Mitsubishi M38503M2H-XXXSP, M38503M2H-XXXFP, M38503M4H-XXXSP, M38503M4H-XXXFP Datasheet

MITSUBISHI MICROCOMPUTERS
K
D
D
3
S
T
T
N
T
S
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 3850 group (spec. H) is the 8-bit microcomputer based on the 740 family core technology. The 3850 group (spec. H) is designed for the household products and office automation equipment and includes serial I/O functions, 8-bit timer, and A-D converter.

FEATURES

Basic machine-language instructions ...................................... 71
Minimum instruction execution time .................................. 0.5 µs
(at 8 MHz oscillation frequency)
Memory size
ROM ................................................................... 8K to 32K bytes
RAM................................................................. 512 to 1024 bytes
Programmable input/output ports ............................................ 34
Interrupts ................................................. 14 sources, 14 vectors
Timers............................................................................. 8-bit 4
Serial I/O1 .................... 8-bit 1(UART or Clock-synchronized)
Serial I/O2 ................................... 8-bit 1(Clock-synchronized)
PWM ............................................................................... 8-bit 1
A-D converter ............................................... 10-bit 5 channels
Watchdog timer ............................................................ 16-bit 1
Clock generating circuit..................................... Built-in 2 circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
Power source voltage
In high-speed mode .................................................. 4.0 to 5.5 V
(at 8 MHz oscillation frequency)
In middle-speed mode............................................... 2.7 to 5.5 V
(at 8 MHz oscillation frequency)
In low-speed mode .................................................... 2.7 to 5.5 V
(at 32 kHz oscillation frequency)
Power dissipation
In high-speed mode ..........................................................34 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode ............................................................ 60 µW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
Operating temperature range ....................................–20 to 85°C

APPLICATION

Office automation equipment, FA equipment, Household products, Consumer electronics, etc.
PIN CONFIGURATION (TOP VIEW)
VC
C
R E F
V
S
S
V
A
P 44/ I N T3/ P W M
M P
P 43/ I N T2/ SC
P 42/ I N T1 P 41/ I N T0
P 40/ C N T R1
C N T
D Y
7/
P 2
R0/ SR
L
P 26/ SC
P 25/ T x
P 24/ R x
I
P 21/ XC
O U
P 20/ XC
Package type : FP ........................... 42P2R-A/E (42-pin plastic-molded SSOP)
Package type : SP ........................... 42P4B (42-pin plastic-molded SDIP)
P 2 P 22
C N VS
R E S E
XI
U
XO
VS
2
1
N
1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
1 2 3 4 5 6 7 8 9
M
P
M
P
3 8 5 0 3 M 4 H - X X X F
3 8 5 0 3 M 4 H - X X X S
4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2
P 30/ A N0 P 31/ A N1 P 32/ A N2 P 33/ A N3 P 34/ A N4
N
P 00/ SI
U T
P 01/ SO
L K
P 02/ SC
D Y
P 03/ SR
2
2
P 04 P 05 P 06 P 07 P 10/ ( L E D0) P 11/ ( L E D1) P 12/ ( L E D2) P 13/ ( L E D3) P 14/ ( L E D4) P 15/ ( L E D5) P 16/ ( L E D6) P 17/ ( L E D7)
2
2
Fig. 1 M38503M4H-XXXFP/SP pin configuration

FUNCTIONAL BLOCK

INT
0
V
REF
AV
SS
R A M
R O M
C P U
A
X
Y
S
PC
H
PC
L
PS
VSS
21
RESET
18
VCC
1 15
CNV
SS
23
X
IN
19
20
SI/O1(8)
Reset input
Clock generating circuit
Main-clock
input
Main-clock
output
A-D
converter
(10)
CNTR
0
CNTR
1
Timer Y( 8 )
Timer X( 8 )
Prescaler 12(8)
Prescaler X(8)
Prescaler Y(8)
Timer 1( 8 )
Timer 2( 8 )
Sub-clock
input
X
OUT
XCIN
XCOUT
Sub-clock
output
Watchdog
timer
Reset
P2(8)
P3(5)
I/O port P2
I/O port P3
P4(5)
I/O port P4
INT
3
4
6
8
5
7
39
4138 40
42
9
11
13
17
10
12
14
16
P1(8)
I/O port P1
22 24 26 2823
25
27 29
P0(8)
I/O port P0
30 31
32 333435 36
37
PWM
(8)
X
CIN
X
COUT
SI/O2(8)
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL BLOCK DIAGRAM
Fig. 2 Functional block diagram
2

PIN DESCRIPTION

Table 1 Pin description
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
VCC, VSS
RESET XIN
XOUT
P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2 P04–P07
P20/XCOUT P21/XCIN P22 P23 P24/RxD P25/TxD P26/SCLK P27/CNTR0/
SRDY1
P30/AN0 P34/AN4
P40/CNTR1 P41/INT0
P42/INT1
P43/INT2/SCMP2
P44/INT3/PWM
NamePin Power source CNVSS inputCNVSS Reset input Clock input
Clock output
I/O port P0
I/O port P1P10–P17
I/O port P2
I/O port P3
I/O port P4
Functions
•Apply voltage of 2.7 V – 5.5 V to Vcc, and 0 V to Vss.
•This pin controls the operation mode of the chip.
•Normally connected to VSS.
•Reset input pin for active “L.”
•Input and output pins for the clock generating circuit.
•Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency.
•When an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
•8-bit CMOS I/O port.
•I/O direction register allows each pin to be individually programmed as either input or output.
•CMOS compatible input level.
•CMOS 3-state output structure.
•P10 to P17 (8 bits) are enabled to output large current for LED drive.
•8-bit CMOS I/O port.
•I/O direction register allows each pin to be individually programmed as either input or output.
•CMOS compatible input level.
•P20, P21, P24 to P27: CMOS3-state output structure.
•P22, P23: N-channel open-drain structure.
•8-bit CMOS I/O port with the same function as port P0.
•CMOS compatible input level.
•CMOS 3-state output structure.
•8-bit CMOS I/O port with the same function as port P0.
•CMOS compatible input level.
•CMOS 3-state output structure.
Function except a port function
• Serial I/O2 function pin
• Sub-clock generating circuit I/O pins (connect a resonator)
• Serial I/O1 function pin
• Serial I/O1 function pin/ Timer X function pin
• A-D converter input pin
• Timer Y function pin
• Interrupt input pins
• Interrupt input pin
• SCMP2 output pin
• Interrupt input pin
• PWM output pin
3

PART NUMBERING

MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
P r o d u c t n a m e
M 3 8 5 0 3 M 4 H– X X XS P
P a c k a g e t y p e S P : 4 2 P 4 B F P : 4 2 P 2 R - A / E S S : 4 2 S 1 B - A
R O M n u m b e r O m i t t e d i n O n e T i m e P R O M v e r s i o n s h i p p e d i n b l a n k , E P R O M v e r s i o n , a n d f l a s h m e m o r y v e r s i o n .
– : s t a n d a r d O m i t t e d i n O n e T i m e P R O M v e r s i o n s h i p p e d i n b l a n k , E P R O M v e r s i o n , a n d f l a s h m e m o r y v e r s i o n . H – : P a r t i a l s p e c i f i c a t i o n c h a n g e d v e r s i o n
R O M / P R O M / F l a s h m e m o r y s i z e
: 3 6 8 6 4 b y t e s
: 4 0 9 6 b y t e s
1
: 8 1 9 2 b y t e s
2
: 1 2 2 8 8 b y t e s
3
: 1 6 3 8 4 b y t e s
4
: 2 0 4 8 0 b y t e s
5
: 2 4 5 7 6 b y t e s
6
: 2 8 6 7 2 b y t e s
7
: 3 2 7 6 8 b y t e s
8 T h e f i r s t 1 2 8 b y t e s a n d t h e l a s t 2 b y t e s o f R O M a r e r e s e r v e d a r e a s ; t h e y c a n n o t b e u s e d a s a u s e r ’ s R O M a r e a . H o w e v e r , t h e y c a n b e p r o g r a m m e d o r e r a s e d i n t h e f l a s h m e m o r y v e r s i o n , s o t h a t t h e u s e r s c a n u s e t h e m .
9
: 4 0 9 6 0 b y t e s
A
: 4 5 0 5 6 b y t e s
B
: 4 9 1 5 2 b y t e s
C
: 5 3 2 4 8 b y t e s
D
: 5 7 3 4 4 b y t e s
E
: 6 1 4 4 0 b y t e s
F
Fig. 3 Part numbering
M e m o r y t y p e M: M a s k R O M v e r s i o n E : E P R O M o r O n e T i m e P R O M v e r s i o n F: F l a s h m e m o r y v e r s i o n
R A M s i z e
5
0
: 1 9 2 b y t e s
1
: 2 5 6 b y t e s
2
: 3 8 4 b y t e s
3
: 5 1 2 b y t e s
4
: 6 4 0 b y t e s
: 7 6 8 b y t e s
6
: 8 9 6 b y t e s
7
: 1 0 2 4 b y t e s
8
: 1 5 3 6 b y t e s
9
: 2 0 4 8 b y t e s
4
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the 3850 group (spec. H) as follows.

Memory Type

Support for mask ROM, One Time PROM, and flash memory ver­sions.

Memory Size

Flash memory size .........................................................32 K bytes
One Time PROM size.....................................................24 K bytes
Mask ROM size ................................................... 8 K to 32 K bytes
RAM size ...............................................................512 to 1 K bytes

Memory Expansion Plan

R O M s i z e ( b y t e s )
R O M
e x t e r a n a l
3 2 K
2 8 K
M a s s p r o d u c t i o n
U n d e r d e v e l o p m e n t

Packages

42P4B ......................................... 42-pin shrink plastic-molded DIP
42P2R-A/E........................................... 42-pin plastic-molded SOP
42S1B-A .................. 42-pin shrink ceramic DIP (EPROM version)
A s o f F e b . 2 0 0 0
M 3 8 5 0 7 M 8 / F 8
2 4 K
2 0 K
M a s s p r o d u c t i o n
1 6 K
1 2 K
M a s s p r o d u c t i o n
8 K
3 8 45 1 26 4 07 6 88 9 61 0 2 4
P r o d u c t s u n d e r d e v e l o p m e n t o r p l a n n i n g : t h e d e v e l o p m e n t s c h e d u l e a n d s p e c i f i c a t i o n m a y b e r e v i s e d w i t h o u t n o t i c e . T h e d e v e l o p m e n t o f pl a n n i n g p r o d u c t s m a y b e s t o p p e d .
Fig. 4 Memory expansion plan
M 3 8 5 0 4 M 6 / E 6
M 3 8 5 0 3 M 4 H
M 3 8 5 0 3 M 2 H
1 1 5 21 2 8 01 4 0 81 5 3 62 0 4 8
R A M s i z e ( b y t e s )
5
Currently planning products are listed below.
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 2 Support products
Product name
M38503M2H-XXXSP M38503M2H-XXXFP M38503M4H-XXXSP M38503M4H-XXXFP M38504M6-XXXSP M38504E6-XXXSP M388504E6SP M388504E6SS M38504M6-XXXFP M38504E6-XXXFP M38504E6FP
Table 3 3850 group (standard) and 3850 group (spec. H)

