(Always read these instructions before using the equipment.)
Do not attempt to install, operate, m aintain or inspect the servo am plifier and s ervo m otor until you have read
through this Instruction Manual, Installation guide, Servo motor Instruc tion Manual and appended documents
carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a
full knowledge of the equipment, safety information and instructions.
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".
WARNING
CAUTION
Note that the CAUTION level may lead to a serious consequence according to c onditions. Please follow the
instructions of both levels because they are important to personnel safety.
What must not be done and what must be done are indicated by the following diagrammatic symbols:
: Indicates what must not be done. For example, "No Fire" is indicated by .
: Indicates what must be done. For example, grounding is indicated by .
In this Instruction Manual, instructions at a lower level than the above, instruc tions for other functions, and so
on are classified into "POINT".
After reading this installation guide, always keep it accessible to the operator.
Indicates that incorrect handling may cause hazardous conditions,,
resulting in death or severe injury.
Indicates that incorrect handling may cause hazardous conditions,,
resulting in medium or slight injury to personnel or may cause physical
damage.
A - 1
1. To prevent electric shock, note the following:
WARNING
y Before wiring or inspection, switch power off and wait for more than 10 minutes. Then, confirm the voltage is
safe with voltage tester. Otherwise, you may get an electric shock.
y Connect the servo amplifier and servo motor to ground.
y Any person who is involved in wiring and inspection should be fully competent to do the work.
y Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you
may get an electric shock.
y Operate the switches with dry hand to prevent an electric shock.
y The cables should not be damaged, stressed loaded,, or pinched. Otherwise, you may get an electric
shock.
2. To prevent fire, note the following:
CAUTION
y Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles.
Otherwise a fire may cause.
y When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous
flow of a large current may cause a fire.
3. To prevent injury, note the follow
CAUTION
y Only the voltage specified in the Instruction Manual should be applied to each terminal,, Otherwise,, a burst,,
damage,, etc. may occur.
y Connect the terminals correctly to prevent a burst,, damage,, etc.
y Ensure that polarity (+, −) is correct. Otherwise, a burst, damage, etc. may occur.
y During power-on or for some time after power-off, do not touch the servo motor. Their temperatures may be
high and you may get burnt.
A - 2
4. Additional instructions
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock,
etc.
(1) Transportation and installation
CAUTION
y Transport the products correctly according to their weights.
y Stacking in excess of the specified number of products is not allowed.
y Do not carry the motor by the cables, shaft or encoder.
y Do not hold the front cover to transport the controller. The controller may drop.
y Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.
y Do not climb or stand on servo equipment. Do not put heavy objects on equipment.
y The controller and servo motor must be installed in the specified direction.
y Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.
y Do not install or operate the servo amplifier and ser vo motor which has been damaged or has any parts
missing.
y Provide adequate protection to prevent screws and other conductive matter, oil and other combustible
matter from entering the servo amplifier.
y Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.
y Use the servo amplifier and servo motor under the following environmental conditions:
Environment
Ambient
temperature
Ambient humidity90%RH or less (non-condensing)80%RH or less (non-condensing)
Storage
temperature
Storage humidity90%RH or less (non-condensing)
AmbienceIndoors (no direct sunli ght) Free from corrosive gas, fl ammable gas, oil m i st, dust and dirt
AltitudeMax. 1000m (3280 ft) above sea level
Vibration
[°C]0 to +55 (non-freezing)0 to +40 (non-freezing)
[°F]32 to 131 (non-freezing)32 to 104 (non-freezing)
[°C]−20 to +65 (non-freezing)−15 to +70 (non-freezing)
[°F]−4 to 149 (non-freezing)5 to 158 (non-freezing)
[m/s2]5.9 {0.6G} or lessHC-AQ SeriesX x Y : 19.6 {2G}
2
[ft/s
]19.4 or lessHC-AQ SeriesX x Y : 64
Servo AmplifierServo Motor
Conditions
A - 3
CAUTION
y Securely attach the servo motor to the machine. If attach insec urely, the servo motor m ay come off dur ing
operation.
y The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.
y For safety of personnel, always cover rotating and moving parts.
y Never hit the servo motor or shaft, espec ially when coupling the servo motor to the mac hine. The encoder
may become faulty.
y Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.
y When the equipment has been stored for an extended period of time, consult Mitsubishi.
(2) Wiring
CAUTION
y Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.
y Do not install a power capacitor, surge absorber or radio noise filter between the servo motor and servo
amplifier.
y Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.
y Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.
y The surge absorbing diode installed on the DC output signal relay must be wired in the specif ied direction.
Otherwise, the emergency stop and other protective circuits may not operate.
Servo
Amplifier
COM
(24VDC)
Control
output
signal
RA
(3) Test run adjustment
CAUTION
y Before operation, check the param eter settings. Im proper settings m ay cause some mac hines to perform
unexpected operation.
y The parameter settings must not be changed excessively. Operation will be instable.
A - 4
(4) Usage
CAUTION
y Provide an external emergency stop circuit to ensure that operation can be stopped and power switched off
immediately.
y Any person who is involved in disassembly and repair should be fully competent to do the work.
y Before resetting an alarm, m ake sure that the run signal is off to prevent an accident. A sudden r estart is
made if an alarm is reset with the run signal on.
y Do not modify the equipment.
y Use a noise filter, etc. to minimize the influence of electrom agnetic interference, which m ay be caused by
electronic equipment used near the servo amplifier.
y Use the servo amplifier with the specified servo motor.
y The electromagnetic br ak e on the ser vo m otor is designed to hold the m otor shaft and s hould not be used
for ordinary braking.
y For such reasons as s er vice lif e and mechanical struct ure ( e.g. where a ballsc r ew and the s ervo motor are
coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. T o ens ur e safety, install
a stopper on the machine side.
(5) Corrective a ctions
CAUTION
y When it is ass umed that a hazardous condition may take place at the occur due to a power failure or a
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the
purpose of prevention.
y When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before
restarting operation.
y When power is r estored after an instantaneous power f ailure, keep away from the m achine because the
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).
(6) Maintenance, inspection and parts replacement
CAUTION
y With age, the electrolytic capacitor will deteriorate. To prevent a secondary accident due to a fault, it is
recommended to replace the electrolytic capacitor every 10 years when used in general environment.
A - 5
(7)
Disposal
CAUTION
y Dispose of the product as general industrial waste.
(8) General instruction
y To illustrate details, the equipment in the diagrams of this Inst ruc tion Manual m ay have been drawn without
covers and safety guards. When the equipment is operated, the covers and safety guards must be installed
as specified. Operation must be performed in accordance with this Instruction Manual.
A - 6
COMPLIANCE WITH EC DIRECTIVES
1. WHAT ARE EC DIRECTIVES?
The EC Directives were issued to standardize the regulations of the EU countries and ensure smooth
distribution of safety-guaranteed products. In the EU countries, the Machinery Directive (effective in
January, 1995), EMC Directive (effective in January, 1996) and Low Voltage Directive (effective in
January, 1997) of the EC Directives require that p ro du cts to be sold sho uld mee t their f und ame ntal saf ety
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment into
which servo amplifiers have been installed.
The servo amplifiers do not funct ion independentl y but a re designed for us e with ma chines and eq uipment.
Therefore, the CE marking does not apply to the servo amplifiers but applies to the machines and
equipment into which the servo amplifiers are installed.
This servo amplifier conforms to the standards related to the Low Voltage Directive to facilitate CE
marking on machines and equipment in to which the servo amplifiers will be installed. To ensure ease of
compliance with the EMC Directive, Mitsubishi Electric prepared the "EMC INSTALLATION
GUIDELINES" (IB(NA)67310) which prov ides servo amplifier installation, control bo x making and other
procedures. Please contact your sa les repres enta t ive.
2. PRECAUTIONS FOR COMPLIANCE
The standard models of the servo amplifier and servo motor comply with the EN Standard. In addition to
the instructions provided in this In structio n Manual, also fo llo w the in structio ns below . If the mode l is no t
specifically described to comply with the EN Standard in this Instruction Manual, it has the same
specifications as t hose of t he s t anda rd models :
(1) Structure
Control box
Reinforced
insulation type
24VDC
power
supply
Circuit
protector
Servo
amplifier
Servo
motor
SM
(2) Environment
Operate the servo amplifier at or above the contamination level 2 set forth in IEC664. For this purpose,
install the servo amplifier in a co ntrol box wh ich is pro tected against w ater, oil, carbon, du st, dirt, etc.
(IP54).
(3) Power supply
Use a 24VDC power supply which ha s b een ins ul at ion-rei nforced in I/ O.
(4) Grounding
To prevent an electric shock, fit the supplied earth terminal (E) to the servo amplifier and always
connect it to the earth (E) of the control box.
A - 7
(5) Auxiliary equipment and options
(a) The circuit protector used should be the EN or IEC Standard-compliant product of the model
described in Section 12.2.2.
(b) The sizes of the cables described in Section 12.2.2 meet the following requirements. To meet the
other requirements, follow Table 5 and Appendix C in EN60204.
y Ambient temperature: 40 (104) [°C (°F)]
y Sheath: PVC (polyvi nyl chl oride)
y Installed on wall s urfa ce or open t ab le t ra y
(6) Performing EMC tests
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it must
conform to the e lectromagnetic compatibility (immunity /emission) standards after it has satisfied the
operating environment/electrica l eq uipment s pecifi cat i ons.
For the other EMC Directive guidelines on the servo amplifier, refer to the "EMC INSTALLATION
GUIDELINES".
A - 8
CONFORMANCE WITH UL/C-UL STANDARD
The standard models of the servo amplifier and servo motor comply with the UL/C-UL St andard.
Unless otherwise specified, the handling, performance, specifications, etc. of the UL/C-UL Standardcompliant models are the s ame a s th ose of t he s ta nda rd models .
When using 24VDC power supply, options and auxiliary equipment, use those which conform to the UL/CUL Standard.
13.12.5 Disable/enable of external I/O signals (DIO) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 19
13.12.6 External input signal ON/OFF (Test operation) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 20
13.12.7 Test operation mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 21
13.12.8 Output signal pin ON/OFF (DO forced output)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 23
13.12.9 Alarm history ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 24
13.12.10 Current alarm・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 25
13.12.11 Other commands ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13- 26
4
Optional Servo Motor Instruction Manual CONTENTS
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included
in the Servo Amplifier Instruction Manual.
1. INTRODUCTION
2. INSTALLATION
3. CONNECTORS USED FOR SERVO MOTOR WIRING
4. INSPECTION
5. SPECIFICATIONS
6. CHARACTERISTICS
7. OUTLINE DIMENSION DRAWINGS
8. CALCULATION METHODS FOR DESIGNING
5
About the Manuals
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use the
General-Purpose AC servo MR-J2-03A5 for the first time. Always purchase them and use the MR-J2-03A5
safely.
Relevant manuals
Manual NameManual No.
MELSERVO-J2-Jr Series Installation GuideIB(NA)67426
MELSERVO Servo Motor Instruction ManualSH(NA)3181 (Ver-C or later)
EMC Installation GuidelinesIB(NA)67310
6
1. FUNCTIONS AND CONFIGURATION
1.FUNCTIONS AND CONFIGURATION
1.1 Introduction
The MELSERVO-J2-Jr series general-purpose AC servo has been developed as an ultracompact, small
capacity servo system compatible with the MELSERVO-J2 series 24VDC power supply. It can be used in a
wide range of fields from semiconductor equipment to s ma ll robots , etc.
The input signals of t he s ervo ampl if ier cont rol s ys tem a re compat i bl e wit h th ose of t he M R-J 2- A.
As the standard models comply with the EN Standard x UL/C-UL Standard, they can be used satisfactorily
in various countries.
The MR-J2-03A5 servo amplifier can be easily installed to a control box with a DIN rail.
The power supply/electromagnetic brake and encoder of the servo motor can be wired easily with a single
cable.
Using a personal computer where the Servo Configuration software has been installed, you can make
parameter setting, status display, etc.
Also, you can use the RS-422 communication function to set up to 32 axes of servo amplifiers.
The compatible servo motors have achieved the smallest 28mm-bore flange size in this class and are
further equipped with encoders of 8192 pulses/rev (incremental) resolution.
1 - 1
1. FUNCTIONS AND CONFIGURATION
1.2 Function List
The following table lists the functions of the MR-J2-03A5. For details of the functions, refer to the
corresponding chapters and sections.
FunctionDescription
Position control modeMR-J2-03A5 is used as position control servo.P
Speed control modeMR-J2-03A5 is used as speed control servo .S
Torque control modeMR-J2-03A5 is used as torque control servo.T
Position/speed control
change mode
Speed/torque control change
mode
Torque/position control
change mode
Slight vibration suppression
control
Electronic gearInput pulses can be multiplied by 1/50 to 50.PPar ameters No. 3, 4
Real-time auto tuning
SmoothingSpeed can be increased smooth ly i n resp onse t o inp ut p uls e.PParameter No. 7
S-pattern acceleration/
deceleration time constant
Alarm history clearAlarm history is cleared.P, S, TParameter No. 16
Restart after instantaneous
power failure
Command pulse selection
Input signal selection
Torque limitServo motor-generated torque can be limited to any value.P, S
Speed limitServo motor speed can be limited to any value.T
Status display
External I/O display
Output signal forced output
Automatic VC offset
Test operation mode
Using external input signal, control can be switched
between position control and speed control.
Using external input signal, control can be switched
between speed control and torque control.
Using external input signal, control can be switched
between torque control and position control.
Suppresses vibration of ±1 pulse produced at a servo motor
stop.
Automatically adjusts the gain to optimum value if load
applied to the servo motor shaft varies.
Speed can be increased and decreased smoothly.SParameter No. 13
If the input power supply voltage had reduc ed to cause an
alarm but has returned to normal, the servo motor can be
restarted by merely switching on the start signal.
Command pulse train form can be selected from among
four different types.
Forward rotation start, reverse rotation start, servo on and
other input signals can be assigned to any pins.
Servo status is shown on the 4-digit, 7-segment LED
display
ON/OFF statuses of external I/O signals are shown on the
display.
Output signal can be forced on/off independently of the
servo status.
Use this function for output signal wiring check, etc.
Voltage is automatically offset to stop the servo motor if it
does not come to a stop at the analog speed command (VC)
or analog speed limit (VLA) of 0V.
Servo motor can be run from the operation section of the
servo amplifier without the start signal entered.
Parameters No. 43 to
48
Section 3.4.1 (2)
Parameter No. 28
Section 3.4.3 (3)
Parameter No. 8 to 10
1 - 2
1. FUNCTIONS AND CONFIGURATION
FunctionDescription
Servo configuration
software
Alarm code output
Note:P: Position control mode, S: Speed cont rol mode, T: Torq ue control mode
P/S: Position/speed control change mod e, S/T: Sp eed/torq ue control cha nge mode, T/P: Torq ue/posit ion control chan ge mode
Using a personal computer, parameter setting, test
operation, status display, etc. can be performed.
