M2S56D20ATP / AKT is a 4-bank x 16777216-word x 4-bit,
M2S56D30ATP / AKT is a 4-bank x 8388608-word x 8-bit,
M2S56D40ATP/ AKT is a 4-bank x 4194304-word x 16-bit,
double data rate synchronous DRAM, with SSTL_2 interface. All control and address signals are
referenced to the rising edge of CLK.Input data is registered on both edges of data strobes, and output
data and data strobe are referenced on both edges of CLK. The M2S56D20/30/40ATP achieve very high
speed data rate up to 133MHz, and are suitable for main memory in computer systems.
FEATURES
- VDD=VDDQ=2.5V+0.2V
- Double data rate architecture; two data transfers per clock cycle
- Bidirectional, data strobe (DQS) is transmitted/received with data
- Differential clock inputs (CLK and /CLK)
- DLL aligns DQ and DQS transitions
- Commands are entered on each positive CLK edge
- Data and data mask are referenced to both edges of DQS
- 4-bank operations are controlled by BA0, BA1 (Bank Address)
- Both 66-pin TSOP Package and 64-pin Small TSOP Package
M2S56D*0ATP: 0.8mm lead pitch 66-pin TSOP Package
M2S56D*0AKT: 0.4mm lead pitch 64-pin Small TSOP Package
- JEDEC standard
- Low Power for the Self Refresh Current ICC6 : 2mA (-75AL , -75L , -10L)
Clock: CLK and /CLK are differential clock inputs. All address and control
input signals are sampled on the crossing of the positive edge of CLK and
MITSUBISHI LSIs
CLK, /CLKInput
CKEInput
/CSInputChip Select: When /CS is high, any command means No Operation.
/RAS, /CAS, /WEInputCombination of /RAS, /CAS, /WE defines basic commands.
A0-12Input
negative edge of /CLK. Output (read) data is referenced to the crossings of
CLK and /CLK (both directions of crossing).
Clock Enable: CKE controls internal clock. When CKE is low, internal clock
for the following cycle is ceased. CKE is also used to select auto / self
refresh.After self refresh mode is started, CKE becomes asynchronous
input. Self refresh is maintained as long as CKE is low.
A0-12 specify the Row / Column Address in conjunction with BA0,1. The
Row Address is specified by A0-12. The Column Address is specified by
A0-9,11(x4), A0-9(x8) and A0-8(x16). A10 is also used to indicate precharge
option. When A10 is high at a read / write command, an auto precharge is
performed. When A10 is high at a precharge command, all banks are
precharged.
BA0,1Input
DQ0-15(x16),
DQ0-7(x8),
DQ0-3(x4),
DQS
DM
VDD, VSSPower Supply Power Supply for the memory array and peripheral circuitry.
VDDQ, VSSQPower Supply VDDQ and VSSQ are supplied to the Output Buffers only.
VREFInputSSTL_2 reference voltage.
Input / Output
Input / Output
Input
Bank Address: BA0,1 specifies one of four banks to which a command is
applied. BA0,1 must be set with ACT, PRE, READ, WRITE commands.
Data Input/Output: Data bus
Data Strobe: Output pin during Read operation, input pin during Write
operation. Edge-aligned with read data, placed at the centered of write data
to capture the write data. For the x16, LDQS corresponds to the data on
DQ0-DQ7; UDQS correspond to the data on DQ8-DQ15.
Input Data Mask: DM is an input mask signal for write data. Input data
is masked when DM is sampled HIGH along with the input data
during a WRITE operations. DM is sampled on both edges of DQS.
Although DM pins are input only, the DM loading matches the DQ
and DQS loading. For the x16, LDM corresponds to the data on DQ0-DQ7;
UDM corresponds to the data on DQ8-DQ15.
The M2S56D20/30/40A* provides basic functions, bank (row) activate, burst read / write, bank (row)
precharge, and auto / self refresh. Each command is defined by control signals of /RAS, /CAS and /WE at
CLK rising edge. In addition to 3 signals, /CS ,CKE and A10 are used as chip select, refresh option, and
precharge option, respectively. Refer to the command truth table for the detailed definition of commands.
ACT command activates one row in an idle bank indicated by BA.