corresponding products

3850 group (standard) M38503M2-XXXFP/SP M38503M4-XXXFP/SP M38503E4-XXXFP/SP M38503E4FP/SP M38503E4SS
ROM size (bytes)
ROM size for User in ( )
8192
(8062)
16384
(16254)
24576
(24446)
3850 group (spec. H) M38503M2H-XXXFP/SP M38503M4H-XXXFP/SP M38504M6-XXXFP/SP M38504E6-XXXFP/SP M38504E6FP/SP M38504E6SS M38507M8-XXXFP/SP M38507F8FP/SP
RAM size (bytes)
512
512
640
Package
42P4B
42P2R-A/E
424P4B
42P2R-A/E
424P4B
42S1B-A
42P2R-A/E
As of Feb. 2000
Remarks
Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version Mask ROM version One Time PROM version One Time PROM version (blank)
Table 4 Differences between 3850 group (standard) and 3850 group (spec. H)
3850 group (spec. H)
Serial I/O
A-D converter Large current port
3850 group (standard)
1: Serial I/O (UART or Clock-synchronized)
Unserviceable in low-speed mode 5: P13–P17
2: Serial I/O1 (UART or Clock-synchronized)
Serial I/O2 (Clock-synchronized) Serviceable in low-speed mode 8: P10–P17
Notes on differences between 3850 group (standard) and 3850 group (spec. H)
(1) The absolute maximum ratings of 3850 group (spec. H) is smaller than that of 3850 group (standard).
•Power source voltage Vcc = –0.3 to 6.5 V
•CNVss input voltage VI = –0.3 to Vcc +0.3 V
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may be some differences between 3850 group (standard) and 3850 group
(spec. H). (3) Do not write any data to the reserved area and the reserved bit. (Do not change the contents after rest.) (4) Fix bit 3 of the CPU mode register to “1”. (5) Be sure to perform the termination of unused pins.
6
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)
The 3850 group (spec. H) uses the standard 740 Family instruc­tion set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for de­tails on the instruction set. Machine-resident 740 Family instructions are as follows:
The FST and SLW instructions cannot be used. The STP, WIT, MUL, and DIV instructions can be used.
[Accumulator (A)]
The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.
[Index Register X (X)]
The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.
[Index Register Y (Y)]
The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.
[Stack Pointer (S)]
The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack ad­dress are determined by the stack page selection bit. If the stack page selection bit is “0” , the high-order 8 bits becomes “0016”. If the stack page selection bit is “1”, the high-order 8 bits becomes “0116”. The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6. Store registers other than those described in Figure 6 with pro­gram when the user needs them during interrupts or subroutine calls.
[Program Counter (PC)]
The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.
b7
b0
A Accumulator
b7
b0
X Index register X
b7
b0
Y Index register Y
b7 b0
S Stack pointer
b7b15 b0
H
PC
L
Program counterPC
b7 b0
N V T B D I Z C Processor status register (PS)
Carry flag Zero flag Interrupt disable flag Decimal mode flag Break flag Index X mode flag Overflow flag Negative flag
Fig. 5 740 Family CPU register structure
7
e
O n - g o i n g R o u t i n
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
P u s h r e t u r n a d d r e s s o n s t a c k
P O P re t u r n a d d r e s s f r o m s t a c k
I n t e r r u p t r e q u e s t
M ( S )( P CH)
( S )
M ( S )( P CL)
( S )
S u b r o u t i n e
E x e c u t e R T S
( S )
( P CL)M ( S )
( S )
( P CH)M ( S )
( S ) – 1
( S ) + 1
( S ) + 1
( N o t e )
( S ) – 1
E x e c u t e J S R
M ( S )( P CH)
( S )
( S ) – 1
M ( S )( P CL)
( S )
( S ) – 1
M ( S )( P S )
( S )
( S ) – 1
I n t e r r u p t
S e r v i c e R o u t i n e
E x e c u t e R T I
( S )
( S ) + 1
( P S )M ( S )
( S )
( S ) + 1
( P CL)M ( S )
( S )
( S ) + 1
P u s h r e t u r n a d d r e s s o n s t a c k
P u s h c o n t e n t s o f p r o c e s s o r s t a t u s r e g i s t e r o n s t a c k
I F l a g i s s e t f r o m “ 0 ” t o “ 1 ” F e t c h t h e j u m p v e c t o r
P O P c o n t e n t s o f p r o c e s s o r s t a t u s r e g i s t e r f r o m s t a c k
P O P r e t u r n a d d r e s s f r o m s t a c k
N o t e: C o n d i t i o n f o r a c c e p t a n c e o f a n i n t e r r u p t I n t e r r u p t e n a b l e f l a g i s “ 1 ”
Fig. 6 Register push and pop at interrupt generation and subroutine call
Table 5 Push and pop instructions of accumulator or processor status register
Push instruction to stack
Accumulator Processor status register
PHA PHP
I n t e r r u p t d i s a b l e f l a g i s “ 0 ”
( P CH)M ( S )
Pop instruction from stack
PLA PLP
8
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[Processor status register (PS)]
The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch opera­tions can be performed by testing the Carry (C) flag , Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
•Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic
logic unit (ALU) immediately after an arithmetic operation. It can
also be changed by a shift or rotate instruction.
•Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation
or a data transfer is “0”, and cleared if the result is anything other
than “0”.
•Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt
generated by the BRK instruction.
Interrupts are disabled when the I flag is “1”.
•Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are
executed in binary or decimal. Binary arithmetic is executed when
this flag is “0”; decimal arithmetic is executed when it is “1”.
Decimal correction is automatic in decimal mode. Only the ADC
and SBC instructions can be used for decimal arithmetic.
•Bit 4: Break flag (B) The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always “0”. When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to “1”.
•Bit 5: Index X mode flag (T) When the T flag is “0”, arithmetic operations are performed between accumulator and memory. When the T flag is “1”, direct arithmetic operations and direct data transfers are enabled between memory locations.
•Bit 6: Overflow flag (V) The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128. When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.
•Bit 7: Negative flag (N) The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.
Table 6 Set and clear instructions of each bit of processor status register
C flag Z flag I flag D flag B flag T flag V flag N flag
Set instruction Clear instruction
SEC
CLC
_ _
SEI CLI
SED CLD
_ _
SET CLT CLV
_
_ _
9
[CPU Mode Register (CPUM)] 003B16
The CPU mode register contains the stack page selection bit, etc. The CPU mode register is allocated at address 003B16.
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
CPU mode register
(
CPUM : address
003B16)
Processor mode bits b1 b0 0 0 : Single-chip mode 0 1 : 1 0 : Not available 1 1 :
Stack page selection bit 0 : 0 page 1 : 1 page
Fix this bit to “1”.
C switch bit
Port X
0 : I/O port function (stop oscillating)
CIN–XCOUT oscillating function
1 : X
Main clock (X
0 : Oscillating 1 : Stopped
Main clock division ratio selection bits b7 b6 0 0 : φ = f(X 0 1 : φ = f(X 1 0 : φ = f(X 1 1 : Not available
IN–XOUT) stop bit
IN)/2 (high-speed mode) IN)/8 (middle-speed mode) CIN)/2 (low-speed mode)
Fig. 7 Structure of CPU mode register
10
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MEMORY Special Function Register (SFR) Area
The Special Function Register area in the zero page contains control registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM size
(bytes)
192 256 384 512 640 768
896 1024 1536 2048
ROM area
ROM size
(bytes)
4096 8192
12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440
Address XXXX
00FF 013F 01BF 023F 02BF 033F 03BF 043F 063F 083F
Address YYYY
F000 E000 D000 C000 B000 A000 9000 8000 7000 6000 5000 4000 3000 2000 1000
16
16 16
16
16
16
16
16 16 16 16
Address
16 16
16 16 16 16 16
16 16 16 16 16 16 16 16 16
ZZZZ
F080 E080 D080 C080 B080 A080 9080 8080 7080 6080 5080 4080 3080 2080 1080
16 16
16
16
16 16 16
16 16 16 16 16 16 16 16 16

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.
0000
16
0040
16
0100
16
XXXX
0FF0 0FFF
YYYY
ZZZZ
16
16 16
16
16
RAM
ROM
FF00
16
FFDC
16
FFFE
16
FFFF
16
Note: Flash memory version only
SFR area
Not used
SFR area (Note)
Not used
Reserved ROM area
(128 bytes)
Interrupt vector area
Reserved ROM area
Zero page
Special page
Fig. 8 Memory map diagram
11
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 A 0 0 0 B 0 0 0 C 0 0 0 D 0 0 0 E 0 0 0 F 0 0 1 0 0 0 1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 1 A 0 0 1 B 0 0 1 C 0 0 1 D 0 0 1 E 0 0 1 F
P o r t P 0 ( P 0 )
1 6
P o r t P 0 d i r e c t i o n r e g i s t e r ( P 0 D )
1 6
P o r t P 1 ( P 1 )
1 6
P o r t P 1 d i r e c t i o n r e g i s t e r ( P 1 D )
1 6
P o r t P 2 ( P 2 )
1 6
P o r t P 2 d i r e c t i o n r e g i s t e r ( P 2 D )
1 6
P o r t P 3 ( P 3 )
1 6
P o r t P 3 d i r e c t i o n r e g i s t e r ( P 3 D )
1 6
P o r t P 4 ( P 4 )
1 6
P o r t P 4 d i r e c t i o n r e g i s t e r ( P 4 D )
1 6 1 6 1 6
1 6
1 6 1 6 1 6 1 6 1 6 1 6
R e s e r v e d
1 6
R e s e r v e d
1 6
R e s e r v e d S e r i a l I / O 2 c o n t r o l r e g i s t e r 1 ( S I O 2 C O N 1 )
1 6
S e r i a l I / O 2 c o n t r o l r e g i s t e r 2 ( S I O 2 C O N 2 )
1 6
S e r i a l I / O 2 r e g i s t e r ( S I O 2 )
1 6
T r a n s m i t / R e c e i v e b u f f e r r e g i s t e r ( T B / R B )
1 6
S e r i a l I / O 1 s t a t u s r e g i s t e r ( S I O S T S )
1 6
S e r i a l I / O 1 c o n t r o l r e g i s t e r ( S I O C O N )
1 6
U A R T c o n t r o l r e g i s t e r ( U A R T C O N )
1 6
B a u d r a t e g e n e r a t o r ( B R G )
1 6
P W M c o n t r o l r e g i s t e r ( P W M C O N )
1 6
P W M p r e s c a l e r ( P R E P W M )
1 6
P W M r e g i s t e r ( P W M )
1 6
0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 2 5 0 0 2 6 0 0 2 7 0 0 2 8 0 0 2 9 0 0 2 A 0 0 2 B 0 0 2 C 0 0 2 D 0 0 2 E 0 0 2 F 0 0 3 0 0 0 3 1 0 0 3 2 0 0 3 3 0 0 3 4 0 0 3 5 0 0 3 6 0 0 3 7 0 0 3 8 0 0 3 9 0 0 3 A 0 0 3 B 0 0 3 C 0 0 3 D 0 0 3 E 0 0 3 F
P r e s c a l e r 1 2 ( P R E 1 2 )
1 6
T i m e r 1 ( T 1 )
1 6
T i m e r 2 ( T 2 )
1 6
T i m e r X Y m o d e r e g i s t e r ( T M )
1 6
P r e s c a l e r X ( P R E X )
1 6
T i m e r X ( T X )
1 6
P r e s c a l e r Y ( P R E Y )
1 6
T i m e r Y ( T Y )
1 6
T i m e r c o u n t s o u r c e s e l e c t i o n r e g i s t e r ( T C S S )
1 6 1 6
1 6 1 6
R e s e r v e d R e s e r v e d
1 6 1 6
R e s e r v e d
1 6
R e s e r v e d
1 6
R e s e r v e d
1 6
R e s e r v e d
1 6
R e s e r v e d
1 6 1 6
A - D c o n t r o l r e g i s t e r ( A D C O N )
1 6
A - D c o n v e r s i o n l o w - o r d e r r e g i s t e r ( A D L )
1 6
A - D c o n v e r s i o n h i g h - o r d e r r e g i s t e r ( A D H )
1 6 1 6
R e s e r v e d M I S R G
1 6
W a t c h d o g t i m e r c o n t r o l r e g i s t e r ( W D T C O N )
1 6
I n t e r r u p t e d g e s e l e c t i o n r e g i s t e r ( I N T E D G E )
1 6
C P U m o d e r e g i s t e r ( C P U M )
1 6
I n t e r r u p t r e q u e s t r e g i s t e r 1 ( I R E Q 1 )
1 6
I n t e r r u p t r e q u e s t r e g i s t e r 2 ( I R E Q 2 )
1 6
I n t e r r u p t c o n t r o l r e g i s t e r 1 ( I C O N 1 )
1 6
I n t e r r u p t c o n t r o l r e g i s t e r 2 ( I C O N 2 )
1 6
R e s e r v e d : D o n o t w r i t e a n y d a t a t o t h i s a d d r e s s e s , b e c a u s e t h e s e a r e a s a r e r e s e r v e d .
Fig. 9 Memory map of special function register (SFR)
12

