(7) About wiring protection
For installation in United States, branch circuit protection must be provided, in accordance with the National Electrical Code and any applicable local codes. For installation in Canada, branch circuit protection must be provided, in accordance with the Canada Electrical Code and any applicable provincial codes.
<<About the manuals>>
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use MELSERVO-J2M for the first time. Always purchase them and use the MELSERVO-J2M safely. Also read the manual of the servo system controller.
Relevant manuals
Manual name Manual No.
MELSERVO-J2M Series To Use the AC Servo Safely (Packed with the MR-J2M-P8B, MR-J2M-
BU and MR-J2M-BU )
IB(NA)0300027
MELSERVO Servo Motor Instruction Manual SH(NA)3181 EMC Installation Guidelines IB(NA)67310
In this Instruction Manual, the drive unit, interface unit and base unit may be referred to as follows: Drive unit : DRU Interface unit : IFU Base unit : BU
www.dadehpardazan.ir 88594014-15
1
CONTENTS
1. FUNCTIONS AND CONFIGURATION 1- 1 to 1-10
1.1 Overview................................................................................................................................................... 1- 1
1.2 Function block diagram ..........................................................................................................................1- 2
1.3 Unit standard specifications................................................................................................................... 1- 3
1.4 Function list ............................................................................................................................................. 1- 4
1.5 Model code definition .............................................................................................................................. 1- 5
1.6 Combination with servo motor............................................................................................................... 1- 6
1.7 Parts identification.................................................................................................................................. 1- 7
1.8 Servo system with auxiliary equipment................................................................................................ 1- 9
2. INSTALLATION AND START UP 2- 1 to 2-10
2.1 Environmental conditions....................................................................................................................... 2- 1
2.2 Installation direction and clearances .................................................................................................... 2- 2
2.3 Keep out foreign materials .....................................................................................................................2- 3
2.4 Cable stress .............................................................................................................................................. 2- 3
2.5 Mounting method ....................................................................................................................................2- 4
2.6 When switching power on for the first time.......................................................................................... 2- 6
2.7 Start up..................................................................................................................................................... 2- 7
2.8 Control axis selection .............................................................................................................................. 2- 9
3. SIGNALS AND WIRING 3- 1 to 3-28
3.1 Connection example of control signal system ....................................................................................... 3- 2
3.2 I/O signals of interface unit .................................................................................................................... 3- 4
3.2.1 Connectors and signal arrangements .............................................................................................3- 4
3.2.2 Signal explanations .......................................................................................................................... 3- 5
3.2.3 Interfaces ........................................................................................................................................... 3- 6
3.3 Signals and wiring for extension IO unit .............................................................................................. 3- 9
3.3.1 Connection example ......................................................................................................................... 3- 9
3.3.2 Connectors and signal configurations ........................................................................................... 3-11
3.3.3 Output signal explanations ............................................................................................................3-12
3.4 Signals and wiring for base unit ........................................................................................................... 3-14
3.4.1 Connection example of power line circuit...................................................................................... 3-14
3.4.2 Connectors and signal configurations ........................................................................................... 3-16
3.4.3 Terminals.......................................................................................................................................... 3-17
3.4.4 Power-on sequence........................................................................................................................... 3-18
3.5 Connection of drive unit and servo motor ............................................................................................3-19
3.5.1 Connection instructions ..................................................................................................................3-19
3.5.2 Connection diagram ........................................................................................................................ 3-19
3.5.3 I/O terminals .................................................................................................................................... 3-20
3.6 Alarm occurrence timing chart .............................................................................................................3-21
3.7 Servo motor with electromagnetic brake ............................................................................................. 3-22
3.8 Grounding................................................................................................................................................ 3-26
3.9 Instructions for the 3M connector.........................................................................................................3-27
www.dadehpardazan.ir 88594014-15
2
4. OPERATION AND DISPLAY 4- 1 to 4-10
4.1 Normal indication.................................................................................................................................... 4- 1