Read (READ) [/RAS =H, /CAS =L, /WE =H]
READ command starts burst read from the active bank indicated byBA. First output data appears after
/CAS latency. When A10 =H in this command, the bank is deactivated after the burst read (autoprecharge, READA)
Write (WRITE) [/RAS =H, /CAS =/WE =L]
WRITE command starts burst write to the active bank indicated by BA. Total data length to be written
is defined by burst length. When A10 =H in this command, the bank is deactivated after the burst write
(auto-precharge, WRITEA)
Precharge (PRE) [/RAS =L, /CAS =H, /WE =L]
PRE command deactivates the active bank indicated by BA. This command also terminates burst read
/write operation. When A10 =H in this command, all banks are deactivated (precharge all, PREA ).
Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H]
REFA command starts auto-refresh cycle. Refresh addresses including bank address are generated
internally. After this command, the banks are precharged automatically.
H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number
NOTE:
1. Applies only to read bursts while autoprecharge is disabled; this command is undefined (and should not be
used) during read bursts while autoprecharge is enabled, as well as during write bursts.
2. BA0-BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode
Register;BA0=1 ,BA1 = 0 selects Extended Mode Register; other combinations of BA0-BA1 are
reserved; A0-A12 provide the op-codes to be written to the selected Mode Register.
LHHHXNOPNOP (Continue Burst to END)
LHHLBATERMILLEGAL
LHLH BA, CA, A10READ / READAILLEGAL for Same Bank6
LHLLBA, CA, A10WRITE / WRITEA ILLEGAL for Same Bank 6
Current State CKE n-1 CKE n/CS/RAS/CAS/WEAddressActionNotes
MITSUBISHI LSIs
SELF-
REFRESHING
POWER
DOWN
ALL BANKS
IDLE
ANY STATE
other than
listed above
HXXXXXXINVALID1
LHHXXXXExit Self-Refresh (Idle after tRFC)1
LHLHHHXExit Self-Refresh (Idle after tRFC)1
LHLHHLXILLEGAL1
LHLHLXXILLEGAL1
LHLLXXXILLEGAL1
LLXXXXXNOP (Maintain Self-Refresh)1
HXXXXXXINVALID
LHXXXXXExit Power Down to Idle
LLXXXXXNOP (Maintain Power Down)
HHXXXXXRefer to Function Truth Table2
HLLLLHXEnter Self-Refresh2
HLHXXXXEnter Power Down2
HLLHHHXEnter Power Down2
HLLHHLXILLEGAL2
HLLHLXXILLEGAL2
HLLLXXXILLEGAL2
LXXXXXX
HHXXXXXRefer to Function Truth Table
HLXXXXX
LHXXXXXExit CLK Suspend at Next Cycle3
LLXXXXXMaintain CLK Suspend
Refer to Current State =Power
Down
Begin CLK Suspend at Next
Cycle
2
3
ABBREVIATIONS:
H=High Level, L=Low Level, X=Don't Care
NOTES:
1. Low to High transition of CKE re-enable CLK and other inputs asynchronously.
A minimum setup time must be satisfied before any command except REFSX.
2. Power-Down and Self-Refresh can be entered only from the All Banks Idle State.
The following power on sequences are necessary to guarantee the proper operations of the
DDR SDRAM.
1. Apply VDD before or at the same time as VDDQ
2. Apply VDDQ before or at the same time as VTT & VREF
3. Maintain stable conditions for 200us after stable power and CLK are applied, assert NOP or DSEL
4. Issue Precharge command for all banks of the device
5. Issue EMRS to program proper functions
6. Issue MRS to configure the Mode Register and to reset the DLL
7. Issue 2 or more Auto Refresh commands
8. Maintain stable conditions for 200 cycle
After these sequences, the DDR SDRAM is in the idle state and ready for normal operation.
MITSUBISHI LSIs
MODE REGISTER
Burst Length, Burst Type and /CAS Latency can be programmed by
configuring the mode register (MRS). The mode register stores these data
until the next MRS command, which may be issued when both banks are in
idle state. After tMRD from an MRS command, the DDR SDRAM is ready to
accept the new command.
DLL disable / enable mode can be programmed in the extended
mode register (EMRS). The extended mode register stores these
data until the next EMRS command, which may be issued when all
banks are in idle state. After tMRD from a EMRS command, the DDR
2. Tests for AC timing, IDD, and electrical AC and DC characteristics, may be conducted at nominal
reference/supply voltage levels. However, the specifications and device operations are guaranteed for the full
voltage range specified.
3. AC timing and IDD tests may use the VIL to VIH swing of up to 1.5V in the test environment. Input timing is
still referenced to VREF (or to the crossing point for CK//CK), and parameter specifications are guaranteed
for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is
1V/ns in the range between VIL(AC) and VIH(AC).
4. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver will
effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as
the signal does not ring back above (below) the DC input LOW (HIGH) level.
5. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the DC level
of the same. Peak-to-peak noise on VREF may not exceed +2% of the DC value.
6. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected
to be set equal to VREF, and must track variations in the DC level of VREF.
7. VID is the magnitude of the difference between the input level on CLK and the input level on /CLK.
8. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the
DC
level of the same.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is properly initialized.
11. This parameter is sampled. VDDQ = 2.5V+0.2V, VDD = 2.5V +0.2V , f = 100 MHz, Ta = 25oC, VOUT(DC) =
VDDQ/2, VOUT(PEAK TO PEAK) = 25mV. DM inputs are grouped with I/O pins - reflecting the fact that
they are matched in loading (to facilitate trace matching at the board level).
12. The CLK//CLK input reference level (for timing referenced to CLK//CLK) is the point at which CLK and /CLK
cross; the input reference level for signals other than CLK//CLK, is VREF.
13. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes,
CKE< 0.3VDDQ is recognized as LOW.
14. t HZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters
are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ),
or begins driving (LZ).
15. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for
this parameter, but system performance (bus turnaround) will degrade accordingly.
16. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or
before this CLK edge. A valid transition is defined as monotonic, and satisfies the input slew rate
specifications. When no writes were previously in progress on the bus, DQS will be transitioning from
High-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from
HIGH to LOW at this time, depending on tDQSS.
17. A maximum of eight AUTO REFRESH commands can be asserted to any given DDR SDRAM device.
18. tXPRD should be 200 tCLK when the clocks are unstable during the power down mode.
19. For command/address and CK & /CK slew rate > 1.0V/ns.
20. IDD7 : Operating current is measured under the conditions
(1).Four Bank are being interleaved with tRC(min),burst mode,address and control inputs on NOP edge
Read with autoprecharge
Setup:A0 N A1 R0 A2 R1 A3 R2 N R3
Read :A0 N A1 R0 A2 R1 A3 R2 N R3 -repeat the same timing with random address changing
50% of data changing at every transfer
Read with autoprecharge
Setup: A0 N A1 R0 A2 R1 A3 R2 N R3
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 -repeat the same timing with random address changing
50% of data changing at every transfer
The DDR SDRAM has four independent banks. Each bank is activated by the ACT command with the bank
addresses (BA0,1). A row is indicated by the row address A12-0. The minimum activation interval between
banks is tRRD.
PRECHARGE (PRE)
The PRE command deactivates the bank indicated by BA0,1. When multiple banks are active, the precharge
all command (PREA,PRE+A10=H) is available to deactivate all banks at the same time. After tRP from the
precharge, an ACT command to the same bank can be issued.
/CLK
CLK
Command
A0-9,11
A10
BA0,1
DQS
DQ
Bank Activation and Precharge All (BL=8, CL=2)
2 ACT command / tRCmin
tRCmin
ACT
tRRD
Xa
tRCD
Xa
00
ACT
Xb
Xb
01
READ
Y
0
00
PRE
tRAS
BL/2
Qa0
Qa1 Qa2 Qa3 Qa4 Qa5 Qa6 Qa7
Precharge all
tRP
1
ACT
Xb
Xb
01
A precharge command can be issued after BL/2 time from a read command.
After tRCD from the bank activation, a READ command can be issued. 1st Output data is available after the
/CAS Latency from the READ, followed by (BL-1) consecutive data. (BL : Burst Length) The start address is
specified by A11,A9-A0(x4)/A9-A0(x8)/A8-A0(x16), and the address sequence of burst data is defined by the
Burst Type. A READ command may be issued to any active bank, so the row precharge time (tRP) can be
hidden during the continuous burst data by interleaving the multiple banks. When A10 is high in READ
command, the auto-precharge (READA) is performed. Any command (READ,WRITE,PRE,ACT) asserted to
the same bank is inhibited till the internal precharge is completed. The internal precharge operation starts at
BL/2 time after READA command. The next ACT command can be issued after (BL/2+tRP) time from the
previous READA.
After tRCD time from the bank activation, a WRITE command can be issued. 1st input data is sampled at the
WRITE command with data strobe input, followed by (BL-1) data being written into RAM.The Burst Length is BL.