I/O PORTS

The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin. If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.
Table 5 I/O port function
Pin P00/SIN2 P01/SOUT2 P02/SCLK2 P03/SRDY2
P04–P07 P10–P17
P20/XCOUT P21/XCIN
P22 P23
P24/RxD P25/TxD
Name
Port P0
Port P1
Port P2
Input/Output
Input/output, individual bits
I/O Structure Non-Port Function
CMOS compatible input level CMOS 3-state output
CMOS compatible input level N-channel open-drain output
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Related SFRs
Serial I/O2 function I/O
Sub-clock generating circuit
Serial I/O1 function I/O
Serial I/O2 control register
CPU mode register
Serial I/O1 control register
Ref.No.
(1) (2) (3) (4)
(5)
(6) (7)
(8)
(9)
(10)
P26/SCLK
P27/CNTR0/SRDY1
P30/AN0 P34/AN4
P40/CNTR1 P41/INT0
P42/INT1
P43/INT2/SCMP2
P44/INT3/PWM
Port P3
Port P4
CMOS compatible input level CMOS 3-state output
Serial I/O1 function I/O
Serial I/O1 function I/O Timer X function I/O
A-D conversion input
Timer Y function I/O External interrupt input
External interrupt input SCMP2 output
External interrupt input PWM output
Serial I/O1 control register
Serial I/O1 control register Timer XY mode register
A-D control register
Timer XY mode register
Interrupt edge selection register
Interrupt edge selection register Serial I/O2 control register
Interrupt edge selection register PWM control register
(11)
(12)
(13)
(14) (15)
(16)
(17)
13
MITSUBISHI MICROCOMPUTERS
r
t
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
( 1 ) P o r t P 0
( 3 ) P o r t P 0
0
D a t a b u s
2
P 02/ S
C L K 2
S e r i a l I / O 2 s y n c h r o n o u s
S e r i a l I / O 2 p o r t s e l e c t i o n b i t
D a t a b u s
S e r i a l I / O 2 c l o c k o u t p u t
D i r e c t i o n r e g i s t e r
P o r t l a t c h
S e r i a l I / O 2 i n p u t
P - c h a n n e l o u t p u t d i s a b l e b i t
c l o c k s e l e c t i o n b i t
D i r e c t i o n r e g i s t e r
P o r t l a t c h
S e r i a l I / O 2 e x t e r n a l c l o c k i n p u t
( 2 ) P o r t P 0
P 01/ S
S e r i a l I / O 2 T r a n s m i t c o m p l e t i o n s i g n a l
D a t a b u s
( 4 ) P o r t P 0
1
O U T 2
P - c h a n n e l o u t p u t d i s a b l e b i t
S e r i a l I / O 2 p o r t s e l e c t i o n b i t
D i r e c t i o n r e g i s t e r
P o r t l a t c h
S e r i a l I / O 2 o u t p u t
3
R D Y 2
o u t p u t e n a b l e b i t
S
D i r e c t i o n r e g i s t e r
D a t a b u s
P o r t l a t c h
S e r i a l I / O 2 r e a d y o u t p u t
( 5 ) P o r t s P 04- P 0
( 7 ) P o r t P 2
D a t a b u s
D a t a b u s
1
7 ,
P o r t X
P 1
C
D i r e c t i o n r e g i s t e r
P o r t l a t c h
Fig. 10 Port block diagram (1)
D i r e c t i o n r e g i s t e r
P o r t l a t c h
s w i t c h b i t
S u b - c l o c k g e n e r a t i n g c i r c u i t i n p u
( 6 ) P o r t P 2
D a t a b u s
( 8 ) P o r t s P 2
D a t a b u s
0
C
s w i t c h b i t
P o r t X
D i r e c t i o n r e g i s t e r
P o r t l a t c h
O s c i l l a t o
P o r t P 2
1
P o r t XC s w i t c h b i t
2 ,
P 2
3
D i r e c t i o n r e g i s t e r
P o r t l a t c h
14
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(9) Port P24
Serial I/O1 enable bit
Receive enable bit
Data bus
(11) Port P26
Serial I/O1 synchronous
clock selection bit
Serial I/O1 enable bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Data bus
Serial I/O1 clock output
Direction register
Port latch
Direction register
Port latch
Serial I/O1 input
External clock input
(10) Port P25
P-channel output disable bit
Serial I/O1 enable bit
Transmit enable bit
Direction register
Data bus
Port latch
Serial I/O1 output
(12) Port P27
Serial I/O1 mode selection bit
S
Pulse output mode
Serial I/O1 enable bit
RDY1 output enable bit
Data bus
Serial ready output
Timer output
Direction register
Port latch
Pulse output mode
CNTR
0 interrupt
input
(13) Ports P30-P34
Data bus
(15) Ports P41,P42
Data bus
Direction register
Port latch
Direction register
Port latch
Interrupt input
A-D converter input
Analog input pin selection bit
(14) Port P40
Data bus
Pulse output mode
(16) Port P43
comparison signal control bit
Data bus
comparison signal output
Direction register
Port latch
Timer output
Serial I/O2 I/O
Direction register
Port latch
Serial I/O2 I/O
CNTR
1 interrupt
Interrupt input
input
Fig. 11 Port block diagram (2)
15
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(17) Port P4
Data bus
4
PWM output enable bit
Direction register
Port latch
PWM output
Fig. 12 Port block diagram (3)
Interrupt input
16
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts occur by 14 sources among 14 sources: six external, seven internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software in­terrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the in­terrupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK in­struction interrupt. When several interrupts occur at the same time, the interrupts are received according to priority.

Interrupt Operation

By acceptance of an interrupt, the following operations are auto­matically performed:
1. The contents of the program counter and the processor status register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
3. The interrupt jump destination address is read from the vector table into the program counter.

Notes

When the active edge of an external interrupt (INT0–INT3, CNTR0, CNTR1) is set, the corresponding interrupt request bit may also be set. Therefore, take the following sequence:
1. Disable the interrupt
2. Change the interrupt edge selection register (the timer XY mode register for CNTR0 and CNTR1)
3. Clear the interrupt request bit to “0”
4. Accept the interrupt.
17
Table 8 Interrupt vector addresses and priority
Interrupt Source
Reset (Note 2)
INT0
Reserved
INT1
INT2
INT3/ Serial I/O2
Reserved Timer X Timer Y Timer 1 Timer 2
Serial I/O1 reception
Serial I/O1 transmission
CNTR0
CNTR1
A-D converter BRK instruction
Notes 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
Priority
1 2
3
4
5
6
7 8 9
10
11
12
13
14
15
16 17
Vector Addresses (Note 1)
High
FFFD16 FFFB16
FFF916 FFF716
FFF516
FFF316
FFF116 FFEF16
FFED16
FFEB16 FFE916
FFE716
FFE516
FFE316
FFE116 FFDF16
Low
FFFC16 FFFA16
FFF816 FFF616
FFF416
FFF216
FFF016 FFEE16 FFEC16 FFEA16 FFE816
FFE616
FFE416
FFE216
FFE016 FFDE16
FFDC16FFDD16
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Interrupt Request
Generating Conditions At reset At detection of either rising or
falling edge of INT0 input Reserved
At detection of either rising or falling edge of INT1 input
At detection of either rising or falling edge of INT2 input
At detection of either rising or falling edge of INT3 input/ At completion of serial I/O2 data reception/transmission
Reserved
At timer X underflow At timer Y underflow At timer 1 underflow At timer 2 underflow
At completion of serial I/O1 data reception
At completion of serial I/O1 transfer shift or when transmis­sion buffer is empty
At detection of either rising or falling edge of CNTR0 input
At detection of either rising or falling edge of CNTR1 input
At completion of A-D conversion
At BRK instruction execution
Remarks
Non-maskable External interrupt
(active edge selectable)
External interrupt (active edge selectable)
External interrupt (active edge selectable)
External interrupt (active edge selectable) Switch by Serial I/O2/INT3 interrupt source bit
STP release timer underflow
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
External interrupt (active edge selectable)
External interrupt (active edge selectable)
Non-maskable software interrupt
18
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
BRK instruction
Reset
Fig. 13 Interrupt control
b 7 b 0
I n t e r r u p t e d g e s e l e c t i o n r e g i s t e r
1 6
( I N T E D G E : a d d r e s s 0 0 3 A
)
I N T0 a c t i v e e d g e s e l e c t i o n b i t
1
a c t i v e e d g e s e l e c t i o n b i t
I N T
2
a c t i v e e d g e s e l e c t i o n b i t
I N T
3
a c t i v e e d g e s e l e c t i o n b i t
I N T S e r i a l I / O 2 / I N T 0 : I N T
3
3
i n t e r r u p t s o u r c e b i t
i n t e r r u p t s e l e c t e d
0 : F a l l i n g e d g e a c t i v e 1 : R i s i n g e d g e a c t i v e
1 : S e r i a l I / O 2 i n t e r r u p t s e l e c t e d N o t u s e d ( r e t u r n s “ 0 ” w h e n r e a d )
b 7 b 0 b 7 b 0
I n t e r r u p t r e q u e s t r e g i s t e r 1 ( I R E Q 1 : a d d r e s s 0 0 3 C
1 6
)
I N T0 i n t e r r u p t r e q u e s t b i t R e s e r v e d
1
i n t e r r u p t r e q u e s t b i t
I N T
2
i n t e r r u p t r e q u e s t b i t
I N T
3
/ S e r i a l I / O 2 i n t e r r u p t r e q u e s t b i t
I N T R e s e r v e d T i m e r X i n t e r r u p t r e q u e s t b i t T i m e r Y i n t e r r u p t r e q u e s t b i t
0 : N o i n t e r r u p t r e q u e s t i s s u e d 1 : I n t e r r u p t r e q u e s t i s s u e d
Interrupt request
I n t e r r u p t r e q u e s t r e g i s t e r 2
1 6
( I R E Q 2 : a d d r e s s 0 0 3 D
)
T i m e r 1 i n t e r r u p t r e q u e s t b i t T i m e r 2 i n t e r r u p t r e q u e s t b i t S e r i a l I / O 1 r e c e p t i o n i n t e r r u p t r e q u e s t b i t S e r i a l I / O 1 t r a n s m i t i n t e r r u p t r e q u e s t b i t
0
i n t e r r u p t r e q u e s t b i t
C N T R C N T R
1
i n t e r r u p t r e q u e s t b i t A D c o n v e r t e r i n t e r r u p t r e q u e s t b i t N o t u s e d ( r e t u r n s “ 0 ” w h e n r e a d )
0 : N o i n t e r r u p t r e q u e s t i s s u e d 1 : I n t e r r u p t r e q u e s t i s s u e d
b 7 b 0 b 7 b 0
I n t e r r u p t c o n t r o l r e g i s t e r 1
( I C O N 1 : a d d r e s s 0 0 3 E
1 6
)
I N T0 i n t e r r u p t e n a b l e b i t R e s e r v e d ( D o n o t w r i t e “ 1 ” t o t h i s b i t . )
1
i n t e r r u p t e n a b l e b i t
I N T
2
i n t e r r u p t e n a b l e b i t
I N T
3
/ S e r i a l I / O 2 i n t e r r u p t e n a b l e b i t
I N T R e s e r v e d ( D o n o t w r i t e “ 1 ” t o t h i s b i t . ) T i m e r X i n t e r r u p t e n a b l e b i t T i m e r Y i n t e r r u p t e n a b l e b i t
0 : I n t e r r u p t s d i s a b l e d 1 : I n t e r r u p t s e n a b l e d
Fig. 14 Structure of interrupt-related registers
I n t e r r u p t c o n t r o l r e g i s t e r 2
1 6
( I C O N 2 : a d d r e s s 0 0 3 F
)
T i m e r 1 i n t e r r u p t e n a b l e b i t T i m e r 2 i n t e r r u p t e n a b l e b i t S e r i a l I / O 1 r e c e p t i o n i n t e r r u p t e n a b l e b i t S e r i a l I / O 1 t r a n s m i t i n t e r r u p t e n a b l e b i t
0
i n t e r r u p t e n a b l e b i t
C N T R
1
i n t e r r u p t e n a b l e b i t
C N T R A D c o n v e r t e r i n t e r r u p t e n a b l e b i t N o t u s e d ( r e t u r n s “ 0 ” w h e n r e a d ) ( D o n o t w r i t e “ 1 ” t o t h i s b i t . )
0 : I n t e r r u p t s d i s a b l e d 1 : I n t e r r u p t s e n a b l e d
19
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMERS

The 3850 group (spec. H) has four timers: timer X, timer Y, timer 1, and timer 2. The division ratio of each timer or prescaler is given by 1/(n + 1), where n is the value in the corresponding timer or prescaler latch. All timers are count down. When the timer reaches “0016”, an un­derflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to “1”.
b7
Fig. 15 Structure of timer XY mode register
b0
Timer XY mode register (TM : address 0023
Timer X operating mode bit
b1b0
0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode
CNTR0 active edge selection bit
0: Interrupt at falling edge
Count at rising edge in event counter mode
1: Interrupt at rising edge
Count at falling edge in event counter mode
Timer X count stop bit
0: Count start 1: Count stop
Timer Y operating mode bits
b5b4
0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode
CNTR
1
active edge selection bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer Y count stop bit
0: Count start 1: Count stop
16
)

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency which is selected by timer 12 count source selection bit. The out­put of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit.

Timer X and Timer Y

Timer X and Timer Y can each select in one of four operating modes by setting the timer XY mode register.

(1) Timer Mode

The timer counts the count source selected by Timer count source selection bit.

(2) Pulse Output Mode

The timer counts the count source selected by Timer count source selection bit. Whenever the contents of the timer reach “0016”, the signal output from the CNTR0 (or CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge selection bit is “0”, output begins at “ H”. If it is “1”, output starts at “L”. When using a timer in this mode, set the corresponding port P27 ( or port P40) direction register to out­put mode.