4.1.1 Display sequence............................................................................................................................... 4- 2
4.1.2 If alarm/warning occurs ................................................................................................................... 4- 3
4.2 Status display mode of interface unit.................................................................................................... 4- 4
4.2.1 Display flowchart.............................................................................................................................. 4- 4
4.2.2 Status display of interface unit .......................................................................................................4- 5
4.2.3 Diagnostic mode of interface unit ................................................................................................... 4- 6
4.2.4 Alarm mode of interface unit........................................................................................................... 4- 7
4.2.5 Interface unit parameter mode ....................................................................................................... 4- 8
4.2.6 Output signal (DO) forced output ................................................................................................... 4- 9
5. PARAMETERS 5- 1 to 5-26
5.1 Drive unit .................................................................................................................................................5- 1
5.1.1 Parameter write inhibit ...................................................................................................................5- 1
5.1.2 Lists....................................................................................................................................................5- 2
5.2 Interface unit ..........................................................................................................................................5-15
5.2.1 IFU parameter write inhibit........................................................................................................... 5-15
5.2.2 Lists...................................................................................................................................................5-15
5.2.3 Analog monitor................................................................................................................................. 5-21
5.2.4 Test operation mode ........................................................................................................................5-24
6. GENERAL GAIN ADJUSTMENT 6- 1 to 6-12
6.1 Different adjustment methods ...............................................................................................................6- 1
6.1.1 Adjustment on a MELSERVO-J2M................................................................................................ 6- 1
6.1.2 Adjustment using MR Configurator (servo configuration software) ...........................................6- 3
6.2 Auto tuning ..............................................................................................................................................6- 4
6.2.1 Auto tuning mode .............................................................................................................................6- 4
6.2.2 Auto tuning mode operation ............................................................................................................ 6- 5
6.2.3 Adjustment procedure by auto tuning............................................................................................ 6- 6
6.2.4 Response level setting in auto tuning mode .................................................................................. 6- 7
6.3 Manual mode 1 (simple manual adjustment)....................................................................................... 6- 8
6.3.1 Operation of manual mode 1 ........................................................................................................... 6- 8
6.3.2 Adjustment by manual mode 1 ....................................................................................................... 6- 8
6.4 Interpolation mode ................................................................................................................................. 6-11
7. SPECIAL ADJUSTMENT FUNCTIONS 7- 1 to 7-10
7.1 Function block diagram ..........................................................................................................................7- 1
7.2 Machine resonance suppression filter ................................................................................................... 7- 1
7.3 Adaptive vibration suppression control................................................................................................. 7- 3
7.4 Low-pass filter ......................................................................................................................................... 7- 4
7.5 Gain changing function........................................................................................................................... 7- 5
7.5.1 Applications ...................................................................................................................................... 7- 5
7.5.2 Function block diagram ................................................................................................................... 7- 5
7.5.3 Parameters........................................................................................................................................ 7- 6
7.5.4 Gain changing operation .................................................................................................................7- 8
8. INSPECTION 8- 1 to 8- 2
www.dadehpardazan.ir 88594014-15
3
9. TROUBLESHOOTING 9- 1 to 9-10
9.1 Alarms and warning list ......................................................................................................................... 9- 1
9.2 Remedies for alarms................................................................................................................................ 9- 3
9.3 Remedies for warnings........................................................................................................................... 9-10
10. OUTLINE DRAWINGS 10- 1 to 10- 10
10.1 MELSERVO-J2M configuration example......................................................................................... 10- 1
10.2 Unit outline drawings .........................................................................................................................10- 2
10.2.1 Base unit (MR-J2M-BU
)........................................................................................................... 10- 2
10.2.2 Interface unit (MR-J2M-P8B) .....................................................................................................10- 2
10.2.3 Drive unit (MR-J2M-