If an alarm has occurred, the c orre sponding alarm number
is output in 3-bit code.
(Note)
Control Mode
P, S, TSection 12.1.3
P, S, TSection 9.2.1
1.3 Model Code Definition
(1) Rating plate
MITSUBISHI
MITSUBISHI
MITSUBISHIMITSUBISHI
MODEL
POWER
MR‑J2‑03A5
POWER:
INPUT:
OUTPUT:
SERIAL:
MITSUBISHIELECTRICCORPORATION
MADEINJAPAN
30W
DC24V
2.3A
TC300A034G55
ACSERVO
ACSERVO
PASSED
Model
Capacity
Applicable power supply
Rated output current
Serial number
Refer To
(2) Model
MR-J2- 03 A 5
Series name
Rating plate
24VDC power supply specification
General-purpose interface
Rated output 30[W]
1.4 Combination with Servo Motor
The HC-AQ series servo motors can be used. The same combinations apply to the servo motors provided
with electromagnetic brakes and reduction gears.
Servo AmplifierServo motor
HC-AQ0135D
HC-AQ0235DMR-J2-03A5
HC-AQ0335D
1 - 3
1. FUNCTIONS AND CONFIGURATION
1.5 Parts Identification
Name/Application
Display
The four-digit, seven-segment LED shows the servo
status and alarm number.
Operation section
Used to perform status display, diagnostic, alarm and
parameter operations.
DOWN
MODE
I/O signal connector (CN1A)
Used to connect digital I/O signals.
I/O signal connector (CN1B)
Used to connect digital I/O signals.
Name plate
Servo motor connector (CNP2)
Connector for connection of the servo motor.
Power input connector (CNP1)
Used to connect the input power supply/control circuit
power supply/RS-422.
UP
SET
Used to set parameter
data.
Used to change the
display or data in each
mode.
Used to change the
mode.
Refer To
Chapter6
Chapter6
Section3.3
Section3.3
Section1.3
Section3.3
Section10.2.1
Section12.1.1
Section3.3
Section10.2.1
Communication connector (CNP3)
Used for connection with a personal computer
(RS-232C).
Earth (E) terminal ( )
To conform to the EN Standard, fit the supplied earth
terminal for grounding.
Section3.3
Section10.2.1
Section12.1.3
Section3.9
1 - 4
1. FUNCTIONS AND CONFIGURATION
1.6 Servo System with Auxiliary Equipment
y To prevent an electric shock, fit the supplied earth terminal (E) to the servo
WARNING
amplifier (refer to ( 2), Section 3.9) and always connect it to the earth (E) of the
control box.
Power supply
24VDC
+
Servo
Configuration
software
−
Circuit
protector
Main ci rcuit power suppl y
Relay
Control power supply
Personal
computer
To CNP1
To CNP3
Servo amplifier
MITSUBISHI
OPEN
CN1ACN1B
CNP1 CNP2
CNP3
MELSERVO
Earth (E) terminal
To CNP2
To CN1A
To CN1B
Motor cable
Power leads
Positioning unit/
speed controller
Junction
terminal
block
Encoder
cable
Servo motor
1 - 5
2. INSTALLATION
2.INSTALLATION
CAUTION
y Stacking in excess of the limited number of products is not allowed.
y Install the equipment to incombustible. Installing them directly or close to
combustibles will led to a fire.
y Install the equipment in a load-bearing place in accordance with this Instruction
Manual.
y Do not get on or put heavy load on the equipment to prevent injury.
y Use the equipment within the specified environmental condition range.
y Provide an adequate protection to prevent screws, metallic detritus and other
conductive matter or oil and other combustible matter from entering the servo
amplifier.
y Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may
occur.
y Do not subject the servo amplifier to drop impact or shock loads as they are
precision equipment.
y Do not install or operate a faulty servo amplifier.
y When the product has been stored for an extended period of time, consult
Ambient temperature
Ambient humidity90%RH or less (non-condensing)
storage temperature
storage humidity90%RH or less (non-condensin g)
Ambient
AltitudeMax. 1000m (3280 ft) above sea level
Vibration
0 to +55 [°C] (non-freezing)
32 to +131 [°F] (non-freezing)
−20 to +65 [°C] (non-freezing)
−4 to +149 [°F] (non-freezing)
Indoors (no direct sunlight)
Free from corrosive gas, flammable gas, oil mist, dust and dirt
5.9 [m/s2] {0.6G} or less
2
19.4 [ft/s
] or less
2 - 1
2. INSTALLATION
2.2 Installation direction and clearances
y The equipment must be installed in the specified direction. O therwise, a fault may
CAUTION
(1) Installation of one servo amplifier
10mm
(0.4 in.)
or more
occur.
y Leave specified clearances between the servo amplif ier and c ontr ol box ins ide walls
or other equipment.
Control boxControl box
40mm
(1.6 in.)
or more
Servo am plifier
MITSUBISHI
MELSERVO
OPEN
CN1A CN1B
CNP1 CNP2
10mm
(0.4 in.)
or more
Wiring clearance
70mm
(2.8 in.)
Top
CNP3
40mm
(1.6 in.)
Bottom
or more
(2) Installation of two or more servo amplifiers
Leave a large clearance between the top of the servo amplifier and the internal surface of the control
box, and install a fan to prevent the internal temperature of the control box from exceeding the
environmental conditions.
Control box
10mm
(0.4 in.)
or more
100mm
(4.0 in.)
or more
MITSUBISHI
OPEN
CN1A CN1B
CNP1 CNP2
MELSERVO
1mm
(0.04 in.)
or more
MITSUBISHI
OPEN
MELSERVO
CN1A CN1B
CNP1 CNP2
10mm
(0.4 in.)
or more
CNP3
40mm
(1.6 in.)
or more
CNP3
(3) Others
Install the servo amplifier on a perpendicular wall in the correct vertical direction.
2 - 2
2. INSTALLATION
2.3 Keep out foreign materials
(1) Whe n installing the unit in a control box, prev ent drill chips and wire fragments from entering the
servo amplifier.
(2) Preve nt oil, wate r, me tallic dust, etc. fro m e nte ring the se rvo amplif ier th rou gh open ing s in the con trol
box or a fan installed on the ceiling.
(3) Whe n installing the control box in a place where there are toxic gas, dirt an d dust, provide positive
pressure in the control box by forcing in clean air to prevent such materials from entering the control
box.
2.4 Cable stress
(1) The way of clamping the cable must be fully examined so that fle xing stress and cable's own weight
stress are not applied to the cable connection.
(2) In any application where the servo motor moves, the cables should be free from excessive stress. For
use in any application where the servo motor moves, run the cables so that their flexing portions fall
within the optional motor ca bl e range. Fi x th e motor ca ble a nd power l ead of t he servo mot or.
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or
stamped by workers or vehicles.
(4) For in stallation on a machine where the se rvo motor will move, the flexing radius should be made as
large as possible. Refer t o sect ion 1 1. 4 for t he flexi ng li fe.
2 - 3
2. INSTALLATION
2.5 Using the DIN rail for installation
(1) Fitting into the DIN rail
Put the upper catch on the DIN rail and push the unit until it clicks.
(2) Removal from DIN rail
1) Pull down the hook.
2) Pull it toward you.
3) Lift and remove the unit.
1)
Wall
DIN rail
Wall
Upper
catch
DIN rail
2)3)
Wall
Upper
catch
DIN rail
Wall
DIN rail
Wall
DIN rail
Hook
2 - 4
3. SIGNALS AND WIRING
3. SIGNALS AND WIRING
y Any person who is involved in wiring should be fully competent to do the work.
y Before starting wiring, make sure that the voltage is safe in the tester more than 10
minutes after power-off. Otherwise, you may get an electric shock.
WARNING
CAUTION
y Ground the servo amplifier and the servo motor securely.
y Do not attempt to wire the servo amplifier and servo motor until they have been
installed. Otherwise, you may get an electric shock.
y The cables should not be damaged, stressed excessively, loaded heavily, or
pinched. Otherwise, you may get an electric shock.
y Wire the equipment correctly and securely. Otherwise, the servo motor may
misoperate, resulting in injury.
y Connect cables to correct terminals to prevent a burst, fault, etc.
y Ensure that polarity (+, −) is correct. Otherwise, a burst, damage, etc. may occur.
y The surge absorbing diode installed to the DC relay designed for control output
should be fitted in the specified direction. Otherwise, the signal is not output due to
a fault, disabling the forced stop and other protective circuits.
Servo amplifier
COM
(24VDC)
Control output
signal
RA
y Use a noise filter, etc. to minimize the influence of electromagnetic interference,
which may be given to electronic equipment used near the servo amplifier.
y Do not install a power capacitor, surge suppressor or radio noise filter with the power
line of the servo motor.
y Do not modify the equipment.
POINT
CN1A and CN1B have the same s ha pe. W rong connect ion of t he connectors
will lead to a failure. Connect them correctly.
3 - 1
3. SIGNALS AND WIRING
3.1 Standard connection example
POINT
y For the connection of the power supply system, refer to Sect ion 3.7.1.
3.1.1Position control mode AD75P (A1SD75P)
(Note 3)
(Note 5)
Forward rotation stroke end
Reverse rotation stroke end
(Note 8) Analog torque limit
(Note 9)
Servo Configuration
software
24VDC power supply
+
−
Signal Name
PULSE F
PULSE F−
PULSE R+
PULSE R−
CLEAR
CLEAR COM
READY
COM
INPS
Positioni n g un it AD 75 P/ A1SD75P
PG0(+5V)
PG0 COM
Proportion control
±10V/max. current
+
Pin No.
+
Forced stop
Servo on
Reset
Torque limit
Upper limit setting
Personal
computer
3
21
4
22
5
23
7
26
8
24
25
(Note 8)
Circuit
protector
10m (32ft) max.
2m (6.5ft) max.
RA
Servo amplifier
CNP1
P24M
P24G
P24L
(Note 4,7)
CN1A
PP
PG
NP
NG
CR
SG
RD
COM9
INP
LZ
LZR
Plate
SD
(Note 4,7)
CN1B
EMG
SON
RES
PC
TL
LSP
LSN
SG
SG
P15R
TLA
LG
Plate
SD
CNP3
1
2
3
3
13
2
12
8
10
19
18
5
15
15
5
14
8
9
16
17
10
20
11
12
1
(Note 4)
CN1B
(Note 4,7)
CN1A
Plate
CNP2
3VDD
13 COM
18
ALM
19 ZSP
6TLC
6
LA
16
LAR
7
LB
17
LBR
LG
1
14
OP
P15R
4
SD
30m (98ft) max.
(Note1)
(Note 2)
RA1
RA2
RA3
(Note 6)
Trouble
Zero speed
Limiting torque
Encoder A-phase pulse
(differential line driver)
Encoder B-phase pulse
(differential line driver)
Control common
Encoder Z-phase pulse
(open collector)
Servo
motor
3 - 2
3. SIGNALS AND WIRING
Note: 1. To prevent an electric shock, fit the supplied earth terminal (E) to the servo amplifier and always
connect it to the earth (E) of the cont rol box. (Refer t o section 3 .9.)
2. Connect th e diode in the correct dire ction. If it is connected rev ersely, the servo amplifier w ill be
faulty and will not output signals, disabling the forced stop and other protective circuits.
3. The forced stop switch must be installed.
4. CN1A and CN1B have the same shape. Wrong connection of the connectors will lead to a fault.
5. When starting operation, always connect the forward/reverse rotation stroke end signal (LSN/LSP)
with SG. (Normally closed contacts)
6. Trouble (ALM) is connected with COM in normal alarm-free condition.
7. The pins with the same signal na me are connected in t he servo ampl ifier.
8. For the command pulse train input of the differential line driver system. 2m max. for the open
collector system.
9. Use MRZJW3-SETUP61E or later.
3 - 3
3. SIGNALS AND WIRING
3.1.2Speed control mode
(Note 3)
Forward rotation start
Reverse rotation start
Forward rotation stroke end
(Note 5)
Reverse rotation stroke end
Analog speed command
(Note 8) Analog torque limit
(Note 9)
Servo configuration
software
24VDC power supply
+
−
Speed Selection 1
Forced stop
Servo on
Reset
Speed selection 2
Upper limit setting
±10V/Rated speed
Upper limit setting
+10V/max. current
Personal
computer
+
Circuit
protector
10m (32ft) max.
2m (6.5ft) max.
RA
P24M
P24G
P24L
SP1
SG
SG
EMG
SON
RES
ST1
ST2
LSP
LSN
SG
SG
P15R
VC
LG
SD
Servo amplifier
CNP1
1
2
(Note 4)
3
(Note 4,7)
CN1A
8
10
20
(Note 4,7)
CN1B
15
5
14
7SP2
8
(Note 4,7)
9
16
17
10
20
11
2
1
12TLA
Plate
CNP3
CN1B
3VDD
13
18
19 ZSP
6TLC
CN1A
18 SA
19
5
15
6
16
7
17
1
14
4
Plate
CNP2
COM
ALM
RD
LZ
LZR
LA
LAR
LB
LBR
LG
OP
P15R
SD
30m (98ft) max.
(Note1)
RA1
RA2
RA3
RA5
RA4
Encoder Z-phase pulse
(differential line driver)
Encoder A-phase pulse
(differential line driver)
Encoder B-phase pulse
(differential line driver)
Control common
Encoder Z-phase pulse
(open collector)
(Note 6)
Trouble
Zero speed
Limiting torque
Speed reached
Ready
Servo
motor
Note: 1. To prevent an electric shock, fit the supplied earth terminal (E) to the servo amplifier and always
connect it to the earth (E) of the cont rol box. (Refer t o section 3 .9.)
2. Connect th e diode in the correct dire ction. If it is connected rev ersely, the servo amplifier w ill be
faulty and will not output signals, disabling the forced stop and other protective circuits.
3. The forced stop switch must be installed.
4. CN1A and CN1B have the same shape. Wrong connection of the connectors will lead to a fault.
5. When starting operation, always connect the forward/reverse rotation stroke end signal (LSN/LSP)
with SG. (Normally closed contacts)
6. Trouble (ALM) is connected with COM in normal alarm-free condition.
7. The pins with the same signal na me are connected in t he servo ampl ifier.
8. TLA can be used by setting any of parameters No. 43 to 48 to make TL available.
9. Use MRZJW3-SETUP61E or later.
3 - 4
3. SIGNALS AND WIRING
3.1.3Torque control mode
(Note 3)
Forward rotation selection
Reverse rotation selection
Analog torque command
(Note 7)
Servo configuration
software
24VDC power supply
+
−
Speed Selection 1
Forced stop
Servo on
Reset
Speed selection2
Upper limit setting
±8V/max. current
Upper limit setting
Analog speed limit
0 to +10V/max. speed
Personal
computer
Circuit
protector
10m(32ft) ma x.