(3) Event Counter Mode

Operation in event counter mode is the same as in timer mode, except that the timer counts signals input through the CNTR0 or CNTR1 pin. When the CNTR0 (or CNTR1) active edge selection bit is “0”, the rising edge of the CNTR0 (or CNTR1) pin is counted. When the CNTR0 (or CNTR1) active edge selection bit is “1”, the falling edge of the CNTR0 (or CNTR1) pin is counted.

(4) Pulse Width Measurement Mode

If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer counts the selected signals by the count source selection bit while the CNTR0 (or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) ac­tive edge selection bit is “1”, the timer counts it while the CNTR0 (or CNTR1) pin is at “L”.
b7
b0
Timer count source selection register (TCSS : address 0028
Timer X count source selection bit
IN)/16 (f(XCIN)/16 at low-speed mode)
0 : f(X 1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)
Timer Y count source selection bit 0 : f(X
IN)/16 (f(XCIN)/16 at low-speed mode)
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode) Timer 12 count source selection bit
IN)/16 (f(XCIN)/16 at low-speed mode)
0 : f(X 1 : f(XCIN)
Not used (returns “0” when read)
16)
Fig. 16 Structure of timer count source selection register
20
The count can be stopped by setting “1” to the timer X (or timer Y) count stop bit in any mode. The corresponding interrupt request bit is set each time a timer underflows.

Note

When switching the count source by the timer 12, X and Y count source bit, the value of timer count is altered in unconsiderable amount owing to generating of a thin pulses in the count input signals. Therefore, select the timer count source before set the value to the prescaler and the timer.
Data bus
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(f(X
CIN
)/16 at low-speed mode)
CIN
)/2 at low-speed mode)
(f(X
P2
7
/CNTR
direction register
CIN
)/16 at low-speed mode)
(f(X
CIN
)/2 at low-speed mode)
(f(X
P40/CNTR
direction register
f(XIN)/16
f(XIN)/2
Timer X count source selection bit
CNTR
0
active
0
edge selection
“0”
bit
“1”
Port P2
7
Port P2 latch
Pulse output mode
f(XIN)/16
f(XIN)/2
Timer Y count source selection bit
1
active
CNTR
1
edge selection
bit
“0”
“1”
Port P4
Port P4
0
latch
Pulse output mode
Pulse width measurement mode
7
0
Event counter mode
CNTR edge selection bit
Pulse width measure­ment mode
Event counter mode
CNTR edge selection bit
Timer mode Pulse output mode
Timer X count stop bit
0
active
“1”
“0”
Timer mode Pulse output mode
Timer Y count stop bit
1
active
“1”
“0”
Data bus
Prescaler X latch (8)
Prescaler X (8)
Q
Toggle flip-flop
Q
R
Data bus
Prescaler Y latch (8)
Prescaler Y (8)
Q
Toggle flip-flop
Q
R
Timer X latch (8)
Timer X (8)
To timer X interrupt request bit
0
interrupt
To CNTR request bit
T
Timer X latch write pulse Pulse output mode
Timer Y latch (8)
Timer Y (8)
To timer Y interrupt request bit
1
interrupt
To CNTR request bit
T
Timer Y latch write pulse Pulse output mode
Prescaler 12 latch (8)
CIN
)/16 at low-speed mode)
(f(X
f(XIN)/16
f(X
CIN
)
Prescaler 12 (8)
Timer 12 count source selection bit
Fig. 17 Block diagram of timer X, timer Y, timer 1, and timer 2
Timer 1 latch (8)
Timer 1 (8)
Timer 2 latch (8)
Timer 2 (8)
To timer 2 interrupt request bit
To timer 1 interrupt request bit
21
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL I/O1

Serial I/O1 can be used as either clock synchronous or asynchro­nous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.
Data bus
Address 0018
Shift clock
Serial I/O1 synchronous clock selection bit Frequency division ratio 1/(n+1)
Transmit shift register
Transmit buffer register
Data bus
P24/RXD
P26/S
7/SRDY1
P2
P2
5/TX
X
CLK
BRG count source selection bit
IN
F/F
D
Receive buffer register
Receive shift register
1/4
Falling-edge detector

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O mode can be selected by setting the serial I/O1 mode selection bit of the serial I/O1 control register (bit 6 of address 001A16) to “1”. For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.
16
Clock control circuit
Baud rate generator
Address 001C
Shift clock
Address 0018
16
Clock control circuit
16
Serial I/O1 control register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
1/4
Transmit interrupt source selection bit
Serial I/O1 status register
Address 001A
Transmit shift completion flag (TSC)
Transmit interrupt request (TI)
Transmit buffer empty flag (TBE)
Address 0019
16
16
Fig. 18 Block diagram of clock synchronous serial I/O1
Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock)
Serial output TxD
Serial input RxD
Receive enable signal S
RDY1
D
0
D
0
D
D
Write pulse to receive/transmit buffer register (address 0018
16
)
TBE = 0
TBE = 1 TSC = 0
1: As the transmit interrupt (TI), either when the transmit buffer has emptied (TBE=1) or after the transmit shift operation has
Notes
ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register.
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data
is output continuously from the TxD pin.
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Fig. 19 Operation of clock synchronous serial I/O1 function
D
1
D
2
1
D
2
D
3
D
3
D
4
D
4
D
5
D
5
D
6
D
6
7
D
7
RBF = 1
TSC = 1 Overrun error (OE) detection
22
MITSUBISHI MICROCOMPUTERS
r
r
r
K
D
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O1 mode selection bit (b6) of the serial I/O1 control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer, but the
D a t a b u s
A d d r e s s 0 0 1 8
O E
/ RXD
C L
X
/ T
S T d e t e c t o
B R G c o u n t s o u r c e s e l e c t i o n b i t
I N
X
4
P 2
P 2
P 2
6
/ S
5
C h a r a c t e r l e n g t h s e l e c t i o n b i t
7 b i t s 8 b i t s
S e r i a l I / O s y n c h r o n o u s c l o c k s e l e c t i o n b i t
1 / 4
C h a r a c t e r l e n g t h s e l e c t i o n b i t
1 6
R e c e i v e b u f f e r r e g i s t e r
R e c e i v e s h i f t r e g i s t e r
P EF E
S P d e t e c t o r
F r e q u e n c y d i v i s i o n r a t i o 1 / ( n + 1 )
B a u d r a t e g e n e r a t o r
A d d r e s s 0 0 1 C
S T / S P / P A g e n e r a t o r
T r a n s m i t s h i f t r e g i s t e r
T r a n s m i t b u f f e r r e g i s t e
D a t a b u s
two buffers have the same address in memory. Since the shift reg­ister cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register. The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.
S e r i a l I / O 1 c o n t r o l r e g i s t e r
R e c e i v e b u f f e r f u l l f l a g ( R B F ) R e c e i v e i n t e r r u p t r e q u e s t ( R I )
C l o c k c o n t r o l c i r c u i t
1 6
1 / 1 6
T r a n s m i t i n t e r r u p t s o u r c e s e l e c t i o n b i t
S e r i a l I / O 1 s t a t u s r e g i s t e r
0 0 1 8
A d d r e s s
1 6
A d d r e s s 0 0 1 A
1 / 1 6
1 6
U A R T c o n t r o l r e g i s t e
A d d r e s s 0 0 1 B
T r a n s m i t s h i f t c o m p l e t i o n f l a g ( T S C )
T r a n s m i t i n t e r r u p t r e q u e s t ( T I )
T r a n s m i t b u f f e r e m p t y f l a g ( T B E )
A d d r e s s
0 0 1 9
1 6
1 6
Fig. 20 Block diagram of UART serial I/O1
23
Transmit or receive clock
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Transmit buffer write
Receive buffer read
signal
TBE=0 TBE=0
TSC=0 TBE=1
Serial output TXD
signal
X
Serial input R
Notes
D
1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception). 2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1,” can be selected to occur depending on the setting of the transmit
interrupt source selection bit (TIC) of the serial I/O1 control register.
3: The receive interrupt (RI) is set when the RBF flag becomes “1.” 4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
ST
0
D
1
1 start bit 7 or 8 data bit 1 or 0 parity bit 1 or 2 stop bit (s)
ST
0
D
1
Fig. 21 Operation of UART serial I/O1 function
[Transmit Buffer Register/Receive Buffer Register (TB/RB)] 0018
The transmit buffer register and the receive buffer register are lo­cated at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is “0”.
16
[Serial I/O1 Status Register (SIOSTS)] 001916
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O1 function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer register is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer reg­ister, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O1 enable bit SIOE (bit 7 of the serial I/O1 control register) also clears all the status flags, including the error flags. Bits 0 to 6 of the serial I/O1 status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O1 control register has been set to “1”, the transmit shift completion flag (bit
2) and the transmit buffer empty flag (bit 0) become “1”.
TBE=1
STD
SP
RBF=1
STD
SP D
D
0
D
1
Generated at 2nd bit in 2-stop-bit mode
RBF=0
0
D
1
TSC=1
SP
RBF=1
SP
[Serial I/O1 Control Register (SIOCON)] 001A16
The serial I/O1 control register consists of eight control bits for the serial I/O1 function.
[UART Control Register (UARTCON)] 001B16
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer and one bit (bit 4) which is al­ways valid and sets the output structure of the P25/TXD pin.
[Baud Rate Generator (BRG)] 001C16
The baud rate generator determines the baud rate for serial trans­fer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate genera­tor.
24
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b 7
b 0
S e r i a l I / O 1 s t a t u s r e g i s t e r ( S I O S T S : a d d r e s s 0 0 1 9
1 6
)
b 7
T r a n s m i t b u f f e r e m p t y f l a g ( T B E ) 0 : B u f f e r f u l l 1 : B u f f e r e m p t y
R e c e i v e b u f f e r f u l l f l a g ( R B F ) 0 : B u f f e r e m p t y 1 : B u f f e r f u l l
T r a n s m i t s h i f t c o m p l e t i o n f l a g ( T S C ) 0 : T r a n s m i t s h i f t i n p r o g r e s s 1 : T r a n s m i t s h i f t c o m p l e t e d
O v e r r u n e r r o r f l a g ( O E ) 0 : N o e r r o r 1 : O v e r r u n e r r o r
P a r i t y e r r o r f l a g ( P E ) 0 : N o e r r o r 1 : P a r i t y e r r o r
F r a m i n g e r r o r f l a g ( F E ) 0 : N o e r r o r 1 : F r a m i n g e r r o r
S u m m i n g e r r o r f l a g ( S E ) 0 : ( O E ) U ( P E ) U ( F E ) = 0 1 : ( O E ) U ( P E ) U ( F E ) = 1
N o t u s e d ( r e t u r n s “ 1 ” w h e n r e a d )
b 0
S e r i a l I / O 1 c o n t r o l r e g i s t e r ( S I O C O N : a d d r e s s 0 0 1 A
1 6
)
B R G c o u n t s o u r c e s e l e c t i o n b i t ( C S S )
I N
)
0 : f ( X
I N
) / 4
1 : f ( X S e r i a l I / O 1 s y n c h r o n o u s c l o c k s e l e c t i o n b i t ( S C S )
0 : B R G o u t p u t d i v i d e d b y 4 w h e n c l o c k s y n c h r o n o u s s e r i a l I / O 1 i s s e l e c t e d , B R G o u t p u t d i v i d e d b y 1 6 w h e n U A R T i s s e l e c t e d . 1 : E x t e r n a l c l o c k i n p u t w h e n c l o c k s y n c h r o n o u s s e r i a l I / O 1 i s s e l e c t e d , e x t e r n a l c l o c k i n p u t d i v i d e d b y 1 6 w h e n U A R T i s s e l e c t e d .
R D Y 1
o u t p u t e n a b l e b i t ( S R D Y )
S
7
p i n o p e r a t e s a s o r d i n a r y I / O p i n
0 : P 2
7
p i n o p e r a t e s a s S
1 : P 2
R D Y 1
o u t p u t p i n
T r a n s m i t i n t e r r u p t s o u r c e s e l e c t i o n b i t ( T I C ) 0 : I n t e r r u p t w h e n t r a n s m i t b u f f e r h a s e m p t i e d 1 : I n t e r r u p t w h e n t r a n s m i t s h i f t o p e r a t i o n i s c o m p l e t e d
T r a n s m i t e n a b l e b i t ( T E ) 0 : T r a n s m i t d i s a b l e d 1 : T r a n s m i t e n a b l e d
R e c e i v e e n a b l e b i t ( R E ) 0 : R e c e i v e d i s a b l e d 1 : R e c e i v e e n a b l e d
S e r i a l I / O 1 m o d e s e l e c t i o n b i t ( S I O M ) 0 : C l o c k a s y n c h r o n o u s ( U A R T ) s e r i a l I / O 1 : C l o c k s y n c h r o n o u s s e r i a l I / O
S e r i a l I / O 1 e n a b l e b i t ( S I O E )
b 7
b 0
U A R T c o n t r o l r e g i s t e r
( U A R T C O N : a d d r e s s 0 0 1 B
1 6
)
C h a r a c t e r l e n g t h s e l e c t i o n b i t ( C H A S )
0 : S e r i a l I / O 1 d i s a b l e d
4
( p i n s P 2
t o P 27 o p e r a t e a s o r d i n a r y I / O p i n s )
1 : S e r i a l I / O 1 e n a b l e d
4
( p i n s P 2
t o P 27 o p e r a t e a s s e r i a l I / O 1 p i n s )
0 : 8 b i t s 1 : 7 b i t s
P a r i t y e n a b l e b i t ( P A R E ) 0 : P a r i t y c h e c k i n g d i s a b l e d 1 : P a r i t y c h e c k i n g e n a b l e d
P a r i t y s e l e c t i o n b i t ( P A R S ) 0 : E v e n p a r i t y 1 : O d d p a r i t y
S t o p b i t l e n g t h s e l e c t i o n b i t ( S T P S ) 0 : 1 s t o p b i t 1 : 2 s t o p b i t s
5
/ TXD P - c h a n n e l o u t p u t d i s a b l e b i t ( P O F F )
P 2 0 : C M O S o u t p u t ( i n o u t p u t m o d e ) 1 : N - c h a n n e l o p e n d r a i n o u t p u t ( i n o u t p u t m o d e )
N o t u s e d ( r e t u r n “ 1 ” w h e n r e a d )
Fig. 22 Structure of serial I/O1 control registers
25