The start address is specified by A11,A9-A0(x4)/A9-A0(x8)/A8-A0(x16), and the address sequence of burst data
is defined by the Burst Type. A WRITE command may be applied to any active bank, so the row precharge time
(tRP) can be hidden during the continuous input data by interleaving the multiple banks. The write recovery time
(tWR) is required from the last written data to the next PRE command. When A10 is high in a WRITE command,
the auto-precharge(WRITEA) is performed. Any command (READ,WRITE,PRE,ACT) asserted to the same
bank is inhibited till the internal precharge operation is completed. The next ACT command can be issued after
tDAL from the last input data cycle.
Burst read operation can be interrupted by the new Read command issued to any other bank.
Random column access is allowed. READ to READ interval is 1CLK as the minimum.
Burst read operation can be interrupted by precharge of the same bank. READ to PRE interval is 1 CLK
minimum. The time between PRE command to output disable is equal to the CAS Latency. As a result,
READ to PRE interval determines valid data length to be outputted. The figure below shows the examples of
BL=8.
Burst read operation can be interrupted by a burst stop command(TERM). READ to TERM interval is 1 CLK
minimum. The time between TERM command to output disable is equal to the CAS Latency. As a result, READ
to TERM interval determines valid data length to be outputted. The figure below shows example of BL=8.
Burst write operation can be interrupted by Write to any bank. Random column access is allowed. WRITE
to WRITE interval is 1 CLK minimum.
Write Interrupted by Write (BL=8)
/CLK
CLK
Command
A0-9,11
A10
BA0,1
WRITE
Yi
0
00
WRITE
Yj
0
00
WRITE
Yk
0
10
WRITE
Yl
0
00
DQS
DQ
Dai1Daj1Daj3Dak1Dak3Dak5Dal1
Daj0Daj2
Dai0
Dal2 Dal3Dal5 Dal6 Dal7Dal4Dal0Dak4Dak2Dak0
[Write interrupted by Read]
Burst write operation can be interrupted by read of the same or the other bank. Random column access is
allowed. Internal WRITE to READ command interval(tWTR) is 1 CLK minimum. The input data masked by
DM in the interrupted READ cycle is "don't care". tWTR is referenced from the first positive edge after the last
data input.
Auto-refresh cycle is initiated with a REFA(/CS=/RAS=/CAS=L,/WE=CKE=H) command.
The refresh address is generated internally. 8192 REFA cycles within 64ms refresh
256 Mbits memory cells. The auto-refresh is performed on 4 banks concurrently. Before performing an auto
refresh, all banks must be in the idle state. The minimum internal between auto-refresh is tRFC . No
command is allowed within tRFC time after the REFA command.
Self -refresh mode is entered by asserting a REFS command (/CS=/RAS=/CAS=L,/WE=H,CKE=L). The selfrefresh mode is maintained as long as CKE is kept low. During the self-refresh mode, CKE becomes
asynchronous and the only enable input. All other inputs including CLK are disabled and ignored to save the
power
consumption. In order to exit the self-refresh mode, the device shall be supplied the stable CLK inputs,
followed by DESEL or NOP command, then asserting CKE for the period longer than tXSNR/tXSRD.
The purpose of CLK suspend is power down. CKE is synchronous input except during the self-refresh mode. A
commands are ignored. From CKE=H to normal function, DLL recovery time is NOT required when the stable
CLK is supplied during the power down mode.
Power Down by CKE
/CLK
CLK
CKE
Standby Power Down
Command
CKE
Command
PRE
ACT
NOP
NOP
Active Power Down
NOP
NOPValid
Valid
tXPNR/tXPRD
[DM CONTROL]
DM is defined as the data mask for write data. During writes, DM masks the input data cycle by cycle. Latency
of DM to write mask is 0.
DM Function(BL=8,CL=2)
/CLK
CLK
Command
DM
WRITE
READ
Don't Care
DQS
DQ
D0 D1D3 D4 D5 D6 D7
masked by DM=H
MITSUBISHI ELECTRIC
Q2 Q3 Q4 Q5
Q0 Q1Q6
38
DDR SDRAM
(Rev.1.44)
Mar. '02
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may
lead to personal injury, fire or property damage. Remember to give due consideration to safety when making
your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s
rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.
All information contained in these materials, including product data, diagrams, charts, programs and algorithms
represents information on products at the time of publication of these materials, and are subject to change by
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric
Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or
errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
When using any or all of the information contained in these materials, including product data, diagrams, charts,
programs, and algorithms, please be sure to evaluate all information as a total system before making a final
decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information contained herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system
that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular,
medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in
part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported
under a license from the Japanese government and cannot be imported into a country other than the approved
destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for
further details on these materials or the products contained therein.