2m (6.5ft) max.
RA
P24M
P24G
P24L
SP1
SG
SG
EMG
SON
RES
RS1
RS2
SG
SG
P15R
TC
LG
SD
Servo amplifier
CNP1
1
2
(Note 4)
3
(Note 4,6)
CN1A
8
10
20
(Note 4,6)
CN1B
15
5
14
7SP2
9
8
(Note 4,6)
10
20
11
12
1
2VLA
Plate
CNP3
CN1B
3VDD
COM
13
18
ALM
19 ZSP
6TLC
CN1A
19 RDRA4
5
LZ
15
LZR
LA
6
16
LAR
7
LB
17
LBR
1
LG
14
OP
4
P15R
Plate
SD
(Note 2)
RA1
RA2
RA3
Encoder Z-phase pulse
(differential line driver)
Encoder A-phase pulse
(differential line driver)
Encoder B-phase pulse
(differential line driver)
Control common
Encoder Z-phase pulse
(open collector)
(Note 5)
Trouble
Zero speed
Limiting torque
Ready
+
CNP2
30m (98ft) max.
(Note1)
Servo
motor
Note: 1. To prevent an electric shock, fit the supplied earth terminal (E) to the servo amplifier and always
connect it to the earth (E) of the cont rol box. (Refer t o section 3 .9.)
2. Connect th e diode in the correct dire ction. If it is connected rev ersely, the servo amplifier w ill be
faulty and will not output signals, disabling the forced stop and other protective circuits.
3. The forced stop switch must be installed.
4. CN1A and CN1B have the same shape. Wrong connection of the connectors will lead to a fault.
5. Trouble (ALM) is connected with COM in normal alarm-free condition.
6. The pins with the same signal na me are connected in t he servo ampl ifier.
7. Use MRZJW3-SETUP61E or later.
3 - 5
3. SIGNALS AND WIRING
3.2 Internal Connection Diagram of Servo Amplifier
Note:1. I : Input signal, O: Output signal, -: Others (e. g. power)
2. P : Position control mode, S: S peed control mode, T: Torque control mode, P /S: Pos ition/s peed control
change mode, S/T: Speed/torque control change mode, T/P: Torque/pos ition control change mode
3. Set parameter No. 45 to use CR.
4. Set parameter No. 47 to use PC.
5. Set parameter No. 48 to use TL.
6. By setting parameters No. 43 to 48 to make TL available, TLA can be used.
7. Set parameter No. 49 to use WNG.
8. Set parameters No. 43 to 48 to change signals.
9. Set parameter No. 49 to select alarm codes. (Refer to Chapter 9.)
10.The signal of CN1A-18 is always output.
11.Set parameter No. 1 to select MBR.
(3) Symbols and signal names
SymbolSignal NameSymbolSignal Name
SONServo onTLCLimiting torque
LSPForward rotation stroke endVLCLimiting speed
LSNReverse rotation stroke endRDReady
CRClearZSPZero speed
SP1Speed selection 1INPIn position
SP2Speed selection 2SASpeed reached
PCProportion controlALMTrouble
ST1Forward rotation startWNGWarning
ST2Reverse rotation startOPEncoder Z-phase pulse (open collector)
TLTorque limit selectionMBRElectromagnetic brake interlock
RESResetLZ
EMGForced stopLZR
LOPControl changeL A
VCAnalog speed commandL AR
VLAAnalog speed limitLB
TLAAnalog torque limitLBR
TCAnalog torque commandVDDI/F internal power supply
RS1Forward rotation selectionCOMDigital I/F power supply input
RS2Reverse rotation selectionOPCOpen collector power input
PPSGDigital I/F common
NPP15RDC15V power supply
PGLGControl common
NG
Forward/reverse rotation pulse train
SDShield
Encoder Z-phase pulse
(differential line driver)
Encoder A-phase pulse
(differential line driver)
Encoder B-phase pulse
(differential line driver)
3 - 9
3. SIGNALS AND WIRING
3.3.2Signal explanations
For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.6.2.
In the Control Mode field of the ta bl e
P : Position control mode, S: Speed control mode, T: Torque control mode
{ : Denotes that the signal may be used in the initial setting status.
∆
: Denotes that th e signal may be use d by se tting the corr espon ding par ameter am ong paramete rs 43 to
49.
(1) Input signals
Connec-
SignalSymbol
Servo-onSONCN1B5Ready signal input terminal.
ResetRESCN1B14Alarm reset signal input terminal.
Forward rotation
stroke end
Reverse rotation
stroke end
LSPCN1B
LSNCN1B
tor Pin
No.
16
17
Functions/Applications
Connect SON-SG to switch on the ba se ci rcuit a nd make the servo
amplifier ready to operate (servo on).
Disconnect SON-SG to shut off the base circuit and coast the
servo motor (servo off) .
Set1 in parameter No. 41 to switc h this signal on
(keep terminals connected) automatically in the servo
amplifier.
Disconnect RES-SG for more than 50m s to reset the alarm.
Some alarms cannot be deactivated by the rese t signal. Refer to
Section 9.2.
The base circuit is shut off while RES-SG are shorted.
Forward/reverse rotation stroke end signal input terminals.
To start operation, short LSP-SG and/or LSN-SG. Open them to
bring the motor to a sudden stop and make it servo-locked.
Set1 in parameter No. 22 to make a slow stop.
(Note) Input signalsOperation
LSPLSN
11{{
01{
10{
00
Note. 0: OFF (LSP/LSN-SG open)
1: ON (LSP/LSN-SG shorte d)
Set parameter No. 41 as indicated below to switch on the signals
(keep terminals connected) autom atic ally in the servo amplifier:
Short TL-SG to make the analog torque limit valid.
For details, refer to (2), section 3.4.1.
Used to start the servo motor in any of the follo wing directio ns:
1: ON (ST1/ST2-SG shorted)
If both ST1 and ST2 are switched on or off during operation, the
servo motor will be decelerated to a stop according to the
parameter No. 12 setting and servo-locked. When the analog
speed command (VC) is 0V, starting the servo motor will not
generate servo lock torque.
Used to select any of the following servo motor torque generation
directions:
(Note) Input signals
RS2RS1
00No torqueStop
01
10
11No torqueStop
Note.0: OFF (RS1/RS2-SG open)
1: ON (RS1/RS2-SG shorted)
Servo Motor Starting Directi on
Torque Generation
Direction
Forward rotation in
driving mode / reverse
rotation in
regenerative mode
Reverse rotation in
driving mode /
forward rotation in
regenerative mode
<Position/speed, sp eed/torq ue, torq ue/pos iti on control chan ge mode>
Internal speed command 1
(parameter No. 8)
Internal speed command 2
(parameter No. 9)
Internal speed command 3
(parameter No. 10)
Speed Command
Speed Limit
I/O
Division
DI-1
Control
Mode
PST
{{
As CN1B-7 acts as a control change signal, the speed
selected when the speed or torque control mode is selected is as
follows:
x When speed control mode is selected
(Note)
SP1
Analog speed command (VC)
0
Internal speed command 1 (par ameter No. 8)
1
Note.0: OFF (SP1-SG open)
1: ON (SP1-SG shorted)
x When torque control mode is selected
(Note)
SP1
Analog speed limit (VLA)
0
Internal speed limit 1 (paramete r No. 8)
1
Note.0: OFF (SP1-SG open)
1: ON (SP1-SG shorted)
Speed Command
Speed Limit
3 - 12
3. SIGNALS AND WIRING
Connec-
SignalSymbol
Proportion
control
Forced stopEMGCN1B15Disconnect EMG-SG to bring the servo motor to a forced stop
ClearCRCN1A8Connect CR-SG to clear the position control counter droop pulses
Control changeLOPCN1B
PCCN1B8Connect PC-SG to switch the speed amplifier from the
tor Pin
No.
7
Functions/Applications
proportional integral type to the proportional type.
If the servo motor at a stop is rotated even one pulse due to any
external factor, it generates torque to compensate for a position
shift. When the servo motor shaft is to be locked m echanically
after positioning completion (stop), switching on the proportion
control signal (PC) upon positioning completion will suppress the
unnecessary torque generated to compensate for a position shift.
When the shaft is to be locked for a long time, switch on the
proportion control signal and torque control signal (TL) at the
same time to make the torque less than the rated by the analog
torque limit.
state, in which the servo is switched off and the dynamic brake is
operated.
Connect EMG-SG in the forced stop state to reset that state.
on the leading edge of the signal. The pulse width should be 10ms
or more.
When the parameter No. 42 setting is 1, the pulses are
always cleared while CR-SG are connected.
<Position/speed control change m o de>
Used to select the control mode in the position/speed control
change mode.
I/O
Division
DI-1
DI-1
DI-1
DI-1
Control
Mode
PST
{ ∆
{{{
{
(Note) LOPControl Mode
0Position
1Speed
Note.0: OFF (LOP-SG open)
1: ON (LOP-SG shorted)
<Speed/torque control change mode>
Used to select the control mod e in t he sp eed/torq ue cont rol cha nge
mode.
(Note) LOPControl Mode
0Speed
1Torque
Note.0: OFF (LOP-SG open)
1: ON (LOP-SG shorted)
<Torque/position control mode>
Used to select the control mode in the torque/position control
change mode.
(Note) LOPControl Mode
0Torque
1Position
Note.0: OFF (LOP-SG open)
1: ON (LOP-SG shorted)
Refer to
Functions/
Appli-
cations.
3 - 13
3. SIGNALS AND WIRING
SignalSymbol
Analog torque
limit
Analog torque
command
Analog speed
command
Analog speed
limit
Forward rotation
pulse train
Reverse rotation
pulse train
Connec-
tor Pin
No.
TLATo use this signal in the speed control mode, set any of
TC
VCApply 0 to ±10VDC across VC-LG. Speed set in parameter No. 25
VLA
PP
NP
PG
NG
CN1B
12
CN1B
2
CN1A
3
CN1A
2
CN1A
13
CN1A
12
parameters No. 43 to 48 to make TL available.
When the analog torque limit (TLA) is valid, torque is limited in
the full servo motor output torque range. Apply 0 to +10 VDC
across TLA-LG. Connect the positive terminal of the power supply
to TLA. Maximum torque is generated at +10 V. (Refer to (2) in
Section 3.4.1.)
Used to control torque in the full servo motor output torque
range.
Apply 0 to ±8VDC across TC-LG. Maximum torque is genera ted at
±8V. (Refer to (1) in Section 3. 4.3.)
The torque generated at ±8V input can be changed using
parameter No. 26.
is provided at ±10V. (Refer to (1) in Sectio n 3.4.2.)
Apply 0 to ±10VDC across VLA-LG. Speed set in parameter No.
25 is provided at ±10V. (Refer to (3) in Section 3.4.3.)
Used to enter a command pulse train.
x In the open collector system (max. input frequency
200kpps):
Forward rotation pulse train across PP-SG
Reverse rotation pulse train across NP-SG
x In the differential receiver system (max. input frequency
500kpps):
Forward rotation pulse train across PG-PP
Reverse rotation pulse train across NG-NP
The command pulse train form can be changed using
parameter No. 21.
Functions/Applications
I/O
Division
Analog
input
Analog
input
Analog
input
Analog
input
DI−2
Control
Mode
PST
{ ∆
{
{
{
{
3 - 14
3. SIGNALS AND WIRING
(2) Output signals
Connec-
SignalSymbol
TroubleALMCN1B18ALM-SG are disconnected when power is switched off or the
ReadyRDCN1A19RD-SG are connected w hen t he s ervo is s w i t ched on and the servo
In positionINPINP-SG are connected when the number of droop pulses is in the
Speed reachedSA
Limiting speedVLCCN1B6VLC-SG are connected wh en sp eed reaches the value set to any of
Limiting torqueTLCCN1B6TLC-SG are connected when the torque generated reaches the
Zero speedZSPCN1B19ZSP-SG are connected when the servo motor speed is zero speed
Electromagnetic
brake interlock
WarningWNGTo use this signal, assign the connector pin for output using
MBR
tor Pin
No.
CN1A
18
CN1B
19
Functions/Applications
protective circuit is activated to shut off the base circuit. Without
alarm, ALM-SG are connected within 1 after power on.
amplifier is ready to operate.
preset in-position range. The in-position range can be changed
using parameter No. 5.
When the in-position range is increased, INP-SG may be kept
connected during low-speed rotation.
SA-SG are connected when the servo motor speed has nearly
reached the preset speed. When the preset speed is 50r/min or
less, SA-SG are kept connected.
the internal speed limits 1 to 3 (parameters No. 8 to 10) or the
analog speed limit (VLA) in the torque control mode. They are
disconnected when the servo-on signal (SON) switches off.
value set to the internal torque limit 1 (parameter No. 28) or
analog torque limit (TLA). They are disconnected when the servoon signal (SON) switches off.
(50r/min) or less. Zero speed can be changed using parameter No.
24.
Set1 in parameter No. 1 to use this parameter. N ote that
ZSP will be unusable.
In the servo-off or alarm status, MBR-SG are disconnected.
When an alarm occurs, they are disconnected independently of
the base circuit status.
parameter No. 49. The old signal before assignment will be
unusable.
When warning has occurred, WNG-SG are connected.
When there is no warning, WNG-SG are disconnected within 1
second after power-on.
I/O
Division
DO−1
DO−1
DO−1
DO−1
DO−1
DO−1
DO−1
DO−1
DO−1
Control
Mode
PST
{{{
{{{
{
{
{
{{
{{{
∆∆∆
∆∆∆
3 - 15
3. SIGNALS AND WIRING
Connec-
SignalSymbol
Alarm codeCN1A
tor Pin
No.
19
CN1A
18
CN1B
19
Functions/Applications
To use this signal, set 1 in parameter No. 49.
This signal is output when an alarm occurs. When there is no
alarm, respective ordinary signals (RD, INP, SA, ZSP) are output.