SERIAL I/O2

The serial I/O2 can be operated only as the clock synchronous type. As a synchronous clock for serial transfer, either internal clock or external clock can be selected by the serial I/O2 synchronous clock selection bit (b6) of serial I/O2 control register 1. The internal clock incorporates a dedicated divider and permits se­lecting 6 types of clock by the internal synchronous clock selection bits (b2, b1, b0) of serial I/O2 control register 1. Regarding SOUT2 and SCLK2 being output pins, either CMOS output format or N-channel open-drain output format can be selected by the P01/SOUT2, P02/SCLK2 P-channel output disable bit (b7) of serial I/O2 control register 1. When the internal clock has been selected, a transfer starts by a write signal to the serial I/O2 register (address 001716). After comple­tion of data transfer, the level of the SOUT2 pin goes to high imped­ance automatically but bit 7 of the serial I/O2 control register 2 is not set to “1” automatically. When the external clock has been selected, the contents of the serial I/O2 register is continuously sifted while transfer clocks are input. Accordingly, control the clock externally. Note that the SOUT2 pin does not go to high impedance after completion of data transfer. To cause the SOUT2 pin to go to high impedance in the case where the external clock is selected, set bit 7 of the serial I/O2 control reg­ister 2 to “1” when SCLK2 is “H” after completion of data transfer. After the next data transfer is started (the transfer clock falls), bit 7 of the serial I/O2 control register 2 is set to “0” and the SOUT2 pin is put into the active state. Regardless of the internal clock to external clock, the interrupt re­quest bit is set after the number of bits (1 to 8 bits) selected by the optional transfer bit is transferred. In case of a fractional number of bits less than 8 bits as the last data, the received data to be stored in the serial I/O2 register becomes a fractional number of bits close to MSB if the transfer direction selection bit of serial I/O2 control regis­ter 1 is LSB first, or a fractional number of bits close to LSB if the said bit is MSB first. For the remaining bits, the previously received data is shifted. At transmit operation using the clock synchronous serial I/O, the SCMP2 signal can be output by comparing the state of the transmit pin SOUT2 with the state of the receive pin SIN2 in synchronization with a rise of the transfer clock. If the output level of the SOUT2 pin is equal to the input level to the SIN2 pin, “L” is output from the SCMP2 pin. If not, “H” is output. At this time, an INT2 interrupt request can also be gener­ated. Select a valid edge by bit 2 of the interrupt edge selection reg­ister (address 003A16).
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b 7
b 7 b 0
Fig. 23 Structure of Serial I/O2 control registers 1, 2
b 0
S e r i a l I / O 2 c o n t r o l r e g i s t e r 1 ( S I O 2 C O N 1 : a d d r e s s 0 0 1 5
I n t e r n a l s y n c h r o n o u s c l o c k s e l e c t i o n b i t s
b 2 b 1 b 0
0 0 0 : f ( X 0 0 1 : f ( X 0 1 0 : f ( X 0 1 1 : f ( X 1 1 0 : f ( X 1 1 1 : f ( X
S e r i a l I / O 2 p o r t s e l e c t i o n b i t 0 : I / O p o r t 1 : S
S 0 : P 0 1 : P 0
T r a n s f e r d i r e c t i o n s e l e c t i o n b i t 0 : L S B f i r s t 1 : M S B f i r s t
S e r i a l I / O 2 s y n c h r o n o u s c l o c k s e l e c t i o n b i t 0 : E x t e r n a l c l o c k 1 : I n t e r n a l c l o c k
P 0 0 : C M O S o u t p u t ( i n o u t p u t m o d e ) 1 : N - c h a n n e l o p e n - d r a i n o u t p u t ( i n o u t p u t m o d e )
S e r i a l I / O 2 c o n t r o l r e g i s t e r 2 ( S I O 2 C O N 2 : a d d r e s s 0 0 1 6
p - p O p t i o n a l t r a n s f e r b i t s
b 2 b 1 b 0
0 0 0 : 1 b i t 0 0 1 : 2 b i t 0 1 0 : 3 b i t 0 1 1 : 4 b i t 1 0 0 : 5 b i t 1 0 1 : 6 b i t 1 1 0 : 7 b i t 1 1 1 : 8 b i t
N o t u s e d ( r e t u r n s " 0 " w h e n r e a d )
S e r i a l I / O 2 I / O c o m p a r i s o n s i g n a l c o n t r o l b i t 0 : P 43 I / O 1 : S
S 0 : O u t p u t a c t i v e
I N
) / 8 ( f ( X
I N
) / 1 6 ( f ( X
I N
) / 3 2 ( f ( X
I N
) / 6 4 ( f ( X
I N
) / 1 2 8 f ( X
I N
) / 2 5 6 ( f ( X
O U T 2
, S
C L K 2
R D Y 2
o u t p u t e n a b l e b i t
3
p i n i s n o r m al I / O p i n
3
p i n i s S
1
/ S
O U T 2 ,
P 02/ S
C M P 2
o u t p u t
O U T 2
p i n c o n t r o l b i t ( P 01)
R D Y 2
1 6
)
C I N
) / 8 i n l o w - s p e e d m o d e )
C I N
) / 1 6 i n l o w - s p e e d m o d e )
C I N
) / 3 2 i n l o w - s p e e d m o d e )
C I N
) / 6 4 i n l o w - s p e e d m o d e )
C I N
) / 1 2 8 i n l o w - s p e e d m o d e )
C I N
) / 2 5 6 i n l o w - s p e e d m o d e )
o u t p u t p i n
o u t p u t p i n
C L K 2
P - c h a n n e l o u t p u t d i s a b l e b i t
1 6
)
[Serial I/O2 Control Registers 1, 2 (SIO2CON1 / SIO2CON2)] 0015
The serial I/O2 control registers 1 and 2 are containing various se­lection bits for serial I/O2 control as shown in Figure 23.
26
16, 001616
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D Y
P 03/ SR
L K
P 02/ SC
U T
P 01/ SO
N
P 00/ SI
M P
I N P 43/ SC
I
XC
N
M a i n c l o c k d i v i s i o n r a t i o s e l e c t i o n b i t s ( N o t e )
XI
N
2
2
S e r i a l I / O 2 p o r t s e l e c t i o n b i t
2
S e r i a l I / O 2 p o r t s e l e c t i o n b i t
2
2/
T2
S e r i a l I / O 2 I / O c o m p a r i s o n s i g n a l c o n t r o l b i t
o u t p u t e n a b l e b i S
R D Y 2
l a t c
3
P 0
“0 ”
“1 ”
P 02 l a t c h
“0 ”
“1 ”
l a t c
1
P 0
“0 ”
“1 ”
“0 ”
“1 0 ”
“0 0 ” “ 0 1 ”
h
D Y
SR
h
P 43 l a t c h
“1 ”
S e r i a l I / O 2 s y n c h r o n o u s c l o c k s e l e c t i o n b i t
2
S y n c h r o n o u s c i r c u i t
t
2
L K
SC
E x t e r n a l c l o c k
Q
D
1 / 8 1 / 1 6 1 / 3 2
r
1 / 6 4
D
i v i d e
1 / 1 2 8 1 / 2 5 6
“1 ”
“0 ”
O p t i o n a l t r a n s f e r b i t s ( 3 )
S e r i a l I / O c o u n t e r 2 ( 3 )
S e r i a l I / O 2 r e g i s t e r ( 8 )
I n t e r n a l s y n c h r o n o u s c l o c k s e l e c t i o n b i t
D a t a b u s
S e r i a l I / O 2 i n t e r r u p t r e q u e s t
N o t e : E i t h e r h i g h - s p e e d , m i d d l e - s p e e d o r l o w - s p e e d m o d e i s s e l e c t e d b y b i t s 6 a n d 7 o f C P U m o d e r e g i s t e r .
Fig. 24 Block diagram of Serial I/O2
T r a n s f e r c l o c k ( N o t e 1 )
W r i t e - i n s i g n a l t o
s e r i a l I / O 2 r e g i s t e r
S e r i a l I / O 2 o u t p u t S
S e r i a l I / O 2 i n p u t S
R e c e i v e e n a b l e s i g n a l S
N o t e s
1 : W h e n t h e i n t e r n a l c l o c k i s s e l e c t e d a s a t r a n s f e r c l o c k , t h e f ( X
O U T 2
I N 2
R D Y 2
b y s e t t i n g b i t s 0 t o 2 o f s e r i a l I / O 2 c o n t r o l r e g i s t e r 1 . 2 : W h e n t h e i n t e r n a l c l o c k i s s e l e c t e d a s a t r a n s f e r c l o c k , t h e S
Fig. 25 Timing chart of Serial I/O2
D
0
.
D
1
D
2
D
3
D
4
D
5
D
6
( N o t e 2 )
D
7
S e r i a l I / O 2 i n t e r r u p t r e q u e s t b i t s e t
I N
) c l o c k d i v i s i o n ( f ( X
O U T 2
p i n h a s h i g h i m p e d a n c e a f t e r t r a n s f e r c o m p l e t i o n .
C I N
) i n l o w - s p e e d m o d e ) c a n b e s e l e c t e d
27
SCMP2
SCLK2
SOUT2
SIN2
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 26 SCMP2 output operation
Judgement of I/O data comparison
28
MITSUBISHI MICROCOMPUTERS
4
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PULSE WIDTH MODULATION (PWM)

The 3850 group (spec. H) has a PWM function with an 8-bit resolution, based on a signal that is the clock input XIN or that clock input divided by 2.

Data Setting

The PWM output pin also functions as port P44. Set the PWM period by the PWM prescaler, and set the “H” term of output pulse by the PWM register. If the value in the PWM prescaler is n and the value in the PWM register is m (where n = 0 to 255 and m = 0 to 255) : PWM period = 255 (n+1) / f(XIN)
= 31.875 (n+1) µs (when f(XIN) = 8 MHz,count source selection bit = “0”)
Output pulse “H” term = PWM period m / 255
= 0.125 (n+1) m µs
(when f(XIN) = 8 MHz,count source selection bit = “0”)

PWM Operation

When bit 0 (PWM enable bit) of the PWM control register is set to “1”, operation starts by initializing the PWM output circuit, and pulses are output starting at an “H”. If the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.
31.875 m (n+1)
PWM output
T = [31.875 (n+1)] µs
m: Contents of PWM register n : Contents of PWM prescaler T : PWM period (when f(X
selection bit = “0”)
Fig. 27 Timing of PWM period
255
IN
) = 8 MHz,count source
µs
Data bus
Count source selection bit
1/2
“0”
“1”
(X
CIN at low-speed mode)
X
IN
Fig. 28 Block diagram of PWM function
PWM
prescaler pre-latch
Transfer control circuit
PWM
prescaler latch
PWM prescaler
PWM
register pre-latch
PWM
register latch
PWM register
Port P4
Port P44 latch
PWM enable bit
29
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
Fig. 29 Structure of PWM control register
b0
PWM control register (PWMCON : address 001D
PWM function enable bit
0: PWM disabled 1: PWM enabled
Count source selection bit
IN) (f(XCIN) at low-speed mode)
0: f(X
IN)/2 (f(XCIN)/2 at low-speed mode)
1: f(X
Not used (return “0” when read)
ABC
PWM output
PWM register write signal
16)
T
T
(Changes “H” term from “A” to “B”.)
T2
C
B
=
T2
T
PWM prescaler write signal
(Changes PWM period from “T” to “T2”.)
When the contents of the PWM register or PWM prescaler have changed, the PWM output will change from the next period after the change.
Fig. 30 PWM output timing when PWM register or PWM prescaler is changed

Note

The PWM starts after the PWM function enable bit is set to enable and “L” level is output from the PWM pin. The length of this “L” level output is as follows:
n+1
2 • f(XIN)
n+1
f(XIN)
sec (Count source selection bit = 0, where n is the value set in the prescaler)
sec (Count source selection bit = 1, where n is the value set in the prescaler)
30
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
A-D CONVERTER [A-D Conversion Registers (ADL, ADH)]
16, 003616
0035
The A-D conversion registers are read-only registers that store the result of an A-D conversion. Do not read these registers during an A-D conversion.
[AD Control Register (ADCON)] 003416
The AD control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 4 indicates the completion of an A-D conversion. The value of this bit remains at “0” during an A-D conversion and changes to “1” when an A-D conversion ends. Writing “0” to this bit starts the A-D conversion.