DU)......................................................................................................... 10- 3
10.2.4 Extension IO unit (MR-J2M-D01) ..............................................................................................10- 4
10.2.5 Battery unit (MR-J2M-BT).......................................................................................................... 10- 4
10.3 Connector .............................................................................................................................................10- 5
11. CHARACTERISTICS 11- 1 to 11- 6
11.1 Overload protection characteristics ...................................................................................................11- 1
11.2 Power supply equipment capacity and generated loss ....................................................................11- 2
11.3 Dynamic brake characteristics...........................................................................................................11- 4
11.4 Encoder cable flexing life .................................................................................................................... 11- 6
12. OPTIONS AND AUXILIARY EQUIPMENT 12- 1 to 12-36
12.1 Options.................................................................................................................................................. 12- 1
12.1.1 Regenerative brake options ......................................................................................................... 12- 1
12.1.2 Cables and connectors .................................................................................................................. 12- 8
12.1.3 Maintenance junction card (MR-J2CN3TM) ............................................................................12-21
12.1.4 MR Configurator (servo configurations software) .................................................................... 12-23
12.2 Auxiliary equipment ..........................................................................................................................12-25
12.2.1 Recommended wires .................................................................................................................... 12-25
12.2.2 No-fuse breakers, fuses, magnetic contactors........................................................................... 12-26
12.2.3 Power factor improving reactors ................................................................................................12-27
12.2.4 Relays............................................................................................................................................ 12-28
12.2.5 Surge absorbers ...........................................................................................................................12-28
12.2.6 Noise reduction techniques.........................................................................................................12-28
12.2.7 Leakage current breaker ............................................................................................................ 12-34
12.2.8 EMC filter..................................................................................................................................... 12-35
13. ABSOLUTE POSITION DETECTION SYSTEM 13- 1 to 13- 4
13.1 Features................................................................................................................................................ 13- 1
13.2 Specifications .......................................................................................................................................13- 2
13.3 Confirmation of absolute position detection data............................................................................. 13- 3
APPENDIX App- 1 to App- 2
App 1. Status indication block diagram ................................................................................................. App- 1
www.dadehpardazan.ir 88594014-15
4
Optional Servo Motor Instruction Manual CONTENTS
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in this Instruction Manual.
1. INTRODUCTION
2. INSTALLATION
3. CONNECTORS USED FOR SERVO MOTOR WIRING
4. INSPECTION
5. SPECIFICATIONS
6. CHARACTERISTICS
7. OUTLINE DIMENSION DRAWINGS
8. CALCULATION METHODS FOR DESIGNING
www.dadehpardazan.ir 88594014-15
1 - 1
1. FUNCTIONS AND CONFIGURATION
1. FUNCTIONS AND CONFIGURATION
1.1 Overview
The Mitsubishi general-purpose AC servo MELSERVO-J2M series is an AC servo which has realized wiring-saving, energy-saving and space-saving in addition to the high performance and high functions of the MELSERVO-J2-Super series. Connected with a servo system controller or like by a serial bus (SSCNET), the equipment reads position data directly to perform operation. Data from a command unit are used to control the speeds and directions of servo motors and execute precision positioning. The MELSERVO-J2M series consists of an interface unit (abbreviated to the IFU) to be connected with a servo system controller, drive units (abbreviated to the DRU) for driving and controlling servo motors, and a base unit (abbreviated to the BU) where these units are installed. A torque limit is applied to the drive unit by the clamp circuit to protect the main circuit power transistors from overcurrent caused by abrupt acceleration/deceleration or overload. In addition, the torque limit value can be changed as desired using the parameter. The interface unit has an RS-232C serial communication function to allow the parameter setting, test operation, status indication monitoring, gain adjustment and others of all units to be performed using a personal computer or like where the MR Configurator (servo configuration software) is installed. By choosing the axis number of the drive unit using the MR Configurator (servo configuration software), you can select the unit to communicate with, without changing the cabling. The real-time auto tuning function automatically adjusts the servo gains according to a machine. The MELSERVO-J2M series supports as standard the absolute position encoders which have 131072 pulses/rev resolution, ensuring control as accurate as that of the MELSERVO-J2-Super series. Simply adding the optional battery unit configures an absolute position detection system. Hence, merely setting a home position once makes it unnecessary to perform a home position return at power-on, alarm occurrence or like. The MELSERVO-J2M series has a control circuit power supply in the interface unit and main circuit converter and regenerative functions in the base unit to batch-wire the main circuit power input, regenerative brake connection and control circuit power input, achieving wiring-saving. In the MELSERVO-J2M series, main circuit converter sharing has improved the capacitor regeneration capability dramatically. Except for the operation pattern where all axes slow down simultaneously, the capacitor can be used for regeneration. You can save the energy which used to be consumed by the regenerative brake resistor.