Alarm codes and alarm names ar e listed below:
(Note) Alarm Code
CN1B
CN1A
CN1A
19 Pin
18 Pin
19 Pin
000
001A. 33Overvoltage
010A. 10Undervoltage
011
100
101
110
Note.0: OFF (Pin-SG open)
1: ON (Pin-SG shorted)
Alarm
Display
8888Watchdog
A. 11Board error 1
A. 12Memory error 1
A. 13Clock erro r
A. 15Memory error 2
A. 17Board error 2
A. 18Board error 3
A. 37Parameter error
A. 8E RS-232C error
A. 50Overload 1
A. 51Overload 2
A. 24Motor output ground fault
A. 32Overcurrent
A. 31Overspeed
Command pulse frequency
A. 35
alarm
A. 52Error excessive
A. 16Encoder error 1
A. 20Encoder error 2
Name
I/O
Division
DO−1
Control
Mode
PST
∆∆∆
3 - 16
3. SIGNALS AND WIRING
SignalSymbol
Encoder Z-phase
pulse
(Open collector)
Encoder A-phase
pulse
(Differential line
driver)
Encoder B-phase
pulse
(Differential line
driver)
Encoder Z-phase
pulse
(Differential line
driver)
Connec-
tor Pin
No.
OPCN1A14Outputs the zero-point signal of the encoder. One pulse is output
per servo motor revolution. OP and LG are connected when the
zero-point position is reached. ( Negative logic)
The maximum pulse width is about 400µs. For zeroing using this
pulse, set the creep speed to 100r / min. or less.
LA
LAR
LB
LBR
LZ
LZR
CN1A
CN1A
CN1A
CN1A
CN1A
CN1A
Outputs pulses per servo motor revolution set in parameter No.
27 in the differential line driver system. The encoder B-phase
6
pulse lags the encoder A-phase pulse by a phase angle of π/2.
16
7
17
The same signal as OP is output in the differential line driver
system.
5
15
Functions/Applications
I/O
Division
DO−2
DO−2
DO−2
Control
Mode
PST
{{{
{{{
{{{
3 - 17
3. SIGNALS AND WIRING
(3) Power supply
Connec-
SignalSymbol
I/F internal
power supply
Digital I/F power
supply input
Open collector
power input
Digital I/F
common
DC15V power
supply
Control commonLGCN1A
ShieldSDPlateConnect the external conductor of the shield cable.{{{
VDDCN1B3Used to output 24VDC for input interface.
COMCN1A
OPCCN1A11When inputting a pulse train in the open collector system, supply
P15RCN1A
tor Pin
No.
9
CN1B
13
SGCN1A
10
20
CN1B
10
20
4
CN1B
11
1
CN1B
1
CN3
1
3
5
11
13
15
Functions/Applications
Connected with P24L inside the servo am plifie r .
Used to input 24VDC for input interface.
Connect the positive terminal of the 24VDC exte rnal power
supply.
24VDC±10%
this terminal with the positive (+) power of 24VDC.
Common terminal for input signals such as SON and EMG. Pins
are connected internally.
Internally connected with LG.
Outputs 15VDC to across P15R-LG. Available as powe r for TC,
TLA, VC, VLA.
Permissible current: 30mA
Common terminal for TLA, TC, VC, VLA, FPA, FPB, OP and
P15R.
Pins are connected internally.
I/O
Division
Control
Mode
PST
{{{
{{{
{{{
{{{
{{{
{{{
3 - 18
3. SIGNALS AND WIRING
3.4 Detailed Description of the Signals
3.4.1Position control mode
(1) Pulse train input
(a) Input pulse waveform selection
Encoder pulses may be input in any of three different forms, for which positive or negative logic can
be chosen. Set the command pulse train form in parameter No. 21.
Arrow
A- and B-phase pulse trains are imported after they have been multiplied by 4.
Note: Set "0000" when using the AD75P in the programmable controller.
NP
PP
NP
PP
NP
PP
NP
PP
NP
L
H
0011
H
0012
0000
0001
L
0002
3 - 19
3. SIGNALS AND WIRING
(b) Connections and waveforms
1) Open collector system
Connect as shown below:
The explanation assume s th at the in p ut w av e fo r m h as been se t to the n e gativ e lo gi c an d f o rw ar d
and reverse rotation p ulse trains (parame ter No.21 has be en set to 0010). The wavef orms in the
table in (a), (1) of this section are voltage waveforms of PP and NP based on SG. Their
relationships with transistor ON/OFF are as follows:
Forward rotation
pulse train
(transistor)
Servo amplifier
24VDC
(ON)(OFF)
(ON)(OFF)
P24G
P24L
VDD
OPC
PP
NP
SG
SD
About 2kΩ
About 2kΩ
(OFF)
Reverse rotation
pulse train
(transistor)
(ON) (OFF) (ON) (OFF) (ON)(OFF)
3 - 20
3. SIGNALS AND WIRING
2) Differential line driver system
Connect as shown below:
The explanation assume s th at the in p ut w av e fo r m h as been se t to the n e gativ e lo gi c an d f o rw ar d
and reverse rotation pulse trains (parameter No.21 has been set to 0010).
For the differential line driver, the waveforms in the table in (a), (1) of this section are as follows.
The waveforms of PP, PG, NP and NG are based on that of the ground of the differential line
driver.
Servo amplifier
PP
PG
NP
NG
SD
Forward rotation
pulse train
PP
PG
Reverse rotation
pulse train
NP
NG
3 - 21
3. SIGNALS AND WIRING
(2) Torque limit
(a) Torque limit and generated torque
By setting parameter No . 28 (internal torque limit 1), torque is alway s limited to the maximum
value during operation. A relationship between the limit value and servo motor-generated torque is
shown below.
A relationship between the applied voltage of the analog torque limit (TLA) and the torque limit
value of the servo motor is sho wn below. Ge nerated to rque limit values will vary abou t 5% relative
to the voltage depending on products.
At the voltage of less than 0.05V, generated torque may vary as it may not be limited sufficiently.
Therefore, use this function a t the vol t age of 0 .05 V or more.
Max. torque
Generated torque
0
0100
Torque limit value [%]
100
5%
±
Torque limit value [%]
0
010
0.05
TLA application volt a ge [V]
TLA application volt a ge vs .
torque limit value
1k
2k
Ω
Japan Resistor
RRS10 or equivalent
Ω
Servo amplifier
TL
SG
P15R
TLA
LG
SD
3 - 22
3. SIGNALS AND WIRING
(b) Torque limit value selection
Choose the torque limit made valid by the internal torque limit value 1 (parameter No. 28) using the
external torque limit se lection (TL) or the torqu e limit made valid by the analo g to rque limit (TLA)
as indicated below:
TLC-SG are connected when the torque generated by the servo motor reaches the torque set to
internal torque limit value 1 or analog torque limit.
(3) In-position (INP)
PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset
in-position range (parameter No. 5). INP-SG may remain connected when low-speed operation is
performed with a large value set a s the i n-pos it ion ra nge.
Servo-on (SON)
ON
OFF
Torque Limit Value Made Valid
Internal torque limit value 1
(parameter No. 28)
Analog torque limit (TLA)
(4) Ready (RD)
Alarm
Droop pulses
In position (INP)
Servo-on (SON)
Alarm
Ready (RD)
Yes
No
ON
OFF
ON
OFF
Yes
No
ON
OFF
In-position range
80ms or less10ms or less10ms or less
3 - 23
3. SIGNALS AND WIRING
3.4.2Speed control mode
(1) Speed setting
(a) Speed command and speed
The servo motor is run at the speeds set in the para meters or at the speed set in the applied voltage
of the analog speed command (VC). A relationshi p between th e analog s peed command (VC) appli ed
voltage and the servo motor speed i s sh own bel ow:
Speed [r/min]
−
CW direction
10
Rated speed [r/min]
CCW direction
0
10
+
VC applied voltage [V]
Rated speed
Forward rotation (CCW)
Reverse rotation (CW)
The following table indicates the rotation direction according to forward rotation start (ST1) and
reverse rotation start (ST2 ) combination:
(Note) External Input SignalsRotation Direction
ST2ST1
00
01CCWCWCCW
10 CW
11
Note. 0 : ST1/ST2-SG off (open)
1 : ST1/ST2-SG on (short)
+ Polarity0V− Polarity
Stop
(Servo lock)
Stop
(Servo lock)
Analog Speed Command (VC)
Stop
(Servo lock)
Stop
(No servo lock)
Stop
(Servo lock)
Stop
(Servo lock)
CCWCW
Stop
(Servo lock)
Internal Speed
Commands
Stop
(Servo lock)
Stop
(Servo lock)
Generally, make connection as shown below:
2k
Ω
Japan Resistor
RRS10 or equivalent
1k
Servo amplifier
SP1
SP2
SG
Ω
P15R
VC
LG
SD
3 - 24
3. SIGNALS AND WIRING
(b) Speed selection 1 (SP1), speed selection 2 (SP2 ) and s peed command va lue
Choose any of the speed settings made by the internal speed commands 1 to 3 using speed selection
1 (SP1) and speed selecti on 2 (S P 2) or t he speed s et ti ng made b y the a nal og s peed command (VC ).
The speed may be changed during rotation. In this case, the values set in parameters No. 11 and 12
are used for acceleration/decelerat ion.
When the speed has been specified under any internal speed command, it does not vary due to the
ambient temperature.
(2) Speed reached (SA)
SA-SG are connected when the servo motor speed nearly reaches the speed set to the internal speed
command or analog speed command.
Set speed selection
Speed Command Value
Internal speed
Internal speed
command 1
command 2
(3) Torque limit
As in Section 3.4.1 (2).
Start (ST1,S T2)
Servo motor speed
Speed reached (SA)
ON
OFF
ON
OFF
3 - 25
3. SIGNALS AND WIRING
3.4.3Torque control mode
(1) Torque control
(a) Torque command and generated torque
A relationship between the applied voltage of the analog torque command (TC) and the torque
generated by the servo motor is shown below.
The maximum torque is generated at ±8V. Note that the torque generated at ±8V input can be
changed with parameter No. 26.
Max. torque
Generated torque
8
0.05
−
−
CW direction
CCW direction
0.05+8
+
TC applied voltage [V]
Max. torque (Note)
Forward rotation (CCW)
Reverse rotation (CW)
Generated torque limit values will vary about 5% relative to the voltage depending on products.
Generated torque may vary at the voltage of −0.05V to +0.05V.
The following table indicates the torque generation direc tions determined by th e forward rotatio n
selection (RS1) and reverse rotation selection (RS 2) when the analog t orque command (TC) is used.
(Note) External Input SignalsRotation Direction
RS2RS1
00No torqueNo torque
CCW (reverse rotation in
01
10
11 No torque
Note. 0: RS1/RS2-SG off (open)
1: RS1/RS2-SG on (short)
driving mode/forward
rotation in regenerative
mode)
CW (forward rotation in
driving mode/reverse
rotation in regenerative
mode)
+ Polarity0V− Polarity
Torque control Command (TC)
CW (forward rotation in
driving mode/reverse
rotation in regenerative
No torque
mode)
CCW (reverse rotation in
driving mode/forward
rotation in regenerative
mode)
No torque
Generally, make connection as shown below:
8 to +8V
−
Servo amplifier
RS1
RS2
SG
TC
LG
SD
3 - 26
3. SIGNALS AND WIRING
(b) Analog torque command offset
Using parameter No. 30, the offset voltage of -999 to +999mV can be added to the TC applied
voltage as shown below.
Max. torque
Parameter No.30 offset range
999 to +999mV
Generated torque
−
0
TC applied voltage [V]
+8(−
8)
(2) Torque limit
By setting parameter No . 28 (internal torqu e limit 1), torque is always limited to the maximum valu e
during operation. A relation ship between limit value an d servo motor-gene rated torque is as in (2) in
section 3.4.1. Note that the analog torque limit (TLA) is unavailable.
(3) Speed limit
(a) Speed limit value and speed
The speed is limited to the va lues set in parame ters No . 8 to 10 (inte rnal spe ed limits 1 to 3) or the
value set in the appl ied vol ta ge of t he ana log s peed l im it (VL A).
A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is
shown below.
When the motor speed reaches t he s peed li mit val ue, t orque cont rol ma y become uns t ab le. Ma ke t he
set value more than 100r/m smaller than the desired speed limit value.
Speed [r/min]
CW direction
Rated speed
CCW direction
10
−
0
10
+
VLA applied voltage [V]
Rated speed
Forward rotation (CCW)
Reverse rotation (CW)
The following table indicates the limit direction according to forward rotation selection (RS1) and
reverse rotation selection (RS2) combination:
(Note) External Input SignalsSpeed Limit Directi on
RS1RS2
10CCWCWCCW
01CWCCWCW
Note.0: RS1/RS2-SG off (open)
1: RS1/RS2-SG on (short)
Analog Speed Limit (VLA )
+ Polarity− Polarity
Internal Speed
Commands
Generally, make connection as shown below:
Servo amplifier
SP1
SP2
SG
2k
Ω
Japan Resistor
RRS10 or equiva lent
1k
Ω
P15R
VC
LG
SD
3 - 27
3. SIGNALS AND WIRING
(b) Speed selection 1 (SP1)/speed selection 2 (SP2 ) and s peed command va lues
Choose any of the speed settings made by the internal speed limits 1 to 3 using speed selection 1
(SP1) and speed selection 2 (SP 2 ) or the s peed s ett ing ma de by t he s peed li mit command (V LA ).
When the internal speed commands 1 to 3 are used to command the speed, the speed does not vary
with the ambient temperature.
(c) Limiting speed (VLC)
TLC-SG are connected when the servo mot or s peed reaches t he li mi t s peed s et t o any of t he i nterna l
speed limits 1 t o 3 or a nal og s peed li mi t.
3 - 28
3. SIGNALS AND WIRING
3.4.4Position/speed control change mode
Set 0001 in parameter No. 0 to switch to the position/speed control change mode. This function is not
available in the a bs olut e pos it i on detect ion s ys tem.
(1) Control change (LOP)
Use control change (LOP) to switch between the posit ion cont rol mode and the speed control mode from
an external contact. Relationships between LOP-SG status and control modes are indicated below:
(Note) LOPServo Control Mode
0Position control mode
1Speed control mode
Note.0: LOP-SG off (open)
1: LOP-SG on (short)
The control mode may be changed in the zero-speed status. To ensure safety, change control after the
servo motor has stopped. When position control mode is changed to speed control mode, droop pulses
are reset.
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown
below:
Position
control mode
Speed
control mode
Position
control mode
Zero speed
Servo motor speed
Zero speed (ZSP)
Control change (LOP)
Note: When ZSP is not on, control cannot be changed if LOP is switched on-off.
If ZSP switches on after that, control cannot not be changed.
level
ON
OFF
ON
OFF
(2) Torque limit in position control mode
As in Section 3.4.1 (2).