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVSS and VREF into 1024 and outputs the divided voltages.

Channel Selector

The channel selector selects one of ports P30/AN0 to P34/AN4 and inputs the voltage to the comparator.

Comparator and Control Circuit

The comparator and control circuit compare an analog input volt­age with the comparison voltage, and the result is stored in the A-D conversion registers. When an A-D conversion is completed, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to “1”. Note that because the comparator consists of a capacitor cou­pling, set f(XIN) to 500 kHz or more during an A-D conversion. When the A-D converter is operated at low-speed mode, f(XIN) and f(XCIN) do not have the lower limit of frequency, because of the A-D converter has a built-in self-oscillation circuit.
b7
b0
AD control register (ADCON : address 0034
Analog input pin selection bits
b2 b1 b0
0 0 0: P3 0 0 1: P31/AN 0 1 0: P32/AN 0 1 1: P33/AN
1 0 0: P34/AN Not used (returns “0” when read) A-D conversion completion bit
0: Conversion in progress 1: Conversion completed
Not used (returns “0” when read)
0
/AN
Fig. 31 Structure of AD control register
10-bit reading
(Read address 003616 before 003516)
b7 b0
(Address 003616)
b7
(Address 0035
Note : The high-order 6 bits of address 003616 become “0”
at reading.
16
)
b7 b6 b5 b4 b3 b2 b1 b0
8-bit reading (Read only address 0035
b7
(Address 0035
Fig. 32 Structure of A-D conversion registers
16
)
b9 b8 b7 b6 b5 b4 b3 b2
16
)
0 1 2 3 4
b8
b9
b0
16
)
b0
AD control register
(Address 0034
P30/AN P31/AN P32/AN P33/AN P34/AN
16
0 1 2 3 4
Fig. 33 Block diagram of A-D converter
b7 b0
)
3
Comparator
Channel selector
Data bus
A-D control circuit
A-D conversion high-order register
A-D conversion low-order register
10
Resistor ladder
V
REF
AV
SS
A-D interrupt request
(Address 0036 (Address 0035
16
)
16
)
31
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, be­cause of a software run-away). The watchdog timer consists of an 8-bit watchdog timer L and an 8-bit watchdog timer H.

Standard Operation of Watchdog Timer

When any data is not written into the watchdog timer control reg­ister (address 003916) after reset, the watchdog timer is in the stop state. The watchdog timer starts to count down by writing an optional value into the watchdog timer control register (address
003916) and an internal reset occurs at an underflow of the watch­dog timer H. Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003916) may be started before an underflow. When the watchdog timer control reg­ister (address 003916) is read, the values of the high-order 6 bits of the watchdog timer H, STP instruction disable bit, and watch­dog timer H count source selection bit are read.

Initial value of watchdog timer

At reset or writing to the watchdog timer control register (address
003916), each watchdog timer H and L is set to “FF16.”

Watchdog timer H count source selection bit operation

Bit 7 of the watchdog timer control register (address 003916) per­mits selecting a watchdog timer H count source. When this bit is set to “0”, the count source becomes the underflow signal of watchdog timer L. The detection time is set to 131.072 ms at f(XIN) = 8 MHz frequency and 32.768 s at f(XCIN) = 32 kHz frequency. When this bit is set to “1”, the count source becomes the signal divided by 16 for f(XIN) (or f(XCIN)). The detection time in this case is set to 512 µs at f(XIN) = 8 MHz frequency and 128 ms at f(XCIN) = 32 kHz frequency. This bit is cleared to “0” after reset.

Operation of STP instruction disable bit

Bit 6 of the watchdog timer control register (address 003916) per­mits disabling the STP instruction when the watchdog timer is in operation. When this bit is “0”, the STP instruction is enabled. When this bit is “1”, the STP instruction is disabled, once the STP instruction is executed, an internal reset occurs. When this bit is set to “1”, it cannot be rewritten to “0” by program. This bit is cleared to “0” after reset.
“FF
X
CIN
Main clock division ratio selection bits
(Note)
X
IN
STP instruction disable bit
RESET
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
watchdog timer control register is written to.
“10”
“00” “01”
STP instruction
1/16
Fig. 34 Block diagram of Watchdog timer
b7
16
” is set when
Watchdog timer L (8)
b0
“0”
“1”
Watchdog timer H count source selection bit
Watchdog timer control register (WDTCON : address 0039
Watchdog timer H (for read-out of high-order 6 bit) STP instruction disable bit
0: STP instruction enabled 1: STP instruction disabled
Watchdog timer H (8)
Reset circuit
16)
Data bus
“FF watchdog timer control register is written to.
Internal reset
16
” is set when
Fig. 35 Structure of Watchdog timer control register
32
Watchdog timer H count source selection bit 0: Watchdog timer L underflow
IN)/16 or f(XCIN)/16
1: f(X

RESET CIRCUIT

To reset the microcomputer, RESET pin must be held at an "L" level for 2 µs or more. Then the RESET pin is returned to an "H" level (the power source voltage must be between 2.7 V and 5.5 V, and the oscillation must be stable), reset is released. After the re­set is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.54 V for VCC of 2.7 V.
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Poweron
(Note)
0.2V
CC
VCCRESET
Power source voltage
0V
Reset input voltage
0V
Note : Reset release voltage ; Vcc=2.7 V
X
φ
RESET
RESET
RESET
VCC
Power source voltage detection circuit
Fig. 36 Reset circuit example
IN
OUT
Address
Data
SYNC
Fig. 37 Reset sequence
?
XIN: 8 to 13 clock cycles
AD
?
?
Notes
??
??
1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 2 f(φ). 2: The question marks (?) indicate an undefined state that depends on the previous state. 3: All signals except X
?
FFFC FFFD
?
?
IN
and RESET are internals.
AD
L
H,L
Reset address from the vector table.
ADH
33
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1)
Port P0 (P0)
(2)
Port P0 direction register (P0D)
(3)
Port P1 (P1)
(4)
Port P1 direction register (P1D)
(5)
Port P2 (P2)
(6)
Port P2 direction register (P2D)
(7)
Port P3 (P3)
(8)
Port P3 direction register (P3D)
(9)
Port P4 (P4)
(10)
Port P4 direction register (P4D)
(11)
Serial I/O2 control register 1 (SIO2CON1)
(12)
Serial I/O2 control register 2 (SIO2CON2)
(13)
Serial I/O2 register (SIO2)
(14)
Transmit/Receive buffer register (TB/RB)
(15)
Serial I/O1 status register (SIOSTS)
(16)
Serial I/O1 control register (SIOCON)
(17)
UART control register (UARTCON)
(18)
Baud rate generator (BRG)
(19)
PWM control register (PWMCON)
(20)
PWM prescaler (PREPWM)
(21)
PWM register (PWM)
(22)
Prescaler 12 (PRE12)
(23)
Timer 1 (T1)
(24)
Timer 2 (T2)
(25)
Timer XY mode register (TM)
(26)
Prescaler X (PREX)
(27)
Timer X (TX)
(28)
Prescaler Y (PREY)
(29)
Timer Y (TY)
(30)
Timer count source selection register (TCSS)
(31)
A-D control register (ADCON)
(32)
A-D conversion low-order register (ADL)
(33)
A-D conversion high-order register (ADH)
Address
0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0015 0016 0017 0018
0019 001A 001B 001C 001D 001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0034
0035
0036
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
Register contents
00
16
00
16
00
16
00
16
00
16
00
16
00
16
00
16
00
16
00
16
00
16
00000111 XXXXXXXX XXXXXXXX 10000000
00
16
11100000 XXXXXXXX
00
16
XXXXXXXX XXXXXXXX
16
FF 01
16
00
16
00
16
FF
16
FF
16
FF
16
FF
16
00
16
00010000
XXXXXXXX
000000
XX
MISRG
(34)
Watchdog timer control register (WDTCON)
(35)
Interrupt edge selection register (INTEDGE)
(36)
CPU mode register (CPUM)
(37)
Interrupt request register 1 (IREQ1)
(38)
Interrupt request register 2 (IREQ2)
(39)
Interrupt control register 1 (ICON1)
(40)
Interrupt control register 2 (ICON2)
(41)
Processor status register
(42)
Program counter
(43)
Address
0038
16
0039
16
003A
16
003B
16
003C 003D 003E
16
003F
16
(PS)
H
)
(PC (PC
L
)
16
16
Register contents
00
16
00111111
00
16
01001000
00
16
00
16
00
16
00
16
XXXXX1XX
FFFD16 contents
FFFC
16 contents
Note : X : Not fixed
Since the initial values for other than above mentioned registers and RAM contents are indefinite at reset, they must be set.
Fig. 38 Internal status at reset
34
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The 3850 group (spec. H) has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator be­tween XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer’s recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT. Immediately after power on, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports.
Frequency Control (1) Middle-speed mode
The internal clock φ is the frequency of XIN divided by 8. After re­set, this mode is selected.

(2) High-speed mode

The internal clock φ is half the frequency of XIN.

(3) Low-speed mode

The internal clock φ is half the frequency of XCIN.

Note

If you switch the mode between middle/high-speed and low­speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately af­ter power on and at returning from the stop mode. When switching the mode between middle/high-speed and low-speed, set the fre­quency on condition that f(XIN) > 3•f(XCIN).

(4) Low power dissipation mode

The low power consumption operation can be realized by stopping the main clock XIN in low-speed mode. To stop the main clock, set bit 5 of the CPU mode register to “1.” When the main clock XIN is restarted (by setting the main clock stop bit to “0”), set sufficient time for oscillation to stabilize. The sub-clock XCIN-XCOUT oscillating circuit can not directly input clocks that are generated externally. Accordingly, make sure to cause an external resonator to oscillate.
Oscillation Control (1) Stop mode
If the STP instruction is executed, the internal clock φ stops at an “H” level, and XIN and XCIN oscillation stops. When the oscillation stabilizing time set after STP instruction released bit is “0,” the prescaler 12 is set to “FF16” and timer 1 is set to “0116.” When the oscillation stabilizing time set after STP instruction released bit is “1,” set the sufficient time for oscillation of used oscillator to stabi­lize since nothing is set to the prescaler 12 and timer 1. Either XIN or XCIN divided by 16 is input to the prescaler 12 as count source. Oscillator restarts when an external interrupt is re­ceived, but the internal clock φ is not supplied to the CPU (remains at “H”) until timer 1 underflows. The internal clock φ is supplied for the first time, when timer 1 underflows. This ensures time for the clock oscillation using the ceramic resonators to be stabilized. When the oscillator is restarted by reset, apply “L” level to the RESET pin until the oscillation is stable since a wait time will not be generated.

(2) Wait mode

If the WIT instruction is executed, the internal clock φ stops at an “H” level, but the oscillator does not stop. The internal clock φ re­starts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.
To ensure that the interrupts will be received to release the STP or WIT state, their interrupt enable bits must be set to “1” before ex­ecuting of the STP or WIT instruction. When releasing the STP state, the prescaler 12 and timer 1 will start counting the clock XIN divided by 16. Accordingly, set the timer 1 interrupt enable bit to “0” before executing the STP instruc­tion.