Bus cable connections
Regenerative brake option
Control circuit power input
Main circuit power input
Personal computer connection Analog monitor Forced stop input Electromagnetic brake interlock output
Servo motor power cable
Encoder pulse output extension DIO (Axes 5 to 8
)
Encoder cable
Encoder pulse output extension DIO (Axes 1 to 4)
Extension IO unit MR-J2M-D01
www.dadehpardazan.ir 88594014-15
1 - 2
1. FUNCTIONS AND CONFIGURATION
1.2 Function block diagram
W
RS-232C
D/A
NFB MC
U V W
M
L11 L
21
L1 L2 L
3
CNP3
P N C
CNP1A
U V
M
CN1ACN1BCN3CNP2CN2CNP2CN2
W
U V
M
CNP2CN2
CON3A-3H CON3A-3H CON3A-3H
FR-BAL
Power supply 3-phase 200 to 230VAC (Note) 1-phase 200 to 230VAC
Base unit Interface unit
I/F Control
I/F Control
Controller or Servo amplifier
Servo amplifier or termination connector
Personal computer
Analog monitor (3 channels)
Regenerative brake option
Regener-
ative TR
Drive unit
Dynamic brake
Servo motor
Inrush
current
suppression
circuit
Current detector
Overcurrent
protection
Current
detection
Base amplifier
Actual position control
Actual speed control
Current control
Model position control
Model speed control
Virtual encoder
Virtual servo motor
Drive unit
Encoder
Drive unit
Dynamic brake
Servo motor
Encoder
Current
detection
Dynamic brake
Current
detection
Servo motor
Encoder
Position command input
Model position
Model speed
Model torque
Position command
Note. For 1-phase 200 to 230VAC, connect the power supply to L
1
, L2 and leave L3 open.
CNP1B
(Earth)
(Earth)
(Earth)
www.dadehpardazan.ir 88594014-15
1 - 3
1. FUNCTIONS AND CONFIGURATION
1.3 Unit standard specifications (1) Base unit
Model MR-J2M-BU4 MR-J2M-BU6 MR-J2M-BU8
Number of slots 4 6 8
Voltage/frequency 3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz Permissible voltage fluctuation 1-phase 170 to 253VAC Permissible frequency fluctuation Within 5%
(Note)
Control circuit power supply
Inrush current 20A (5ms)
Voltage/frequency 3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz Permissible voltage fluctuation 3-phase 170 to 253VAC or 1-phase 170 to 253VAC, 50/60Hz Permissible frequency fluctuation Within 5% Maximum servo motor connection capacity [W]
1600 2400 3200
Continuous capacity [W] 1280 1920 2560
Main circuit power supply
Inrush current 62.5A (15ms)
Function Converter function, regenerative control, rushing into current control function
Protective functions
Regenerative overvoltage shut-off, regenerative fault protection,
undervoltage /instantaneous power failure protection
[kg] 1.1 1.3 1.5
Mass
[lb] 2.4 2.9 3.3
Note. The control circuit power supply is recorded to the interface unit.
(2) Drive unit
Model MR-J2M-10DU MR-J2M-20DU MR-J2M-40DU MR-J2M-70DU
Voltage/frequency 270 to 311VDC
Power supply
Permissible voltage fluctuation 230 to 342VDC Control system Sine-wave PWM control, current control system Dynamic brake Built-in
Protective functions
Overcurrent shut-off, functions overload shut-off (electronic thermal relay),
servo motor overheat protection, encoder fault protection, overspeed
protection, excessive error protection Structure Open (IP00) Cooling method Self-cooled Force-cooling (With built-in fan unit)
[kg] 0.4 0.4 0.4 0.7
Mass
[lb] 0.89 0.89 0.89 1.54
(3) Interface unit
Model MR-J2M-P8B
Control circuit power supply Power supply circuit for each unit(8 slots or less) Interface SSCNET interface 1channel RS-232C interface 1channel
DIO
Forced stop input(1 point), Electromagnetic brake sequence output
(1 point) AIO Analog monitor 3channel Structure Open (IP00)
[kg] 0.5
Mass
[lb] 1.10
www.dadehpardazan.ir 88594014-15
1 - 4
1. FUNCTIONS AND CONFIGURATION
1.4 Function list
The following table lists the functions of this servo. For details of the functions, refer to the Reference field.