(Note)
(Note)
3 - 29
3. SIGNALS AND WIRING
(3) Speed setting in speed control mode
(a) Speed command and speed
The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the
speed set in the applied voltage of the analog speed command (VC). A relationship between analog
speed command (VC) applied voltage and servo motor speed and the rotation directions determined
by the forward rotation start sign al (ST1) and rev e rse ro tatio n start sig nal ( ST2) are as in ( a), ( 1) in
section 3.4.2.
Generally, make connection as shown below:
2k
When a precision speed command is required, refer to (a), (1) in section 3.4.2
Ω
Ω
Japan Resistor
RRS10 or equivalent
1k
Servo amplifier
SP1
SG
P15R
VC
LG
SD
(b) Speed selection 1 (SP1) and speed command value
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and
the speed set by the ana log s peed command (V C) a s i ndica t ed in t he foll owing t ab le:
The speed may also be changed during rotation. In this case, it is increased or decreased according
to the value set in parameter No. 11 or 12.
When the internal speed command 1 is used to command the speed, the speed does not vary with
the ambient temperature.
(c) Speed reached (SA)
As in Section 3.4.2 (2).
3 - 30
3. SIGNALS AND WIRING
3.4.5Speed/torque control change mode
Set 0003 in parameter No. 0 to switch to the speed/torque control change mode.
(1) Control change (LOP)
Use control change (LOP) to switch between the speed control mode and the torque control mode from
an external contact. Relationships between LOP-SG status and control modes are indicated below:
(Note) LOPServo Control Mode
0Speed control mode
1Torque control mode
Note.0: LOP-SG off (open)
1: LOP-SG on (short)
The control mode may be changed at any time. A change timing chart is shown below:
Torque
control mode
Load torque
Forward rotation in driving mode
Speed
control mode
(Note)
Servo motor speed
Analog torque
command (TC)
Control change (LOP)
Speed
control mode
10V
0
ON
OFF
Note: When the start signal (ST1 x ST2) is switched off as soon as the mode is changed to speed control,
the servo motor comes to a stop according to the deceleration time constant.
(2) Speed setting in speed control mode
As in Section 3.4.2 (1).
(3) Torque limit in speed control mode
As in Section 3.4.1 (2).
3 - 31
3. SIGNALS AND WIRING
(4) Speed limit in torque control mode
(a) Speed limit value and speed
The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the value set
in the applied voltage of the an alog s peed limit (VLA ). A rela tions hip bet ween the ana log speed l imit
(VLA) applied voltage and the servo motor speed is as in (a), (3) in section 3.4.3.
Generally, make connection as shown below:
2k
Ω
Japan Resistor
RRS10 or equivalent
When a precision speed command is required, refer to (a), (3) in section 3.4.3.
(b) Speed selection 1 (SP1) and speed limit value
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and
the speed set by the ana log s peed l imi t (VL A) as i ndica t ed in t he foll owing t a bl e:
When the internal speed limit 1 is used to command the speed, the speed does not vary with the
ambient temperature.
(c) Limiting speed (VLC)
As in (c), (3) in section 3.4.3.
(5) Torque control in torque control mode
As in Section 3.4.3 (1).
(6) Torque limit in torque control mode
As in Section 3.4.3 (2).
3 - 32
3. SIGNALS AND WIRING
3.4.6Torque/position control change mode
Set 0005 in parameter No. 0 to switch to the torque/position control change mode.
(1) Control change (LOP)
Use control change (LOP) to switch between the torque control mode and the position control mode
from an external contact. Relationships between LOP-SG status and control modes are indicated below:
(Note) LOPServo Control Mode
0Torque control mode
1Position control mode
Note.0: LOP-SG off (open)
1: LOP-SG on (short)
The control mode may be changed in the zero-speed status.
To ensure safety, change control after the servo motor has stopped. When position control mode is
changed to torque control mode, droop pulses are reset.
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown
below:
Servo motor speed
Analog torque
command (TLA)
Zero speed (ZSP)
Control change (LOP)
(2) Speed limit in torque control mode
As in Section 3.4.3 (3).
(3) Torque control in torque control mode
As in Section 3.4.3 (1).
(4) Torque limit in torque control mode
As in Section 3.4.3 (2).
Zero speed
level
10V
0V
ON
OFF
ON
OFF
(5) Torque limit in position control mode
As in Section 3.4.1 (2).
3 - 33
3. SIGNALS AND WIRING
3.5 Alarm Occurrence Timing Chart
y When an alarm has occurred, remove its cause, make sure that the operation
CAUTION
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a
stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the
control circuit power supply off, then on.
However, the alarm cannot be reset unless its cause of occurrence is removed.
power supply
Base circuit
Dynamic brake
Invalid
Servo on
(SON)
Ready
(RD)
Trouble
(ALM)
Reset
(RES)
signal is not being input, ensure safety, and reset the alarm before restarting
operation.
ON
OFF
ON
OFF
Valid
ON
OFF
ON
OFF
ON
OFF
ON
OFF
1s
Alarm occurs.
Remove cause of trouble.
Brake operationBrake operation
50ms or
more
Power off
Instantaneous power fallure alarm
15ms or more
Power on
Precautions for alarm occurrence
1) Overcurrent, overload 1 or overload 2
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (A.
32), overload 1 (A. 50) or overload 2 (A. 51) alarm after its occurrence, without removing its cause,
the servo amplifier and servo motor may become faulty due to temperature rise. Securely remove
the cause of the alarm and also allow about 15 minutes for cooling before resuming operation.
2) Instantaneous power failure
If a power failure continues 15ms or longer, the undervoltage (A. 10) alarm will occur. If the
power failure still pe rsists for 20ms or long er, the control circuit is switched off. When the pow er
failure is reset in this state, the alarm is reset and the servo motor will start suddenly if the
servo-on signal (SON) is o n. To prevent hazard, make up a sequence which w ill switch off the
servo-on signal (SON) if an alarm occurs.
3) Position control mode
When an alarm occurs, the home position is lost. When resuming operation after deactivating the
alarm, make a return to home position.
3 - 34
3. SIGNALS AND WIRING
3.6 Interfaces
3.6.1Common line
The following diagram shows t he power su pply an d it s common l ine.
DI-1
(Note)
Analog input
(+10V/max. current)
DC24V
CNP1
CN1A
CN1B
P24G
P24L
VDD
COM
SON etc.
SG
OPC
PG NG
PP NP
SG
15VDC±10% 30mA
P15R
TLA
VC etc.
LG
SD
ALM etc.
LAR etc.
OP
LG
LA etc.
LG
SD
RDP
RDN
SDP
SDN
P24C
RA
CN1A
CN1B
DO-1
Open collector
output
35mA or l e ss
CNP1
Differential line
driver output
35mA or l e ss
MR
MRR
Servo motor
SM
Note: For the open collector pulse train input.
Make the following connection for the differential line driver pulse train input:
Earth
ECNP2
OPC
SD
CNP2
Servo motor encoder
PGxNG
PPxNP
SG
3 - 35
3. SIGNALS AND WIRING
3.6.2Detailed description of the interfaces
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in
Section 3.3.2.
Refer to this section and connect the interfaces with the external equipment.
(1) Digital input interface DI-1
Give a signal with a rel ay or open col lect or tra ns is t or.
24VDC
Servo amplifier
P24G
P24L
For a transistor
Approx. 5mA
TR
VCES≤1.0V
I
CEO≤100µA
VDD
COM
SON
etc.
Switch
SG
R:Approx. 4.7kΩ
(2) Digital output interface DO-1
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current:
100mA or less)
24VDC
Servo amplifier
P24G
P24L
VDD
COM
If the diode is not
connected as shown,
the servo amplifier
will be damaged.
24VDC
Load
ALM,etc.
SG
3 - 36
3. SIGNALS AND WIRING
(3) Pulse train input interface DI-2
Provide a pulse train s igna l i n t he open coll ector or di fferenti al li ne driver s ys tem.
(a) Open collector system
1) Interface
24VDC
Servo amplifier
P24G
P24L
VDD
OPC
PP(NP)
Approx. 10mA
SG
SD
Max. input pulse
frequency 200kpps
Approx. 1.2k
Ω
2) Conditions of the input pulse
0.9
PP
0.1
NP
tc
tctLH
tHL
tLH = tHL < 0.2µs
tc > 2µs
tF > 3µs
tF
3 - 37
3. SIGNALS AND WIRING
(b) Differential line driver system
1) Interface
Servo amplifier
Max.input pulse
frequency 500kpps
2) Conditions of the input pulse
(4) Encoder pulse output DO-2
(a) Open collector system
Interface
Max. output current 35mA
Servo amplifier
Am26LS31
0.9
0.1
tc
tctLH
tHL
PP(NP)
PG(NG)
SD
tF
Servo amplifier
tLH = tHL < 0.1µs
tc > 0.7µs
tF > 3µs
5 to 24VDC
OP
LG
SD
OP
LG
SD
Photocoupler
3 - 38
3. SIGNALS AND WIRING
(b) Differential line driver system
1) Interface
Max.output current 35mA
Servo amplifier
LA
(LB,LZ)
LAR
(LBR,LZR)
LG
Am26LS32 or equivalent
150
Servo amplifier
LA
(LB,LZ)
Ω
LAR
(LBR,LZR)
100ΩHigh-speed photocoupler
SD
2) Output pulse
(5) Analog input
Servo motor CCW rotation
LA
LAR
LB
LBR
LZ
LZR
Open
OP
Shorted
T
/2
π
400µs or more
Input impedance
10 to 12kΩ
Upper limit setting1kΩ
SD
LZ signal varies ±3/8T on its leading edge.
Servo amplifier
15VDC
+
P15R
2kΩ
VC,etc.
Approx. 10kΩ
LG
SD
3 - 39
3. SIGNALS AND WIRING
3.7 Input Power Supply Circuit
CAUTION
y When the servo amplifier has become faulty, switch power off on the servo
3.7.1Connection example
24VDC
+
−
amplifier power side. Continuous flow of a large current may cause a fire.
Forced
Circuit
protector
Circuit
protector
RA1
RA3
stop
RA2
Forced
stop
RA4
P24M
P24G
P24L
EMG
SG
P24M
P24G
P24L
EMG
SG
OFF
CNP1
1
2
3
CN1B
15
10
OFF
CNP1
1
2
3
CN1B
15
10
ON
RA2
Servo amplifier
CN1B
3
13
18
ON
RA4
Servo amplifier
CN1B
3
13
18
VDD
COM
ALM
VDD
COM
ALM
RA2
RA1
RA4
RA3
Forced
Circuit
protector
RA5
stop
RA6
P24M
P24G
P24L
EMG
SG
OFF
CNP1
1
2
3
CN1B
15
10
ON
RA6
Servo amplifier
CN1B
3
13
18
VDD
COM
ALM
RA6
RA5
Note: 1. When using an electromagnetic brake, determine the power supply by taking the rated current
value of the electromagnetic b rake int o considera tion.
2. Configure up the power supply circuit which will switch off power upon detection of alarm
occurrence.
3 - 40
3. SIGNALS AND WIRING
3.7.2Explanation of signals
AbbreviationSignal NameDescription
P24MMain circuit power inputPower supply for main circuit
P24GPower ground
P24LControl power input
Ground
3.7.3Power-on sequence
(1) Power-on procedure
1) Always wire the power supply as shown in abo ve Section 3.7.1 using the relay with the main
circuit power supply. Configure up an external sequence to switch off the relay as soon as an
alarm occurs.
2) Switch on the control circuit power supply P24L, P24G simultaneously with the main circuit
power supply or before switching on the main circuit power supply. If the main circuit power
supply is not on, the display shows the corresponding warning. However, by switchin g on the
main circuit power supply, the warning disappears and the servo amplifier will operate properly.
3) The servo amplifier can accept the servo-on signal (SON) about 1 second after the main circuit
power supply is switched on. Therefore, when SON is switched on simultaneously with the 24V
power supply, the base circuit w ill switch on in about 1 second, and the ready sig nal (RD) will
switch on in further about 20ms, making the servo amplifier ready to operate.
Main circuit power supply and control power supply. Connected to SG and LG
inside the unit.
Control power supply and digital I/O power supply. Always use a stabilizing
power supply.
Grounding terminal
Connect to the earth of the control box for grounding.
(2) Timing chart
Power supply
Base circuit
Servo on
(SON)
Reset
(RES)
Ready
(RD)
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
SON accepted
(1s)
20ms
10ms
60ms
10ms20ms10ms20ms10ms
10ms
60ms
3 - 41
3. SIGNALS AND WIRING
(3) Forced stop
CAUTION
y To stop operation and switch power off immediately, provide a forced stop circuit.
Make up a circuit which shuts off main circuit power as soon as EMG-SG are opened at a forced stop.
To ensure safety , always install a forc ed stop switch ac ross EMG-SG. By disconnecting EMG-SG, the
dynamic brake is operated to br ing the s ervo motor to a sudden s top. At this time, t he displ ay shows the
servo forced stop warning (A. E6).
During ordinary operation, do not use the forced s t op s igna l t o alt ernat e s top a nd run.
If the start signal is on or a pulse train is input during a forced stop, the servo motor will rotate as soon
as the warning is reset. During a forced stop, always shut off the run command.
Servo amplifier
P24L
VDD
COM
Approx.
4.7kΩ
EMG
SG
(4) CNP1 connector wiring
The servo amplifier is packed with the following parts for wiring the CNP1.
For connection of the terminals and cables, use the crimping tool 57026-5000 (for UL1007) o r 570275000 (for UL1015).
PartModelMaker
Connector5557-08R
Terminal5556
molex
3 - 42
3. SIGNALS AND WIRING
3.8 Servo Motor with Electromagnetic Brake
(1) Setting
Using parameter No.33 (electroma gneti c br ak e seq uence output ), s et a t ime del ay from elect roma gneti c
brake operation to base circuit shut-off as in the timing chart shown in (2) in this section.
(2) Operation timing
(a) Servo on signal command (from controller) ON/OFF
Tb after the servo-on signal is s wit ched off, t he ba se ci rcuit is s hut off a nd t he servo mot or coas t s.
The following chart shows the way of holding the motor shaft in vertical lift applications.
・ Adjust Tb (parameter No. 33) to mini mize a drop aft er the s ervo-on si gnal is s wit ched off.
・ Switch off the servo-on signal after the s ervo motor ha s s t opped.