Note

When using the oscillation stabilizing time set after STP instruction released bit set to “1”, evaluate time to stabilize oscillation of the used oscillator and set the value to the timer 1 and prescaler 12.
X
CIN
X
COUT XIN XOUT
Rf
Rd
C
OUT
C
C
COUT
C
CIN
Fig. 39 Ceramic resonator circuit
X
CIN
X
COUT XIN XOUT
Rf
Rd
C
COUT
C
CIN
Fig. 40 External clock input circuit
IN
Open
External oscillation circuit
Vcc Vss
35
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[MISRG (MISRG)] 003816
MISRG consists of three control bits (bits 1 to 3) for middle-speed mode automatic switch and one control bit (bit 0) for oscillation stabilizing time set after STP instruction released. By setting the middle-speed mode automatic switch start bit to “1” while operating in the low-speed mode and setting the middle­speed mode automatic switch set bit to “1”, XIN oscillation automatically starts and the mode is automatically switched to the middle-speed mode.
X
“1”
COUT
“0”
Port X
C
switch bit
X
CIN
b7
Note:When the mode is automatically switched from the low-speed mode to
the middle-speed mode, the value of CPU mode register (address 003B16) changes.
b0
MISRG (MISRG : address 0038
Oscillation stabilizing time set after STP instruction released bit 0: Automatically set “01
16
” to Prescaler 12
“FF
1: Automatically set nothing
Middle-speed mode automatic switch set bit 0: Not set automatically 1: Automatic switching enable
Middle-speed mode automatic switch wait time set bit 0: 4.5 to 5.5 machine cycles 1: 6.5 to 7.5 machine cycles
Middle-speed mode automatic switch start bit (Depending on program) 0: Invalid 1: Automatic switch start
Not used (return “0” when read)
16
)
16
” to Timer 1,
Fig. 41 Structure of MISRG
X
IN
SRQ
Interrupt disable flag l
Interrupt request
X
Reset
OUT
Main clock division ratio selection bits (Note 1)
Low-speed mode
High-speed or middle-speed mode
Main clock stop bit
STP instruction
1/2 1/4
High-speed or
low-speed mode
WIT instruction
1/2
Main clock division ratio selection bits (Note 1)
Middle-speed mode
SRQ
Prescaler 12 Timer 1
FF
16
Timing f (internal clock)
SRQ
STP instruction
01
16
Reset or STP instruction
(Note 2)
Notes 1: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
When low-speed mode is selected, set port Xc switch bit (b1) to “1”.
2: When bit 0 of MISRG = “0”
Fig. 42 System clock generating circuit block diagram (Single-chip mode)
36
R e s e t
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
M i d d l e - s p e e d m o d e
( f (
φ
) = 1 M H z )
0 ( 3 2 k H z s t o p p e d
0 ( 8 M H z o s c i l l a t i n g C M7
=
0
6 =
1
C M C M5
=
4 =
C M
4
←→
M C
1 ”
0
M i d d l e - s p e e d m o d e
( f (
φ
) = 1 M H z )
1 ( 3 2 k H z o s c i l l a t i n g
0 ( 8 M H z o s c i l l a t i n g
7 =
0
C M C M6
=
1
C M5
=
4 =
C M
H i g h - s p e e d m o d e
( f (
φ
C M
6
“ 1 ” ←→ “ 0 ”
)
)
0 ”
1
1 ”
0
M
6
←→
0 ”
1
1 ”
0
C
M
←→
C
7
M
6
←→
C
←→
M
4
4
1 ”
0
1 ”
0
M
C
)
)
←→
M
C
6
←→
C M
6
“ 1 ” ←→ “ 0 ”
C
0 ( 3 2 k H z s t o p p e d
0 ( 8 M H z o s c i l l a t i n g C M
7 = 6 =
C M C M5
=
4 =
C M
4
M
C
1 ”
0
H i g h - s p e e d m o d e
( f (
0 ( 8 M H z o s c i l l a t i n g
1 ( 3 2 k H z o s c i l l a t i n g C M
7 =
0
6 =
0
C M C M5
=
C M4
=
7
M C
1 ”
0
L o w - s p e e d m o d e
1 ( 3 2 k H z o s c i l l a t i n g
0 ( 8 M H z o s c i l l a t i n g
7 =
C M
6 =
C M C M5
=
4 =
C M
) = 4 M H z )
0 0
←→
φ
) = 4 M H z )
←→
( f (
φ
) = 1 6 k H z )
1 0
)
)
)
)
)
)
b 7b 4
C P U m o d e r e g i s t e r ( C P U M : a d d r e s s 0 0 3 B
1 6
)
N o t e s
1 : S w i t c h t h e m o d e b y t h e a l l o w s s h o w n b e t w e e n t h e m o d e b l o c k s . ( D o n o t s w i t c h b e t w e e n t h e m o d e s d i r e c t l y w i t h o u t a n a l l o w . ) 2 : T h e a l l m o d e s c a n b e s w i t c h e d t o t h e s t o p m o d e o r t h e w a i t m o d e a n d r e t u r n t o t h e s o u r c e m o d e w h e n t h e s t o p m o d e o r t h e w a i t m o d e i s
e n d e d .
3 : T i m e r o p e r a t e s i n t h e w a i t m o d e . 4 : W h e n b i t 0 o f M I S R G i s “ 0 ” a n d t h e s t o p m o d e i s e n d e d , a d e l a y o f a p p r o x i m a t e l y 1 m s o c c u r s b y c o n n e c t i n g t i m e r 1 i n m i d d l e / h i g h - s p e e d
m o d e .
5 : W h e n b i t 0 o f M I S R G i s “ 0 ” a n d t h e s t o p m o d e i s e n d e d , t h e f o l l o w i n g i s p e r f o r m e d .
( 1 ) A f t e r t h e c l o c k i s r e s t a r t e d , a d e l a y o f a p p r o x i m a t e l y 2 5 6 m s o c c u r s i n l o w - s p e e d m o d e i f T i m e r 1 2 c o u n t s o u r c e s e l e c t i o n b i t i s “ 0 ” . ( 2 ) A f t e r t h e c l o c k i s r e s t a r t e d , a d e l a y o f a p p r o x i m a t e l y 1 6 m s o c c u r s i n l o w - s p e e d m o d e i f T i m e r 1 2 c o u n t s o u r c e s e l e c t i o n b i t i s “ 1 ” .
6 : W a i t u n t i l o s c i l l a t i o n s t a b i l i z e s a f t e r o s c i l l a t i n g t h e m a i n c l o c k X
m o d e .
7 : T h e e x a m p l e a s s u m e s t h a t 8 M H z i s b e i n g a p p l i e d t o t h e X
Fig. 43 State transitions of system clock
1 ( 3 2 k H z o s c i l l a t i n g
1 ( 8 M H z s t o p p e d C M
C M6 C M5 C M
1 ”
0
7 =
1
=
0
=
4 =
5
←→
M C
L o w - s p e e d m o d e
( f (
φ
) = 1 6 k H z )
)
)
I N
b e f o r e t h e s w i t c h i n g f r o m t h e l o w - s p e e d m o d e t o m i d d l e / h i g h - s p e e d
I N
p i n a n d 3 2 k H z t o t h e X
C M
4
: P o r t X c s w i t c h b i t 0 : I / O p o r t f u n c t i o n ( s t o p o s c i l l a t i n g ) 1 : X C M 0 : O p e r a t i n g 1 : S t o p p e d C M b 7 b 6 0 0 : 0 1 : 1 0 : 1 1 : N o t a v a i l a b l e
C I N
p i n . f i n d i c a t e s t h e i n t e r n a l c l o c k .
C I N
- X
C O U T
5
: M a i n c l o c k ( X
7
, C M6: M a i n c l o c k d i v i s i o n r a t i o s e l e c t i o n b i t
o s c i l l a t i n g f u n c t i o n
I N
- X
O U T
φ
= f ( X
I N
) / 2 ( H i g h - s p e e d m o d e )
φ
= f ( X
I N
) / 8 ( M i d d l e - s p e e d m o d e )
φ
= f ( X
C I N
) / 2 ( L o w - s p e e d m o d e )
) s t o p b i t
37
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING Processor Status Register
The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1.” Af­ter a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immedi­ately after they have been written. After writing to an interrupt request register, execute at least one instruction before perform­ing a BBC or BBS instruction.

Decimal Calculations

• To calculate in decimal notation, set the decimal mode flag (D) to “1”, then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction be­fore executing a SEC, CLC, or CLD instruction.
• In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the fre­quency division ratio is 1/(n+1).

Multiplication and Division Instructions

• The index X mode (T) and the decimal mode (D) flags do not af­fect the MUL and DIV instruction.
• The execution of these instructions does not change the con­tents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction regis­ter as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.
Use instructions such as LDM and STA, etc., to set the port direc­tion registers.

A-D Converter

The comparator uses capacitive coupling amplifier whose charge will be lost if the clock frequency is too low. Therefore, make sure that f(XIN) in the middle/high-speed mode is at least on 500 kHz during an A-D conversion. Do not execute the STP or WIT instruction during an A-D conver­sion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the fre­quency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the XIN frequency in high-speed mode.
NOTES ON USAGE Differences between 3850 group (standard) and 3850 group (spec. H)
(1) The absolute maximum ratings of 3850 group (spec. H) is
smaller than that of 3850 group (standard).
•Power source voltage Vcc = –0.3 to 6.5 V
•CNVss input voltage VI = –0.3 to Vcc +0.3 V
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may
be some differences between 3850 group (standard) and 3850 group (spec. H).
(3) Do not write any data to the reserved area and the reserved
bit. (Do not change the contents after rest.) (4) Fix bit 3 of the CPU mode register to “1”. (5) Be sure to perform the termination of unused pins.