(1) Drive unit (Abbreviation DRU)
Function Description Reference
High-resolution encoder High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.
Auto tuning
Automatically adjusts the gain to optimum value if load applied to the servo motor shaft varies.
Chapter 6
Adaptive vibration suppression control
MELSERVO-J2M detects mechanical resonance and sets filter characteristics automatically to suppress mechanical vibration.
Section 7.3
Low-pass filter
Suppresses high-frequency resonance which occurs as servo system response is increased.
Section 7.4
Slight vibration suppression control
Suppresses vibration of 1 pulse produced at a servo motor stop.
DRU Parameter
No.24 Forced stop signal automatic ON
Forced stop (EM1) can be automatically switched on internally to invalidate it.
DRU Parameter
No.23
Torque limit Servo motor torque can be limited to any value.
DRU Parameters
No.10, No.11
(2) Interface unit (Abbreviation IFU)
Function Description Reference
Forced stop signal input Disconnect forced stop (EM1) to bring the servo motor to a forced stop state, in
which the servo is switched off and the dynamic brake is operated.
Section 3.2.2
Electromagnetic brake output
In the servo-off or alarm status, this signal is disconnected. When an alarm occurs, they are disconnected, independently of the base circuit status. It is possible to use it to excite an electromagnetic brake.
Section 3.2.2
Analog monitor Servo status is output in terms of voltage in real time. Section 5.2.3
(3) Base unit (Abbreviation BU)
Function Description Reference
Regenerative brake option
Used when the built-in regenerative brake resistor of the unit does not have sufficient regenerative capability for the regenerative power generated.
Section 12.1.1
(4) MR Configurator (servo configuration software)
Function Description Reference
Machine analyzer function Analyzes the frequency characteristic of the mechanical system.
Machine simulation
Can simulate machine motions on a personal computer screen on the basis of the
machine analyzer results. Gain search function Can simulate machine motions on the basis of the machine analyzer results. Test operation mode JOG operation and positioning operation are possible.
(5) Option unit
Function Description Reference
Absolute position detection system
Merely setting a home position once makes home position return unnecessary at
every power-on.
Battery unit MR-J2M-BT is necessary.
Encoder pulse output
The encoder feedback is output from enhancing IO unit MR-J2M-D01 by the
A
B Z phase pulse. The number of pulses output by the parameter can be
changed.
www.dadehpardazan.ir 88594014-15
1 - 5
1. FUNCTIONS AND CONFIGURATION
1.5 Model code definition (1) Drive unit
(a) Rating plate
400W DC270V-311V 170V 0-360Hz 2.3A N9Z95046
MR-J2M-40DU
SON
ALM
MODEL
POWER INPUT OUTPUT SERIAL TC300A***G51
MITSUBISHI ELECTRIC
Model Capacity Applicable power supply Rated output current Serial number
Rating plate
Rating plate
(b) Model code
100 200 400
Rated output
10 20 40
MR-J2M- DU
Symbol Capacity of applied servo motor
70
750
(2) Interface unit
(a) Rating plate
Model Input capacity
Applicable power supply
Output voltage / current Serial number
Rating plate
MITSUBISHI
MADE IN JAPAN
MODEL
MITSUBISHI ELECTRIC CORPORATION
AC SERVO
PASSED
POWER :
OUTPUT : SERIAL :A5*******
TC3**AAAAG52
MR-J2M-P8B
75W 2PH AC200-230V 50Hz 2PH AC200-230V 60Hz
DC5/12/20 4.6A/1.2/0.7A
AC INPUT:
(b) Model code
MR-J2M-P8B
SSCNET compatible
www.dadehpardazan.ir 88594014-15
1 - 6
1. FUNCTIONS AND CONFIGURATION
(3) Base unit
(a) Rating plate
MITSUBISHI
MADE IN JAPAN
MR-J2M-BU4
3PH 200-230
INPUT : SERIAL:
14A 50/60Hz
N87B95046 BC336U246
MODEL
MITSUBISHI ELECTRIC
PASSED
Model Applicable power supply Serial number
Rating plate
(b) Model code
61920
4
8
1600 2400 3200
1280
2560
MR-J2M-BU
Symbol
4 6 8
Number of slots
Maximum servo motor connection capacity [W]
Continuous capacity [W]
1.6 Combination with servo motor
The following table lists combinations of drive units and servo motors. The same combinations apply to the models with electromagnetic brakes and the models with reduction gears.