Coasting
Servo motor speed
0 r/min
(60ms)
Base circuit
Electromagnetic
brake ( CNP2-9)
Servo-on(SON)
ON
OFF
Invalid(ON)
Valid(OFF)
ON
OFF
(80ms)
(b) Emergency stop signal (EMG) ON/OFF
Servo motor speed
Base circuit
Electromagnetic
brake(CNP2-9)
Forced stop(EMG)
ON
OFF
Invalid(ON)
Valid(OFF)
Invalid(ON)
Valid(OFF)
Dynamic brake
Dynamic brake
Electromagnetic brake
Electromagnetic
brake
Electromagnetic brake
operation delay time
(10ms)
Tb
Electromagnetic brake
operation delay time(10ms)
Electromagnetic brake release
(180ms)
(180ms)
3 - 43
3. SIGNALS AND WIRING
(c) Alarm occurrence
Servo motor speed
Dynamic brake
Dynamic brake
Electromagnetic brake
Electromagnetic brake
Base circuit
Electromagnetic
brake(CNP2-9)
Trouble (ALM)
ON
OFF
Invalid(ON)
Valid(OFF)
No(ON)
Yes(OFF)
Electromagnetic brake
operation delay time(10ms)
(d) Main circuit power off
When main circuit power switches off, the undervoltage alarm (A.10) occurs and the operation
timing is as shown in (c) of this section.
(e) Control circuit power off
Coasting
Servo motor speed
Control power
(P24L)
ON
OFF
10ms
Electromagnetic brake
(3) Release of electromagnetic brake
To release the electromagnetic brake when main circuit power is off, use the output signal forced
output (refer to Section 6.7).
The electromagnetic brake can be released by turning on the electromagnetic brake power B1 (CNP2-
9).
3 - 44
3. SIGNALS AND WIRING
3.9 Grounding
y Ground the servo amplifier and servo motor securely.
WARNING
(1) Connection diagram
The servo amplifier switches the power transistor on-off to s u pply power to the servo motor. Depending
on the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due
to di/dt and dv/dt) of the tran sistor. To pr eve nt suc h a f ault, re fer to the fo llowin g diag ram and alw ays
ground.
To conform to the EMC Directive, refer to the EMC INSTALLATION GUIDELINES (IB(NA)67310).
y T o prevent an electric shock, always connect the ear th terminal (E) of the servo
amplifier to the earth (E) of the c ontrol box ( ref er to (2) of this sec tion for the f itting
method of the earth terminal).
Control box
24VDC
Circuit
protector
RA
Servo amplifier
P24M
P24G
P24L
CN1A CN1B
Earth (E)
Servo motor
Programmable
controller
Outer
box
3 - 45
3. SIGNALS AND WIRING
(2) Fitting of earth (E) terminal (AERSBAN-JR)
As shown below, fit the earth (E) terminal to the bottom or top of the servo amplifier.
Positioning boss
Earth (E) terminal
AERSBAN-JR
M4 screw
3.10 Instructions for the 3M Connector
When fabricating an encoder cable or the l ike, s ecurely connect the shi elded external conductor of the cable
to the ground plate as shown i n thi s s ect ion an d fix it t o the connect or s hell .
External conductorSheath
Strip the sheath.
External conductor
Pull back the external conductor to cover the sheath
Screw
SheathCore
Ground plate
Cable
Screw
3 - 46
4. OPERATION
4.OPERATION
4.1 When Switching Power On for the First Time
Before starting operation, check t he foll owing:
(1) Wiring
(a) A correct power supply is connected to the power input terminals (P24M x P24G x P24L) of the servo
amplifier.
(b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the
power input terminals (U, V, W) of the servo motor.
(c) The servo motor power supply terminals (U , V, W) of the servo amplifier are not shorted to the
power input terminals (P24M x P24L).
(d) The servo amplifier and servo motor are grounded securely.
(e) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during
operation.
(f) 24VDC or higher voltages are not a ppli ed to t he pins of connect ors CN1A and C N1B.
(g) SD and SG of connectors CN1A and CN1B is not shorted.
(h) The wiring cables are free from exces si ve force.
(2) Environment
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.
(3) Machine
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.
(b) The servo motor and the machine connected with the servo motor can be operated.
4 - 1
4. OPERATION
4.2 Startup
WARNING
y Do not operate the switches with wet hands. You may get an electric shock.
y Before starting operation, check the parameters. Some machines may perform
CAUTION
unexpected operation.
y During power-on or soon after power-off, do not touch the servo motor as they may
be at high temperatures. You may get burnt.
Connect the servo motor with a machine a fter confi rming t hat t he servo mot or operat es properl y al one.
4.2.1Selection of control mode
Use parameter No. 0 to choose the control mode used. After setting, this parameter is made valid by
switching power off, then on.
4.2.2Position control mode
(1) Power on
(a) Switch off the servo on (SON) signal.
(b) When main circuit power/control circuit power is switched on, "C (Cumulative feedback pulses)"
appears on the parameter unit.
(2) Test operation 1
Using jog operation in the "test operation mode", make sure that the servo motor operates. (Refer to
Section 6.8.2.)
(3) Parameter setting
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for
the parameter definitions and to Sections 7.8 for the setting method.
ParameterNameSettingDescription
No. 0Select the control mode0Fourth digit : Position control mode
First digit:: Middle response (initial val u e) i s s el ected.
After setting the above parameters, switch power off once. Then switch power on again to make the
set parameter values valid.
4 - 2
4. OPERATION
(4) Servo on
Switch the servo on in the foll owing procedure:
(a) Switch on main circuit/control power.
(b) Switch on the servo on signal (SON) (short SON-SG).
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is
locked.
(5) Command pulse input
Entry of a pulse train fr om the p ositionin g de vice ro tates the servo moto r. At first, r un it at low spe ed
and check the rotation directi on, etc. If it does not run i n the i ntended di recti on, check t he input s igna l.
On the status displ ay, check t he s peed, command pul s e frequency, load fa ctor, etc. of the s ervo mot or.
When machine operation check is over, check automatic operation with the program of the positioning
device.
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing
operation automatically adjusts gains. The optimum tuning results are provided by setting the
response level appropriate for the machine in parameter No. 2.
(6) Zeroing
Make home position return as required.
(7) Stop
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo
motor:
Refer to Section 3.8, (2) for the se rvo motor equippe d with electrom agnetic brake. Note th at the stop
pattern of stroke end (LSP/LS N) OFF is as des cribed bel ow.
(a) Servo on (SON) OFF
The base circuit is shut off and the servo motor coasts .
(b) Alarm occurrence
When an alarm occurs, the base circuit is shut off and the dyn amic brake is operated to bring the
servo motor to a sudden stop.
(c) Forced stop (EMG) OFF
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden
stop. Alarm A. E6 occurs.
(d) Stroke end (LSP/LSN) OFF
The servo motor is brought to a s udden s t op and s ervo-lock ed. T he motor ma y be run in t he oppos it e
direction.
4 - 3
4. OPERATION
4.2.3Speed control mode
(1) Power on
(a) Switch off the servo on (SON) signal.
(b) When main circuit power/control circuit power is switched on, "r (motor speed)" appears on the
parameter unit.
(2) Test operation
Using jog operation in the "test operation mode" of the Parameter unit, make sure that the servo motor
operates. (Refer to Section 6. 8.2 .)
(3) Parameter setting
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for
the parameter definitions and to Sections 6.5 for the setting method.
ParameterNameSettingDescription
No. 0Select the control mode2First digit: Speed control mode
First digit: Middle response (initial value) is selected.
No. 2Auto tuning104
No. 8Inte r nal spe ed command 11000Se t 1000r /min.
No. 9Inte r nal spe ed command 21500Se t 1500r /min.
No. 10Internal spe ed command 32000Se t 2000r / min.
No. 11Acceler ation time constant1000Set 1000ms.
No. 12Decele r atio n tim e constant500Set 500ms.
No. 13
S-pattern acceleration/deceleration
time constant
Second digit : Ordinary machine
Third digit: Used
0Not used
After setting the above parameters, switch power off once. Then switch power on again to make the
set parameter values valid.
(4) Servo on
Switch the servo on in the foll owing procedure:
(a) Switch on main circuit/control power.
(b) Switch on the servo on signal (SON) (short SON-SG).
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is
locked.
(5) Start
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on
forward rotation start (ST1) to run the motor in the forward rotation (CCW) direction or reverse
rotation start (ST2) to run it in the reve rse rotatio n (CW) dir ection. At first, set a low spe ed and check
the rotation direction, etc. If it does not run i n the i ntended di recti on, check the i nput s igna l.
On the status displ ay, check t he s peed, l oad fact or, et c. of the s ervo motor.
When machine operation check is over, check aut omat ic opera t ion wit h t he host cont roller or t he li ke.
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing
operation automatically adjusts gains. The optimum tuning results are provided by setting the
response level appropriate for the machine in parameter No. 2.
4 - 4
4. OPERATION
(6) Stop
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo
motor:
Refer to Section 3.8, (2) for the servo motor equipped with electromagnetic brake. Note that
simultaneous ON or simultaneous OFF of stroke end (LSP, LSN) OFF and forward rotation start (ST1)
or reverse rotation start (ST2) signal has the same stop pattern as described below.
(a) Servo on (SON) OFF
The base circuit is shut off and the servo motor coasts .
(b) Alarm occurrence
When an alarm occurs, the base circuit is shut off and the dyn amic brake is operated to bring the
servo motor to a sudden stop.
(c) Forced stop (EMG) OFF
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden
stop. Alarm A. E6 occurs.
(d) Stroke end (LSP/LSN) OFF
The servo motor is brought to a s udden s t op and s ervo-lock ed. T he motor ma y be run in t he oppos it e
direction.
(e) Simultaneous ON or simultaneous OFF of forward rotation start (ST1) and reverse rotation start
(ST2) signals
The servo motor is decelerated to a stop.
4.2.4Torque control mode
(1) Power on
(a) Switch off the servo on (SON) signal.
(b) When main circuit power/control circuit power is switched on, "U (torque command voltage)"
appears on the parameter unit.
(2) Test operation
Using jog operation in the "test operation mode" of the Parameter unit, make sure that the servo motor
operates. (Refer to Section 6. 8.2 .)
(3) Parameter setting
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for
the parameter definitions and to Sections 6.5 for the setting method.
ParameterNameSettingDescription
No. 0Select the control mode4First digit: Torque control mode
No. 8Inte r nal spe ed command 11000Set 1000r/min.
No. 9Inte r nal spe ed command 21500Set 1500r/min.
No. 10Internal spe ed command 32000Set 2000r/min.
No. 11Acceler ation time constant1000Set 1000ms.
No. 12Decele r atio n tim e constant500Set 500ms.
No. 13
No. 14Torque c ommand time constant2000Se t 2000m s
No. 28Internal torque limit 150Controlled to 50% output
S-pattern acceleration/deceleration
time constant
0Not used
After setting the above parameters, switch power off once. Then switch power on again to make the
set parameter values valid.
4 - 5
4. OPERATION
(4) Servo on
Switch the servo on in the foll owing procedure:
1) Switch on main circuit/control power.
2) Switch on the servo on signal (S ON) (short S ON-SG).
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor
is locked.
(5) Start
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on
forward rotation select (DI4) to run the motor in the forward rotation (CCW) direction or reverse
rotation select (DI3) to run it in the reverse rotation (CW) direction, generating torque. At first, set a
low speed and check the rotation direction, etc. If it does not run in the intended direction, check the
input signal.
On the status displ ay, check t he s peed, l oad fact or, et c. of the s ervo motor.
When machine operation check is over, check aut omat ic opera t ion wit h t he host cont roller or t he li ke.
(6) Stop
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo
motor:
Refer to Section 3.8, (2) for the s ervo motor eq uipped wi th el ectr omagnet ic b rak e.
(a) Servo on (SON) OFF
The base circuit is shut off and the servo motor coasts .
(b) Alarm occurrence
When an alarm occurs, the base circuit is shut off and the dyn amic brake is operated to bring the
servo motor to a sudden stop.
(c) Forced stop (EMG) OFF
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden
stop. Alarm A. E6 occurs.
4.3 Multidrop Communication
You can use the RS-422 commu nicatio n f un ctio n to o pe rate two o r mo re se rv o amp lifie rs o n th e same bus.
In this case, set station numbers to the servo amplifiers to recognize the servo amplifier to which the
current data is being sent. Use parameter No. 15 to set the stat ion numbers.
Always set one station number to one servo amplifier. Normal communication cannot be made if the same
station number is set to two or more servo amplifiers.
For details, refer to Chapter 13.
4 - 6
5. PARAMETERS
5.PARAMETERS
CAUTION
y Never adjust or change the parameter values extr emely as it will make operation
instable.
5.1 Parameter List
5.1.1Parameter write inhibit
POINT
y After setting the parameter No. 19 value, switch power off, then on to make
that setting valid.
In the MR-J2-03A5 servo amp lifier, its parameters are classified into the basic parameters (No. 0 to 19)
and expansion parameters (No. 20 to 49) according to their safety aspects and frequencies of use. In the
factory setting condition, the customer can change the basic parameter values but cannot change the
expansion parameter values. When fine adjustment, e.g. gain adjustment, is required, change the
parameter No. 19 setting to make the expansion parameters write-enabled.
Parameter No. 19 Setti ngOperation
0000
(initial value)
000A
000B
000C
Reference{
Write{
ReferenceNo. 19 only
WriteNo. 19 only
Reference{{
Write{
Reference{{
Write{{
Basic Parameters
No. 0 to No. 19
Expansion Parameters
No. 20 to No. 49
5 - 1
5. PARAMETERS
5.1.2Lists
(1) Item list
No. SymbolName
0*STYControl mode selectionP x S x T0000
1*OP1Function selection 1P x S x T0002
2ATUAuto tuningP x S0104
3CMXElectronic gear (Command pulse multiplying factor numerator)P1
4CDV
5INPIn-position rangeP100pulse
6PG1Position loop gain 1P145rad/s
7PST
8SC1
9SC2
Basic parameters
10SC3
11STAAcceleration time constantS x T0ms
12STBDeceleration time constantS x T0ms
13STCS-pattern acceleration/deceleration time constantS x T0ms
14TQCTorque command time constantT0ms
15*SNO Station number settingP x S x T0station
16*BPSCommunication baudrate selection, alarm history clearP x S x T0000
17Spare0
18*DMD Status display selectionP x S x T0000
19*BLK Parameter blockP x S x T0000
POINT
• For any parameter whose symbol is preceded by*, set the paramet er valu e
and switch power off once, then switch it on again to make that parameter
setting valid.
For details of the parameters, refer to the corresponding items.