Handling of Source Pins

In order to avoid a latch-up occurrence, connect a capacitor suit­able for high frequencies as bypass capacitor between power source pin (VCC pin) and GND pin (VSS pin) and between power source pin (VCC pin) and analog power source input pin (AVSS pin). Besides, connect the capacitor to as close as possible. For bypass capacitor which should not be located too far from the pins to be connected, a ceramic capacitor of 0.01 µF–0.1µF is recom­mended.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an ex­ternal clock and it is to output the SRDY1 signal, set the transmit enable bit, the receive enable bit, and the SRDY1 output enable bit to “1.” Serial I/O1 continues to output the final bit from the TXD pin after transmission is completed. SOUT2 pin for serial I/O2 goes to high impedance after transmis­sion is completed. When an external clock is used as synchronous clock in serial I/ O1 or serial I/O2, write transmission data to the transmit buffer register or serial I/O2 register while the transfer clock is “H.”
38
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS
Table 7 Absolute maximum ratings
Symbol Parameter Conditions Ratings VCC VI
VI VI VI
VO
VO Pd Topr Tstg
Note : The rating becomes 300mW at the 42P2R-A/E package.
Power source voltage Input voltage P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44,
VREF Input voltage P22, P23 Input voltage RESET, XIN Input voltage CNVSS Output voltage P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44,
XOUT Output voltage P22, P23 Power dissipation Operating temperature Storage temperature
All voltages are based on VSS. Output transistors are cut off.
Ta = 25 °C
–0.3 to 6.5
–0.3 to VCC +0.3
–0.3 to 5.8
–0.3 to VCC +0.3
–0.3 to VCC +0.3
–0.3 to VCC +0.3
–0.3 to 5.8
1000 (Note)
–20 to 85
–40 to 125
Unit
V
V V
V V
V
V
mW
°C °C
Table 8 Recommended operating conditions (1) (VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
4.0
2.7
2.0
0 0 0
Limits
Typ. Max.
5.0
5.0 0
0
5.5
5.5
VCC
VCC VCC VCC
0.2VCC
0.2VCC
0.16VCC –80
–80 80
120
80 –40 –40 40 60 40
Unit
V V
V V V V V V V V
mA mA mA mA mA mA mA mA mA mA
Symbol Parameter
VCC VSS
VREF AVSS VIA VIH VIH VIL VIL VIL
ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg) ΣIOL(avg)
Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured
Power source voltage Power source voltage
A-D convert reference voltage Analog power source voltage Analog input voltage AN0–AN4 “H” input voltage P00–P07, P10–P17, P20–P27, P30–P34, P40–P44 “H” input voltage RESET, XIN, CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P34, P40–P44 “L” input voltage RESET, CNVSS “L” input voltage XIN
“H” total peak output current P00–P07, P10–P17, P30–P34 (Note) “H” total peak output current P20, P21, P24–P27, P40–P44 (Note) “L” total peak output current (Note) P00–P07, P30–P34 “L” total peak output current (Note) P10–P17 “L” total peak output current P20–P27,P40–P44 (Note) “H” total average output current P00–P07, P10–P17, P30–P34 (Note) “H” total average output current P20, P21, P24–P27, P40–P44 (Note) “L” total average output current (Note) P00–P07, P30–P34 “L” total average output current (Note) P10–P17 “L” total average output current P20–P27,P40–P44 (Note)
over 100 ms. The total peak current is the peak value of all the currents.
8 MHz (high-speed mode) 8 MHz (middle-speed mode), 4 MHz (high-speed mode)
Min.
AVSS
0.8VCC
0.8VCC
39
Table 9 Recommended operating conditions (2) (VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Parameter
IOH(peak)
IOL(peak) IOL(peak)
IOH(avg) IOL(avg)
IOL(avg) f(XIN) f(XIN)
Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current I 3: When the oscillation frequency has a duty cycle of 50%.
“H” peak output current P00–P07, P10–P17, P20, P21, P24–P27, P30–P3 4,
“L” peak output current (Note 1) P00–P07, P20–P27, P30–P34, P40–P44 “L” peak output current (Note 1) P10–P17 “H” average output current P00–P07, P10–P17, P20, P21, P24–P27, P30–P34,
“L” average output current “L” average output current Internal clock oscillation frequency (VCC = 4.0 to 5.5V) (Note 3) Internal clock oscillation frequency (VCC = 2.7 to 5.5V) (Note 3)
(Note 2) (Note 2)
OL(avg), IOH(avg) are average value measured over 100 ms.
P40–P44 (Note 1)
P40–P44 (Note 2) P00–P07, P20–P27, P30–P34, P40–P44 P10–P17
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Min.
Limits
Typ. Max.
–10
10 20
–5
15
Unit
mA mA
mA mA
5
mA mA
8
MHz
4
MHz
40
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 10 Electrical characteristics (1) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Typ.
0.4
0.5
0.5
4
–4
VOH
VOL
Symbol
“H” output voltage
P00–P07, P10–P17, P20, P21, P24–P27, P30–P34, P40–P44
(Note)
“L” output voltage
P00–P07, P20–P27,P30–P34, P40–P44
Parameter
Test conditions
IOH = –10 mA VCC = 4.0–5.5 V IOH = –1.0 mA VCC = 2.7–5.5 V IOL = 10 mA VCC = 4.0–5.5 V IOL = 1.0 mA
Min.
VCC–2.0
VCC–1.0
VCC = 2.7–5.5 V
VOL
“L” output voltage
P10–P17
IOL = 20 mA VCC = 4.0–5.5 V IOL = 10 mA VCC = 2.7–5.5 V
VT+–VT–
Hysteresis
CNTR0, CNTR1, INT0–INT3
VT+–VT–
VT+–VT– IIH
Hysteresis
RxD, S
CLK
Hysteresis “H” input current
____________
RESET
VI = VCC
P00–P07, P10–P17, P20, P21,
IIH IIH IIL
P24–P27, P30–P34, P40–P44 “H” input current “H” input current XIN “L” input current
____________
RESET, CNVSS
VI = VCC VI = VCC
VI = VSS P00–P07, P10–P17, P20–P27 P30–P34, P40–P44
IIL IIL VRAM
Note: P25 is measured when the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
“L” input current “L” input current XIN RAM hold voltage
____________
RESET,CNVSS
VI = VSS
VI = VSS
When clock stopped
2.0
Max.
2.0
1.0
2.0
1.0
5.0
5.0
–5.0
–5.0
5.5
Unit
V
V
V
V
V
V
V
V
V
µA
µA µA µA
µA µA
V
41
Table 11 Electrical characteristics (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
ICC
Parameter
Power source current
Test conditions
High-speed mode f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors “off”
High-speed mode f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors “off”
Low-speed mode f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off”
Low-speed mode f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off”
Low-speed mode (VCC = 3 V) f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off”
Low-speed mode (VCC = 3 V) f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off”
Middle-speed mode f(XIN) = 8 MHz f(XCIN) = stopped Output transistors “off”
Middle-speed mode f(XIN) = 8 MHz (in WIT state) f(XCIN) = stopped Output transistors “off”
Increment when A-D conversion is executed f(XIN) = 8 MHz
All oscillation stopped (in STP state) Output transistors “off”
Ta = 25 °C Ta = 85 °C
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Min.
Limits
Typ.
6.8
1.6
60
20
20
5.0
4.0
1.5
800
0.1
Max.
13
200
40
55
10.0
7.0
1.0 10
Unit
mA
mA
µA
µA
µA
µA
mA
mA
µA
µA µA
42
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 12 A-D converter characteristics (VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 8 MHz, unless otherwise noted)
– –
tCONV
RLADDER IVREF
II(AD)
Parameter
Resolution Absolute accuracy (excluding quantization error) Conversion time
Ladder resistor Reference power source input current
A-D port input current
VREF “on” VREF “off”
Test conditionsSymbol
High-speed mode, Middle-speed mode
Low-speed mode
VREF = 5.0 V
Min.
50
Limits
Typ.
40 35
150
0.5
Max.
10 ±4 61
200
5.0
5.0
Unit
bit
LSB
2tc(XIN)
µs
k
µA
µA
43
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS

Table 13 Timing requirements (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Unit
tW(RESET) tC(XIN) tWH(XIN) tWL(XIN) tC(CNTR) tWH(CNTR) tWL(CNTR) tWH(INT) tWL(INT) tC(SCLK1) tWH(SCLK1) tWL(SCLK1) tsu(RxD-SCLK1) th(SCLK1-RxD) tC(SCLK2) tWH(SCLK2) tWL(SCLK2) tsu(SIN2-SCLK2) th(SCLK2-SIN2)
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).
Divide this value by four when f(X
Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input setup time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 clock input setup time Serial I/O2 clock input hold time
IN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).
Parameter
Min.
2
125
50 50
200
80 80 80
80 800 370 370 220 100
1000
400 400 200 200
Limits
Typ. Max.
µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Table 14 Timing requirements (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tW(RESET) tC(XIN) tWH(XIN) tWL(XIN) tC(CNTR) tWH(CNTR) tWL(CNTR) tWH(INT) tWL(INT) tC(SCLK1) tWH(SCLK1) tWL(SCLK1) tsu(RxD-SCLK1) th(SCLK1-RxD) tC(SCLK2) tWH(SCLK2) tWL(SCLK2) tsu(SIN2-SCLK2) th(SCLK2-SIN2)
Note : When f(XIN) = 4 MHz and bit 6 of address 001A16 is “1” (clock synchronous).
Divide this value by four when f(X
Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input setup time Serial I/O1 input hold time Serial I/O2 clock input cycle time Serial I/O2 clock input “H” pulse width Serial I/O2 clock input “L” pulse width Serial I/O2 clock input setup time Serial I/O2 clock input hold time
IN) = 4 MHz and bit 6 of address 001A16 is “0” (UART).
Parameter
Min.
2 250 100 100 500 230 230 230 230
2000
950 950 400 200
2000
950 950 400 300
Limits
Typ.
Max.
Unit
µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
44
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 15 Switching characteristics (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Unit
tWH (SCLK1) tWL (SCLK1) td (SCLK1-TXD) tv (SCLK1-TXD) tr (SCLK1) tf (SCLK1) tWH (SCLK2) tWL (SCLK2) td (SCLK2-SOUT2) tv (SCLK2-SOUT2) tf (SCLK2) tr (CMOS) tf (CMOS)
Notes 1: When the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P0 3: The X
Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time (Note 2) Serial I/O2 output valid time (Note 2) Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3)
1/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is “0”.
OUT pin is excluded.
Parameter
Test conditions
Fig.44
tC(SCLK1)/2–30 tC(SCLK1)/2–30
tC(SCLK2)/2–160 tC(SCLK2)/2–160
Min.
–30
0
Limits
Typ.
10 10
Max.
140
30 30
200
30 30 30
ns ns ns ns ns ns ns ns ns ns ns ns ns
Table 16 Switching characteristics (2) (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Unit
tWH (SCLK1) tWL (SCLK1) td (SCLK1-TXD) tv (SCLK1-TXD) tr (SCLK1) tf (SCLK1) tWH (SCLK2) tWL (SCLK2) td (SCLK2-SOUT2) tv (SCLK2-SOUT2) tf (SCLK2) tr (CMOS) tf (CMOS)
Notes 1: When the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P0 3: The X
Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time (Note 2) Serial I/O2 output valid time (Note 2) Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3)
1/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is “0”.
OUT pin is excluded.
Parameter
Test conditions
Fig.44
tC(SCLK1)/2–50 tC(SCLK1)/2–50
tC(SCLK2)/2–240 tC(SCLK2)/2–240
Min.
–30
0
Limits
Typ.
20 20
Max.
350
50 50
400
50 50 50
ns ns ns ns ns ns ns ns ns ns ns ns ns
45
Measurement output pin
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
100pF
CMOS output
Fig. 44 Circuit for measuring output switching characteristics
46
CNTR CNTR
0 1
INT0 to INT
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
t
C(CNTR)
t
WH(CNTR)
0.8V
CC
t
WH(INT)
0.8V
3
CC
t
W(RESET)
0.2V
0.2V
CC
CC
t
WL(CNTR)
t
WL(INT)
RESET
X
IN
S
CLK1
S
CLK2
RXD
S
IN2
t
f
0.8V
0.2V
t
d(S
CLK1-TX
t
d(S
CLK2-SOUT2
0.2V
t
WH(X
CC
t
WL(S
CC
D),
CC
CLK1
IN
)
), tWL(S
)
CLK2
t
su(RxD-S
t
su(S
IN2
0.8V
0.2V
t
C(XIN)
t
C(S
)
-
S
CLK1 CLK2
CC CC
CLK1
), tC(S
), )
0.8V
CC
t
WL(XIN)
0.2V
CC
CLK2
)
t
WH(S
CLK1
), tWH(S
CLK2
t
r
0.8V
CC
t
h(S
CLK1
-Rx
D),
t
h(S
CLK2
-
S
IN2
)
)
t
v(S
CLK1-TX
D),
t
v(S
CLK2-SOUT2
)
TXD
S
OUT2
Fig. 45 Timing diagram
47

PACKAGE OUTLINE

MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

42P4B

EIAJ Package Code
SDIP42-P-600-1.78
A
L
SEATING PLANE

42P2R-A/E

EIAJ Package Code
SSOP42-P-450-0.80
42
1
JEDEC Code
JEDEC Code
Weight(g)
e
Weight(g)
0.63
4.1
Plastic 42pin 600mil SDIP
Lead Material
Alloy 42/Cu Alloy
22
E
21
Symbol
D
2
A
1
A
A
1
A A
2
b
b
1
b
2
c D E
b
1
b
b
2
e
e
1
L
c
1
e
Dimension in Millimeters
Min Nom Max
5.5
0.51 – –3.8–
0.35 0.45 0.55
0.9 1.0 1.3
0.63 0.73 1.03
0.22 0.27 0.34
36.5 36.7 36.9
12.85 13.0 13.15 – 1.778 – – 15.24
3.0 – 0° –15°
Plastic 42pin 450mil SSOP
Lead Material
Alloy 42
e
b
2
42 22
2
1
e
E
E
H
F
1
G
e
D
y
21
A
A
2
A
1
b
1
L
L
c
z
Z
1
Detail G
Detail F
Recommended Mount Pad
Symbol
Dimension in Millimeters
Min Nom Max
A A A
H
L Z
1
.050
2
b
D
E
e
L
.250 .130
c
.317 .28
.6311
E
.30
1
z
– –
1
y
0° –10°
2
b e
–.50–
1
I
2
.271
0.75
I
– –
.02 .30 .150 .517 .48 .80 .9311 .50 .7651
.42 – –
.40
.20
.717
.68 –
.2312
.70 –
0.9
.4311
.150
– –
48
MITSUBISHI MICROCOMPUTERS
3850 Group (Spec. H)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

42S1B-A

EIAJ Package Code
WDIP42-C-600-1.78
AL
JEDEC Code
42 22
1
e
Weight(g)
D
bZ
b
1
SEATING PLANE
Metal seal 42pin 600mil DIP
c
E
21
Symbol
2
A
1
A
Dimension in Millimeters
Min Nom Max
A
1.0
A
1
A
2
b
1
b
c
D
E
e
e
1
3.05
L
Z
1.778
15.24
1
e
5.0
– ––
3.44
0.46
0.25
0.540.38
0.9 0.8 0.7
0.33 0.17
41.1
15.8 – –
–– –
3.05
49
HEAD OFFICE: 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
Keep safety first in your circuit designs!
• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
• Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
• The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 2000 MITSUBISHI ELECTRIC CORP. New publication, effective Mar. 2000. Specifications subject to change without notice.

REVISION DESCRIPTION LIST 3850 GROUP (SPEC. H) DATA SHEET

Rev. Rev.
No. date
1.0 First Edition 000309
1.1 Font errors are revised. 000322
Revision Description
(1/1)
Loading...