Servo motor
Drive unit
HC-KFS
HC-MFS HC-UFS
MR-J2M-10DU 053 13 053 13 13 MR-J2M-20DU 23 23 23 MR-J2M-40DU 43 43 43 MR-J2M-70DU 73 73 73
www.dadehpardazan.ir 88594014-15
1 - 7
1. FUNCTIONS AND CONFIGURATION
1.7 Parts identification (1) Drive unit
Status indicator LED
Indicates the status of the drive unit. Blinking green: Servo off status Steady green: Servo on status Blinking red: Warning status Steady red: Alarm status
CN2 Encoder connector Connect the servo motor encoder
CNP2 Servo motor connector
For connection of servo motor power line cable
Mounting screw
Rating plate
(2) Interface unit
Display Indicates operating status or alarm.
CN1A Bus cable connector
For connection of servo system controller or preceding-axis servo amplifier.
CN3 For connection of personal computer (RS-232C). Outputs analog monitor.
Pushbutton switches Used to change status indication or set IFU parameters.
Mounting screw
Display/setting cover
CN1B Bus cable connector For connection of subsequent-axis servo
amplifier or MR-A-TM terminati on connector.
Charge lamp Lit when main circuit capacitor carries electrical charge. When this lamp is on, do not remove/reinstall any unit from/to base unit and do not unplug/plug cable and connector from/into any unit.
www.dadehpardazan.ir 88594014-15
1 - 8
1. FUNCTIONS AND CONFIGURATION
(3) Base unit
The following shows the MR-J2M-BU4.
CNP1B Control circuit power input connector
CNP1A Regenerative brake option connector
CNP3 Main circuit power input connector
CON1,CON2 Interface unit connectors
CON3B Second slot connector
CON3D Fourth slot connector
CON4 Option slot connector
CON5 Battery unit connecto
r
CON3C Third slot connector
CON3A First slot connector
www.dadehpardazan.ir 88594014-15
1 - 9
1. FUNCTIONS AND CONFIGURATION
1.8 Servo system with auxiliary equipment
WARNING
To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked
) of the base unit to the protective earth (PE) of the control box.
L
21
C
P
L2
L
1
L3
L
11
Options and auxiliary equipment
No-fuse breaker
Magnetic contactor MR Configurator
(servo configuration software)
Regenerative brake option
Reference
Section 12.2.2
Section 12.2.2
Section 12.1.4
Section 12.1.1
Options and auxiliary equipment
Cables
Section 12.2.1
Power factor improving reactor
Section 12.2.3
3-phase 200V to 230VAC (Note) 1-phase 200V to 230VAC power supply
No-fuse breake
r
(NFB) or fuse
Magnetic contactor (MC)
Power factor improving reactor (FR-BAL)
MR Configurator (servo configuration software)
Personal computer
Power supply lead
Encoder cable
To CNP1A
To CN1A To CN1B
Servo system
controller
or Preceding axis servo amplifier
Subsequent axis
servo amplifier
or
Termination
connector
Regenerative brake option
To CNP1B
To CNP3
Reference
Control circuit power supply
Main circuit power supply
To CN3
Note. For 1-phase 200 to 230VAC, connect the power supply to L
1
, L2 and leave L3 open.
www.dadehpardazan.ir 88594014-15
1 - 10
1. FUNCTIONS AND CONFIGURATION
MEMO
www.dadehpardazan.ir 88594014-15
2 - 1
2. INSTALLATION AND START UP
2. INSTALLATION AND START UP
CAUTION
Stacking in excess of the limited number of products is not allowed. Install the equipment to incombustibles. Installing them directly or close to
combustibles will led to a fire.