The symbols in the Cont rol M ode column of t he t ab le i ndica te t he fol lowing modes :
P : Position control mode
S : Speed control mode
T : Torque control mode
Control
Mode
Electronic gear (Command pulse m ultiplying factor
denominator)
Position command acceleration/deceleration time constant
(Smoothing)
Internal speed command 1S100r/min
Internal speed limit 1T100r/ min
Internal speed command 2S500r/min
Internal speed limit 2T500r/ min
Internal speed command 3S1000r/min
Internal speed limit 3T1000r/min
P1
P3ms
Initial
Value
Unit
Customer
Setting
5 - 2
5. PARAMETERS
No. SymbolName
20*OP2Function selection 2P x S x T0000
21*OP3Function se le c t io n 3 (Command pulse selection)P0000
22*OP4Function selection 4P x S x T0000
23FFCFeed for w ar d gainP0%
24ZSPZero speedP x S x T50 r/min
25VCM
26TLCAnalog torque command maximum outputT100%
27*ENR Encoder output pulsesP x S x T4000pulse
28TL1Internal torque limit 1P x S x T100%
29VCO
30TLO
31Spare0
32Spare0
33MBRElectromagnetic brake sequence o u tputP x S x T0 ms
34GD2
Basic parameters
35PG2Position loop gain 2P97rad/s
36VG1Speed loop gain 1P x S873rad/s
37VG2Speed loop gain 2P x S1144rad/s
38VICSpeed integral compensationP x S20ms
39VDCSpeed differential compensationP x S980
40Spare0
41*DIAInput signal automatic ON selectionP x S x T0000
42*DI1Input signal selection 1P x S x T0003
43*DI2Input signal selection 2 (CN1B-pin 5)P x S x T0111
44*DI3Input signal selection 3 (CN1B-pin 14)P x S x T0222
45*DI4Input signal selection 4 (CN1A-pin 8)P x S x T0665
46*DI5Input signal selection 5 (CN1B-pin 7)P x S x T0770
47*DI6Input signal selection 6 (CN1B-pin 8)P x S x T0883
48*DI7Input signal selection 7 (CN1B-pin 9)P x S x T0994
49*DO1Output signal selection 1P x S x T0000
Note1. The setting of "0" prov id es the ra ted servo motor s peed .
2. Depends on the s ervo amp lif ier.
Analog speed command maximum speedS
Analog speed limit maximum speedT
Analog speed command offsetS(Note2)mV
Analog speed limit offsetT(Note2)mV
Analog torque command offsetT0mV
Analog torque limit offsetS0mV
Ratio of load inertia moment to servo motor inertia moment
Used to select the control mode and regenerative brake option.
000
Select the control mode.
0:Position
1:Position and speed
2:Speed
3:Speed and torque
4:Torque
5:Torque and position
1*OP1 Function selection 1:
Used to select the input signal filter and CN1B-pin 19’s output
signal.
Initial
Value
00000000h
00020000h
Unit
Setting
Range
to
0005h
to
0012h
Control
Mode
P x S x T
P x S x T
Basic parameters
00
Input signal filter
If external input signal causes chattering
due to noise, etc., input filter is used to
suppress it.
0:None
1:1.77[ms]
2:3.55[ms]
CN1B-pin 19's function selection
0:Zero Speed detection signal
1:Electromagnetic brake interlock sugnal
5 - 4
5. PARAMETERS
Class No. SymbolName and Function
2ATUAuto tuning:
Used to set the response level, etc. for execution of auto tuning.
0
Auto tuning response level
setting
Set ValueResponse Level
1
Low response
2
3
Middle response
4
5
⋅
If the macine hunts or generates
High response
large gear sound, decrease the
set value.
⋅
To improve performance, e.g.
shorten the settling time, increase
the set value.
Select the machine.
For example, used to improve the
position setting characteristic
when friction is large.
0: Ordinary machine
1: Machine with large friction
Auto tuning selection
0: Auto tuning selected for use of interpolation
axis control, etc. in position control
1: Auto tuning for ordinary operation
Basic parameters
2: No auto tuning
Initial
Value
Unit
Setting
Range
01040001h
to
0215h
Control
Mode
P x S
3CMXElectronic gear numerator:
Set the value within the range of
1
100
<
CMX
<100 is exceeded, a parame te r error will occur.
CDV
If
1
50
<
CDV
< 50
CMX
4CDVAlways set the electronic gear in the servo off status to prevent
misoperation due to wrong setting
For the setting, refer to Section 5.2.1.
Set the multiplier for the comm and pulse input.
Command pulse inputPosition command
1
f
Note: Set the value within the range of
CMX
CDV
2 = f1
f
•
50
CMX
CDV
1
CMX
CDV
<
50
<
as a guideline.
Use the following formula to change the setting of input pulse count
per servo motor revolution.
(Example: HC-AQ series: 8192 pulses/ r ev)
8192 x
CDV
(pulse/rev)
CMX
11
P
to
32767
11
P
to
32767
5 - 5
5. PARAMETERS
Class No. SymbolName and Function
5INPIn-position range:
Used to set the droop pulse range in which the imposition (INP)
signal will be output.
6PG1Position loop gain 1:
Used to set the gain of position loop 1.
Increase the gain to improve trackability in re sponse to the position
command.
7PSTPosition command acceleration/deceleration time constant
(smoothing):
Used to set the time constant of a low pass filter in response to the
position command.
Example: When a command is given from a synchronizing detector,
synchronous operation can be started smoothly if started during line
operation.
Synchronizing
detector
Start
Servo amplifier
Servo motor
Initial
Value
100pulse0
145red/s4
3ms0
Unit
Setting
Range
to
10000
to
1000
to
20000
Control
Mode
P
P
P
Basic parameters
9SC2
Without time
constant setting
Servo motor
speed
ON
OFF
Start
Internal speed command 1:
Used to set speed 1 of internal speed commands.
Internal speed limit 1:
Used to set speed 1 of internal speed limits.
Internal speed command 2:
Used to set speed 2 of internal speed commands.
Internal speed limit 2:
Used to set speed 2 of internal speed limits.
With time
constant setting
t
100r/min
500r/min
0 to
instan-
taneous
permi-
ssible
speed
0 to
instan-
taneous
permi-
ssible
speed
S8SC1
T
S
T
5 - 6
5. PARAMETERS
Class No. SymbolName and Function
10SC3
Internal speed command 3:
Used to set speed 3 of internal speed commands.
Internal speed limit 3:
Used to set speed 3 of internal speed limits.
11STA0
Acceleration time constant:
Used to set the acceleration time required to reach the rated speed
from zero speed in response to the analog speed command and
internal speed commands 1 to 3.
If the preset command speed is
Speed
Rated
lower than the rated speed,
acceleration/deceleration time
will be shorter.
speed
Zero
speed
Parameter
No.11 setting
Parameter
No.12 setting
Example: Set 3000 (3s) to incre ase spee d from 0r/ min to 1000r/ min in
1 second.
POINT
Basic parameters
y When configuring an external position loop, set 0 or minimal
values in parameters No. 11 and 12.
Time
Initial
Value
Unit
1000r/min
ms0
Setting
Range
0 to
instan-
taneous
permi-
ssible
speed
to
20000
Control
Mode
S
T
S x T
12STBDeceleration time constant:
Used to set the deceleration time required to reach zero speed from
the rated speed in response to the analog speed command and
internal speed commands 1 to 3.
13STCS-pattern acceleration/deceleration time constant:
Used to smooth start/stop of the servo motor.
Command speed
Speed
Servomotor
0r/min
STA
STC
STA: Aeceleration time constant (parameter No.11)
STB: Deceleration time constant (parameter No.12)
STC: S-pattern acceleration/deceleration time con stant (parameter No.13)
STC
STC
STB
STC
Time
0
0ms0
to
1000
S x T
5 - 7
5. PARAMETERS
Class No. SymbolName and Function
14TQC
15*SNO Station number setting
16*BPS Comm unic atio n baudr ate selection, alarm history clear:
Torque command time constant:
Used to set the constant of a low pass filter in response to the to rque
command.
Torque
TQC: Torque command time constant
Used to specify the station number for multidrop communication.
Always set one station to one axis of servo amplifier. If one station
number is set to two or more stations, normal co m m unicatio n canno t
be made.
Used to select the communication baudrate for use of the set-up
software and to clear the alarm history.
Alarm history clear
0: Invalid
1: Valid
When alarm history clear is made valid,
the alarm history is clearedat next power-on.
After the alarm history is cleared, the setting
is automaticall y made invalid (reset to 0 ).
RS-422/RS-232C communication standard selection
0: RS-232C used
1: RS-485 used
Communication response delay time
0: Invalid, reply sent in less than 400µs
1: Valid, reply sent in 400µs or more
17Spare0
5 - 8
5. PARAMETERS
p
Class No. SymbolName and Function
*DMD
18
Status display selection:
Used to select the status display shown at power-on.
00
Selection of status display at
power-on
0: Cumulative feedback pulses
1: Servo motor speed
2: Droop pulses
3: Cumulative command pulses
4: Command pulse frequency
5: Analog speed command voltage
(Note 1)
6: Analog torque command voltage
(Note 2)
7: Regenerative load ratio
8: Effective load ratio
9: Peak load ratio
A: Within one-revolution position
B: ABS counter
C: Load inertia moment ratio
Note: 1.
In speed control mode. Analog
speed limit voltage in torque
control mode.
In torque control mode. Analog
2.
torque limit voltage in speed or
position control mode.
Initial
Value
Unit
Setting
Range
00000000h
to
001Ch
Control
Mode
P x S x T
Status display at power-on in
corresponding control mode
0: Depends on the control mode.
Basic parameters
19*BLK00000000h
Parameter block:
Control Mode
Position
Position/speed
Speed
Speed/torque
Torque
Torque/position
ends on the first digit setting of this parameter.
1: De
Cumulative feedback pulses/servo motor speed
Servo motor speed/analog torque command voltage
Analog torque command voltage/cumulative feedback pulses
Status Display at Power-On
Cumulative feedback pulses
Analog torque command voltage
Servo motor speed
Used to select the reference and write ranges of the parameters.
Set ValueOperation
0000
(Initial value)
000A
000B
000C
Reference
Write
ReferenceNo. 19 only
WriteNo. 19 only
Reference
Write
Reference
Write
Basic
Parameters
No. 0 to No. 19
{
{
{{
{
{{
{{
Expansion
Parameters
No. 20 to No. 49
P x S x T
to
000Ch
5 - 9
5. PARAMETERS
Class No. SymbolName and Function
20*OP2 Function sele ctio n 2:
Used to select restart after instantaneous power failure,
servo lock at a stop in speed control mode, and slight vibration
suppression control.
0
Restart after instantaneous
power failure
If the input power supply voltage
had reduced in the speed control
mode to stop the servo motor due
to the undervoltage alarm (A. 10)
but the supply voltage has returned to normal, the servo motor can
be restarted by merely switching
on the start signal without resetting the alarm.
0: Invalid
1: Valid
Stop-time servo lock selection
The shaft can be servo-locked to
remain still at a stop in th e speed
control mode.
Used to select stop processing at LSP/LSN signal off and choose the
machine resonance suppression filter.
0
How to make a stop when LSP/LSN
signal is valid.
0: Sudden stop
1: Slow stop
In the position control mode,
⋅
the servo motor is decelerated
to a stop according to parameter
No. 7 setting.
⋅
In the speed control mode,
the servo motor is decelerated
to a stop according to parameter
No. 12 setting.
VC/VLA voltage averaging
Used to set the filtering time when the
analog speed command (VC) voltage or
analog speed limit (VLA) is imported.
Set 0 to vary the speed to voltage fluctuation in real time. Increase the set value
to vary the speed slower to voltage fluctuation.
Expansion parameters
Set Value
0
1
2
37.11
Filtering Time [ms]
0
1.77
3.55
Initial
Value
00000000h
Unit
Setting
Range
to
7301h
Control
Mode
P x S x T
Machine resonance suppression filter
Set Value
0
1
2
3375
4
5
6
7161
Notch Frequency [Hz]
Not used
1125
563
282
225
188
5 - 11
5. PARAMETERS
Class No. SymbolName and Function
23FFCFeed forward gain:
Used to set the fee forward gain.
When it is set to 100%, droop pulses will not be generated in
constant-speed operation. Note that sudden acceleration/deceleration
will increase overshoot.
When setting this parameter, always set auto tuning (parameter No.
2) to ″No″
24ZSPZero speed:
Used to set the output range of the zero speed signal (ZSP).
25VCM
Used to set the speed at the maximum input voltage (10V) of the
analog speed command (VC).
Set 0 to select the rated speed.
Analog speed limit maximum speed:
Used to set the speed at the maximum input voltage (10V) of the
analog speed limit (VLA).
Set 0 to select the rated speed.
26TLCAnalog torque command maximum output:
Used to set the output torque at the analog torque co mmand voltage
(TC = ±8V) of +8V on the assumption that the maximum torque is
100[%]. For example, set 50 to output (maxim um torque × 50/ 100) at
the TC of +8V.
27*ENR Encoder output pulses:
Expansion parameters
28TL1100%0
Used to set the number of output pulses per encoder revolution
output by the servo amplifier.
Internal torque limit 1:
Set this parameter to limit servo motor-generated torque on the
assumption that the maximum torque is 100[%]. When 0 is set,
torque is not produced.
Internal torque limit 1:
Set this parameter to limit servo motor-generated torque on the
assumption that the maximum torque is 100[%].
When 0 is set, torque is not produced.
34GD2Ratio of load inertia moment to servo motor inertia moment:
35PG2Position loop gain 2:
Expansion parameters
36VG1Speed loop gain 1:
37VG2Speed loop gain 2:
38VICSpeed integral compensation
Analog speed command offset:
Used to set the offset voltage of the analog speed command (VC).
When automatic VC offset is used, the automatically offset value is
set to this parameter.
The initial value is the value provided by the automatic VC offset
function before shipment at the VC-LG voltage of 0V.
Analog speed limit offset:
Used to set the offset voltage of the analog speed limit (VLA). When
automatic VC offset is used, the auto-matically offset value is set to
this parameter.
The initial value is the value provided by the automatic VC offset
function before shipment at the VLA-LG voltage of 0V.
Analog torque command offset:
Used to set the offset voltage of the analog torque command (TC).
Analog torque limit offset:
Used to set the offset voltage of the analog torque limit (TLA).
Used to set the delay time (Tb) between electromagnetic brake
operation and the base drive circuit is shut-off.
Used to set the ratio of the load inertia mo ment to the servo motor
shaft inertia moment. When auto tuning is selected, the result of
auto tuning is auto-matically set.
Used to set the gain of the position loop.
Set this parameter to increase the position response to level load
disturbance. Higher setting increases the response level but is liable
to generate vibration and/or noise.
When auto tuning is selected, the result of auto tuning is
automatically set.
Normally this parameter setting need not be changed.
Higher setting increases the response level but is liable to generate
vibration and/or noise.
When auto tuning is selected, the result of auto tuning is
automatically set.
Set this parameter when vibration occurs on machines of low rigidity
or large backlash. Higher setting increases the response level but is
liable to generate vibration and/or no ise.