Install the equipment in a load-bearing place in accordance with this Instruction
Manual.
Do not get on or put heavy load on the equipment to prevent injury. Use the equipment within the specified environmental condition range. Provide an adequate protection to prevent screws, metallic detritus and other
conductive matter or oil and other combustible matter from entering each unit.
Do not block the intake/exhaust ports of each unit. Otherwise, a fault may occur. Do not subject each unit to drop impact or shock loads as they are precision
equipment.
Do not install or operate a faulty unit. When the product has been stored for an extended period of time, consult
Mitsubishi.
When treating the servo amplifier, be careful about the edged parts such as the
corners of the servo amplifier.
2.1 Environmental conditions
The following environmental conditions are common to the drive unit, interface unit and base unit.
Environment Conditions
[ ]0 to 55 (non-freezing)
During operation
[
] 32 to 131 (non-freezing)
[ ] 20 to 65 (non-freezing)
Ambient temperature
In storage
[
] 4 to 149 (non-freezing)
During operation
Ambient humidity
In storage
90%RH or less (non-condensing)
Ambience
Indoors (no direct sunlight)
Free from corrosive gas, flammable gas, oil mist, dust and dirt
Altitude Max. 1000m (3280 ft) above sea level
[m/s2] 5.9 [m/s2] or less
Vibration
[ft/s
2
] 19.4 [ft/s2] or less
www.dadehpardazan.ir 88594014-15
2 - 2
2. INSTALLATION AND START UP
2.2 Installation direction and clearances
CAUTION
The equipment must be installed in the specified direction. Otherwise, a fault may
occur.
Leave specified clearances between each unit and control box inside walls or other
equipment.
(1) Installation of one MELSERVO-J2M
40mm(1.57inch) or more
40mm(1.57inch) or more
40mm(1.57inch) or more
40mm(1.57inch) or more
(2) Installation of two or more MELSERVO-J2M
When installing two units vertically, heat generated by the lower unit influences the ambient temperature of the upper unit. Suppress temperature rises in the control box so that the temperature between the upper and lower units satisfies the environmental conditions. Also provide adequate clearances between the units or install a fan.
40mm(1.57inch) or more
Leave 100mm(3.94inch) or more clearance or install fan for forced air cooling.
40mm(1.57inch) or more
40mm(1.57inch) or more
40mm(1.57inch) or more
www.dadehpardazan.ir 88594014-15
2 - 3
2. INSTALLATION AND START UP
(3) Others
When using heat generating equipment such as the regenerative brake option, install them with full consideration of heat generation so that MELSERVO-J2M is not affected. Install MELSERVO-J2M on a perpendicular wall in the correct vertical direction.
2.3 Keep out foreign materials
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering each
unit.
(2) Prevent oil, water, metallic dust, etc. from entering each unit through openings in the control box or a
fan installed on the ceiling.
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an
air purge (force clean air into the control box from outside to make the internal pressure higher than the external pressure) to prevent such materials from entering the control box.
2.4 Cable stress
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own mass
stress are not applied to the cable connection.
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and brake wiring cables within the flexing life of the cables.
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner
or stamped by workers or vehicles.
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as
large as possible. Refer to section 11.4 for the flexing life.
www.dadehpardazan.ir 88594014-15
2 - 4
2. INSTALLATION AND START UP
2.5 Mounting method (1) Base unit
As shown below, mount the base unit on the wall of a control box or like with M5 screws.
Wall
(2) Interface unit/drive unit (MR-J2M-40DU or less)
The following example gives installation of the drive unit to the base unit. The same also applies to the interface unit.
Sectional view
Drive unit
Base unit
Wall
Catch
Positioning hole
1)
1) Hook the catch of the drive unit in the positioning hole of the base unit.
Sectional view
2)
Drive unit
Base unit
Wall
2) Using the catch hooked in the positioning hole as a support, push the drive unit in.
Loading...
+ 167 hidden pages