When auto tuning is selected, the result of auto tuning is
automatically set.
Used to set the integral time constant of the speed loop.
When auto tuning is selected, the result of auto tuning is
automatically set.
Initial
Value
Depends
on servo
amplifier
100ms0
216rad/s20
714rad/s20
Unit
mV−999
.
0mV−999
70
×
0.1
times0to
30rad/s1
ms1
20
Setting
Range
to
999
to
999
to
1000
1000
to
500
to
5000
to
8000
to
1000
Control
Mode
S
T
T30TLO
S
P x S x T
P x S x T
P
P x S
P x S
P x S
5 - 13
5. PARAMETERS
Class No. SymbolName and Function
39VDCSpeed differential compensation:
Used to set the differential compensation.
Made valid when the proportion control signal is switched on.
40Spare0
Used to set automatic ON of SON, LSP and LSN.
0
Servo on signal (SON) input selection
0: Switched on/off by external input.
1: Switched on automatically in servo:
amplifier.
(No need of external wiring)
Forward rotation stroke end signal
(LSP) input selection
0: Switched on/off by external input.
1: Switched on automatically in servo
amplifier.
(No need of external wiring)
Reverse rotation stroke end signal (LSN)
input selection
0: Switched on/off by external input.
1: Switched on automatically in servo
amplifier.
(No need of external wiring)
42*DI1Input signal selection 1:
Used to assign the control mode changing signal input pins and to set
the clear signal.
Initial
Value
9800
0000
00030000h
Unit
Setting
Range
to
1000
0000h
to
0111h
to
0015h
Control
Mode
P x S
P x S x T41* DIAInput signal automatic ON selection:
P x S
Expansion parameters
00
Control change signal (LOP) input pin assignment
Used to set the control mode
change signal input connector
pins. Note that this parameter is
made valid when parameter No.
0 is set to select the position/speed, speed/torque or torque/position change mode.
Set Value
0
1
2
3CN1B-7
4CN1B-8
5CN1B-9
Clear signal (CR) selection
0: Droop pulses are cleared on the
leading edge.
1: Always cleared while on.
Connector Pin No.
CN1B-5
CN1B-14
CN1A-8
P/S
S/T
T/P
P x S x T
5 - 14
5. PARAMETERS
Class No. SymbolName and Function
43*DI2Input signal selection 2 (CN1B-pin 5):
This parameter is unavailable when para meter No. 42 is set to assign
the control change signal (LOP) to CN 1B-pin 5.
Allows any input signal to be assigned to CN1B-pin 5.
Note that the setting digit and assigned signal differ according to the
control mode.
0
Position
control mode
Speed control
mode
Torque control mode
Signals that may be assigned in each control mode are indicated
below by their symbols.
Set value
0
1
2
3
4
5
6
Expansion parameters
7
8
9
PST
SONSONSON
RESRESRES
PCPC
TLTLTL
CRCRCR
Input signals of
CN1B-pin 5
selected.
(Note) Control Mode
SP1SP1
SP2SP2
ST1RS2
ST2RS1
Initial
Value
0111
Unit
Setting
Range
0000h
to
0999h
Control
Mode
P x S x T
Note: P: Position control mode
S: Speed control mo de
T: Torque control mode
44*DI3Input signal selection 3 (CN1B-pin 14):
This parameter is unavailable when para meter No. 42 is set to assign
the control change signal (LOP) to CN 1B-pin 14.
Allows any input signal to be assigned to CN1B-pin 14.
The assignable signals and setting method are the same as in input
signal selection 2 (parameter N o. 43).
0
Position
control mode
Speed control
mode
Torque control mode
Input signals of
CN1B-pin 14
selected.
0222
0000h
to
0999h
P x S x T
5 - 15
5. PARAMETERS
Class No. SymbolName and Function
45*DI4Input signal selection 4 (CN1A-pin 8):
This parameter is unavailable when para meter No. 42 is set to assign
the control change signal (LOP) to CN 1 A-pin 8.
Allows any input signal to be assigned to CN1A-pin 8.
The assignable signals and setting method are the same as in input
signal selection 2 (parameter N o. 43).
0
Position
control mode
Speed control
mode
Torque control mode
46*DI5Input signal selection 5 (CN1B-pin 7):
This parameter is unavailable when para meter No. 42 is set to assign
the control change signal (LOP) to CN 1 B-pin 7.
Allows any input signal to be assigned to CN1B-pin 7.
The assignable signals and setting method are the same as in input
signal selection 2 (parameter N o. 43).
0
Position
control mode
Speed control
mode
Torque control mode
Input signals of
CN1A-pin 8
selected.
Input signals of
CN1B-pin 7
selected.
Initial
Value
0665
0770
Unit
Setting
Range
0000h
to
0999h
0000h
to
0999h
Control
Mode
P x S x T
P x S x T
47*DI6Input signal selection 6 (CN1B-pin 8):
This parameter is unavailable when para meter No. 42 is set to assign
Expansion parameters
48*DI7Input signal selection 7 (CN1B-pin 9):
the control change signal (LOP) to CN 1B-pin 8.
Allows any input signal to be assigned to CN1B-pin 8.
The assignable signals and setting method are the same as in input
signal selection 2 (parameter N o. 43).
0
Position
control mode
Speed control
mode
Torque control mode
This parameter is unavailable when parameter No. 42 is set to
assign the control change signal (LOP) to CN1B-pin 9.
Allows any input signal to be assigned to CN1B-pin 9.
The assignable signals and setting method are the same as in input
signal selection 2 (parameter N o. 43).
0
Position
control mode
Speed control
mode
Torque control mode
Input signals of
CN1B-pin 8
selected.
Input signals of
CN1B-pin 9
selected.
0883
0994
0000h
to
0999h
0000h
to
0999h
P x S x T
P x S x T
5 - 16
5. PARAMETERS
Class No. SymbolName and Function
49*DO1 Output signal selection 1:
Used to select the connector pins to output the alarm code and
warning (WNG).
0
0
Setting of alarm code output
Set Value
(Note) Alarm Code
CN1B
CN1A
pin 19
pin 18
000
00
100
01
1
Expansion parameters
0
0
1
1
1
CN1B-19
0ZSP
1
Alarm code is output at alarm occurrence.
Alarm
CN1A
Display
pin 19
8888
A. 11
A. 12
A. 13
A. 15
A. 17
A. 18
A. 37
A. 8E
A. 33
1
A. 10
A. 50
1
A. 51
A. 24
0
A. 32
A. 31
A. 35
1
A. 52
A. 16
0
A. 20
Note: 0:OFF
1:ON
Setting of warning (WNG) output
Select the connector pin to output
warning. The old signal before
selection will be unavailable.
• The guideline of the electronic gear setting range is
set value is outside this range, noise may be generated during
acceleration/deceleration or operation may not be performed at the preset
speed and/or acceleration/decelerat ion t ime cons t ant s.
(1) Concept of electronic gear
The machine can be moved at any multiplication factor to input pulses.
CMX
CMX
CDV
=
3 No. Parameter
4 No. Parameter
CDV
Input pulse train
Electronic gear
Parameters No. 3, 4
+
Deviation
counter
−
Encoder feedback pulse
1
50
<
CMX
< 50. If the
CDV
Motor
Encoder
The following setting exa mples a re us ed to expl ai n how to ca lc ula te t he elect roni c gea r:
(a) For motion in increments of 10µm per puls e
Machine specifications
Ballscrew lead Pb =10 [mm]
Reduction ratio: n = 1/2
Servo motor resolution: Pt = 8192 [pulses/rev]
CMX
CDV
=∆
Pt
οx
l
∆
S
= ∆
ο x =
l
Pt
⋅
Pbn
10×10-3 x
8192
⋅
1021
n=NL/NM
=1/2
Servo motor
8192 [pulse/rev]
16384
=
1000
NL
=
n
Pb=10[mm]
NM
2048
125
Hence, set 2048 to CMX and 125 to CDV.
(b) Conveyor setting example
For rotation in increments of 0.01° per pulse
Servo motor
Machine specifications
8192 [pulse/rev]
Table
Table resolution: 36000 pulses/rev
Reduction ratio: n = 4/64
Servo motor resolution: Pt = 8192 [pulses/rev]
Timing belt : 4/64
CMX
CDV
=
Pt
∆
=
S
Pt
131072
=
×
64436000
36000
=
4096
1125
Reduce CDV to 32767 or less and round off the result to the units.
Hence, set 4096 to CMX and 1125 to CDV.
5 - 18
5. PARAMETERS
(2) Setting for use of AD75P
The AD75P also has the following electronic gear parameters. Normally, the servo amplifier side
electronic gear must also be set due to the restriction on the command pulse frequency (differential
500kpps, open collector 200kpps).
AP: Number of pulses per motor revolut ion
AL: Moving distance per motor revolution
AM: Unit scale factor
Servo amplifierAP75P
Command
value
Control
unit
AP
AMAL
Electronic gear
Command
pulse
+
CMX
CDV
-
Electronic gear
Deviation
counter
Feedback pulse
Servo motor
Electronic gear setti ng exam ple for us e of AD7 5P
Rated Servo Motor Speed3000r/min
Input systemOpen collectorDifferential line driver
Servo amplifier
AD75P
Note: 1. Command pulse frequency at rated sp eed
2. Assuming that AP=8192 and AL=8000, the c ommand unit amount per mot or revolution is 8000 pulses/r ev, which
makes positioning data setting easier.
3. In the case where the ballscrew lead is 10mm.
Max. input pulse frequency200kpps500kpps
Feedback pulse/revolutio n8192pulse/rev
Electronic gear (CMX/CDV)125/2561/1
Command pulse frequency (N ote 1)200kpps409.6kpps
Number of pulses per ser v o motor revolution as viewed from AD75P 4000pulse/rev8192pulse/rev
The status display item of the servo amplifier display shown at power-on can be changed by changing the
parameter No. 18 settings.
The item displayed in the initial status changes with the control mode as follows:
Control ModeDisplayed Item
Position control modeCumulative feedback pulses
Speed control modeMotor speed
Torque control modeTorque command voltage
For display details, refer to Section 6.2.
00
Selection of status display at
power-on
0: Cumulative feedback pulses
1: Servo motor speed
2: Droop pulses
3: Cumulative command pulses
4: Command pulse frequency
5: Analog speed command voltage
(Note 1)
6: Analog torque command voltage
(Note 2)
7: Regenerative load ratio
8: Effective load ratio
9: Peak load ratio
A: Within one-revolution position
B: ABS counter
C: Load inertia moment ratio
Note: 1.
In speed control mode. Analog
speed limit voltage in torque
control mode.
2.
In torque control mode. Analog
torque limit voltage in speed or
position control mode.
Status display at power-on in
corresponding control mode
0: Depends on the control mode.
Control Mode
Position
Position/speed
Speed
Speed/torque
Torque
Torque/position
1: Depends on the first digit setting of this parameter.
Cumulative feedback pulses/servo motor speed
Servo motor speed/analog torque command voltage
Analog torque command voltage/cumulative feedback pulses
Status Display at Power-On
Cumulative feedback pulses
Servo motor speed
Analog torque command voltage
5 - 20
5. PARAMETERS
5.2.3Using forward/reverse rotation stroke end to change the stopping pattern
The stopping pattern is factory-set to make a sudden stop when the forward/reverse rotation stroke end is
made valid. A slow stop can be made by changing the parameter No. 22 value.
Parameter No.22 SettingStopping Method
0
(initial value)
1
5.2.4Alarm history clear
The servo amplifier st ores one current al arm a nd five pa s t a la rms from when i ts power i s s wit ched on firs t .
To control alarms which will occur during operation, clear the alarm history using parameter No.16 before
starting operation.
Sudden stop
Droop pulses are reset to make a stop .
Slow stop
Position control mode : The motor is decelerated to a stop in accordance with the
parameter No. 7 value.
Speed control mode: The motor is decelerated to a stop in accordance with the
parameter No. 12 value.
Parameter No.16
Alarm history clear
0: Invalid (not cleared)
1: Valid (cleard)
5 - 21
6. DISPLAY AND OPERATION
6.DISPLAY AND OPERATION
6.1 Display Flowchart
Use the display (4-digit, 7-segment LED) on the front panel of the servo amplifier for status display,
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external
sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move
to the next screen.
To refer to o r set the expansion p arameters, make them valid w ith parameter No. 19 (p arameter write
disable).
button
Status display
(Note)
Cumulative feedback
pulses [pulse]
(Note)
Motor speed
[r/min]
Sequence
External I/O
signal di splay
Diagnosis
MODE
Current alarm
Last ala r m
Alarm
Basic parameters
Parameter N o . 0
Parameter N o . 1
Expansion
parameters
Parameter N o . 2 0
Parameter N o . 2 1
Droop pulses
[pulse]
Cumulative command
pulses [pulse]
Command pulse
frequency [kpps]
Speed command voltage
Speed limit voltage[mV]
(Note)
Torque limit voltage
Torque command voltage
Regenerative load
ratio [%]
[mV]
Effective load ratio
[%]
Peak load ratio
[%]
Output signal
forced output
Test operation
Jog feed
Test operation
Positioning operation
Test operation
Motor-less operation
Software
version L
Software
version H
Automatic VC
offset
Second alarm
in past
Third alarm
in past
Fourth alarm
in past
Fifth alarm
in past
Sixth alarm
in past
Parameter
error No.
Parameter N o . 1 8
Parameter N o . 1 9
UP
DOWN
Parameter N o . 4 8
Parameter N o . 4 9
Within one-revolution
position [pulse]
Multi-revolution
counter [rev]
Load inertia moment
ratio [time s]
Note: The initial status display at power-on depends on the control mode.
Positon control mode: Cumulative feedback pulses(C), Speed control mode: Motor speed(r),
Torque control mode: Torque command voltage(U)
6 - 1
6. DISPLAY AND OPERATION
6.2 Status Display
The servo status during operation is shown on the 4-digit, 7-segment LED display. Press the "UP or
"DOWN" button to c hange d isplay data as desire d. When the re quired data is sele cted, the cor respon ding
symbol appears. Press the "SET" button to display its data.
The servo amplifier displa y s hows t he l ower four digit s of 13 dat a i tems s uch a s t he mot or speed.
The following table lists display examples:
ItemStatus
Forward rotation at 3000r/ min
Motor speed
Displayed Data
Servo amplifier displ ay
Load inertia
moment
Multirevolution
counter
Reverse rotation at 3000r/ min
15.5 times
11252pulse
−12566pulse
Lit
Reverse rotation is indicated by the lit decimal points in the upper three
digits.
Value of ×0.1 times is shown.
Lit
Negative value is indicated by the lit decimal points in the upper three
digits.
6 - 2
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.