MITEL PDSP16116MCGGDR, PDSP16116AA0AC, PDSP16116AB0AC, PDSP16116AB0GG, PDSP16116B0AC Datasheet

...
Supersedes October 1996 version, DS3707 - 4.2 DS3707 - 5.3 October 1997
PDSP16116
16 X 16 Bit Complex Multiplier
FEATURES
Complex Number (16116)3(16116) Multiplication
Full 32-bit Result
20MHz Clock Rate
Block Floating Point FFT Butterfly Support
Two’s Complement Fractional Arithmetic
TTL Compatible I/O
Complex Conjugation
2 Cycle Fall Through
144-pin PGA or QFP packages
APPLICATIONS
Fast Fourier Transforms
Digital Filtering
Radar and Sonar Processing
Instrumentation
Image Processing
ORDERING INFORMATION
PDSP16116 MC GGDR 10MHz MIL-883 screened PDSP16116A B0 AC 20MHz Industrial PDSP16116A A0 AC 20MHz Military PDSP16116A B0 GG 20MHz Industrial PDSP16116A MC GGDR 20MHz MIL-883 screened PDSP16116B B0 AC 25MHz Industrial PDSP16116D B0 GG 31·5MHz Industrial
ASSOCIATED PRODUCTS
PDSP16318/A Complex Accumulator PDSP16112/A (16116)3(12112) Complex Multiplier PDSP16330/A Pythagoras Processor PDSP1601/A ALU and Barrel Shifter PDSP16350 Precision Digital Modulator PDSP16256 Programmable FIR Filter PDSP16510 Single Chip FFT Processor
Fig. 1 Simplified block diagram
PR15:0
ADD/SUB
REG
MULT
REG
REG
MULT
REG
REG
MULT
REG
REG
MULT
REG
ADD/SUB
SHIFT
REG
SHIFT
REG
PI15:0
XR15:0 XI15:0 YR15:0 YI15:0
The PDSP16116 contains four 16316 array multipliers, two 32-bit adder/subtractors and all the control logic required to sup­port Block Floating Point Arithmetic as used in FFT applications.
The PDSP16116A variant will multiply two complex (16116) bit words every 50ns and can be configured to output the com­plete complex (32132) bit result within a single cycle. The data format is fractional two’s complement.
In combination with a PDSP16318A, the PDSP16116A forms a two-chip 20MHz complex multiplier accumulator with 20-bit accumulator registers and output shifters. The PDSP16116A in combination with two PDSP16318As and two PDSP1601As forms a complete 20MHz Radix 2 DIT FFT butterfly solution which fully supports block floating point arithmetic. The PDSP16116 has an extremely high throughput that is suited to recursive algorithms as all calculations are performed with a single pipeline delay (two cycle fall-through).
PDSP16116
2
SYSTEM FEATURES
The PDSP16116 has a number of features tailored for sys­tem applications.
(21)3(21) Trap
In multiply operations using two’s complement fractional no­tation, the (21)3(21) operation forms an invalid result because 11 is not representable in the fractional number range. The PDSP16116 eliminates this problem by trapping the (21)3(21) operation and forcing the multiplier result to become the most positive representable number.
Complex Conjugation
Many algorithms using complex arithmetic require conjuga­tion of complex data stream. This operation has traditionally re­quired an additional ALU to multiply the imaginary component by -1. The PDSP16116 eliminates this requirement by offering on-chip complex conjugation of either of the two incoming com­plex data words with no loss in throughput.
Easy Interfacing
As with all PDSP family members the PDSP16116 has reg­istered l/O for data and control. Data inputs have independent clock enables and data outputs have independent three state output enables.
Signal
XR15:0
Xl15:0
YR15:0
Yl15:0
PR15:0
Pl15:0
CLK
CONX
CONY
ROUND
MBFP
AR15:1 3
Al15:1 3
WTA1:0
WTB1:0
WTOUT1:0
SFTA1:0
SFTR2:0
GWR4:0
OSEL1:0
V
DD
GND
Type
Input
Input
Input
Input
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Output
Output
Output
Output
Input
Input
Power
Power
Description
16-bit input for real X data
16-bit input for imaginary X data
16-bit input for real Y data
16-bit input for imaginary Y data
16-bit output for real P data
16-bit output for imaginary P data
Clock; new data is loaded on rising edge of CLK
Clock, enable X-port input register
Clock, enable Y-port input register
Conjugate X data
Conjugate Y data
Rounds the real and imaginary results
Mode select (BFP/Normal)
Start of BFP operations (see Note 1)
End of pass (See Note 1)
3 MSBs from real part of A-word (See Note 1)
3 MSBs from imaginary part of A-word (See Note 1)
Word tag from A-word
Word tag from B-word/shift control (See Note 2)
Word tag output (See Note 1)
Shift control for A-word / overflow flag (See Note 2)
Shift control for accumulator result (See Note 1)
Global weighting register contents (See Note 1)
Selects the desired output configuration
Output enables
15V Supply (See Note 3)
0V Supply (See Note 3)
Normal
mode
configuration
Tie low
Tie low
Tie low
Tie low
Tie low
Tie low
NOTES
1. Used only in BFP mode
2. Performs different functions in BFP/Normal modes
3. All supply pins must be connected
Table 1 Signal descriptions
CEX
CEY
SOBFP
EOPSS
OER, OEI
PDSP16116
3
Fig. 2 PDSP16116 Block diagram
ADD/SUB
DECODE
REG
REG
16316
MULT
MUX
XR15:0
C O M P
REG
REG
MUX
XI15:0
C O M P
REG
REG
MUX
YR15:0
C O M P
REG
REG
MUX
YI15:0
C O M P
16316
MULT
16316
MULT
16316
MULT
ADD/SUB
CONX CONY
SHIFT
REG
SHIFT
REG
MUX MUX
OVR
CEYCEX
CONTROL
LOGIC
CLK
WTA
AR15:13
WTB
AI15:13
SOBPF
EOPSS
SFTR
SFTA
GWR4:0
WTOUT
ROUND
OSEL
ROUND
OSEL
OER OEI
PR15:0 PI15:0
INTERNAL
SIGNALS
‘1’
PDSP16116
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A B C D E F G H J K L M N P R
PIN 1 IDENT
(SEE NOTE 2)
PIN 144
PIN 1
Fig. 3a Pin connections for 144 I/O power pin grid array package (bottom view)
Fig. 3b Pin connections for 144 I/O ceramic quad flatpack (top view)
Fig. 3 Pin connection diagrams (not to scale). See Table 1 for signal descriptions and Table 2 for pinouts.
AC144 (POWER)
GG144
PDSP16116
5
Signal
V
DD
GND PR13 PR12 PR11 PR10
PR9 PR8 PR7 PR6 PR5
GND
V
DD
PR4 PR3 PR2 PR1 PR0
PI0 PI1 PI2 PI3 PI4
V
DD
PI5
GND
PI6 PI7 PI8
PI9 PI10 PI11 PI12 PI13
GND
V
DD
GG
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Signal
PI14
PI15 WTOUT1 WTOUT0
SFTR0 SFTR1 SFTR2
OEI
CONY CONX
ROUND
AI13
AI14
AI15
AR13 AR14 AR15
YI15
YI14
YI13
YI12
YI11
YI10
YI9 YI8 YI7 YI6 YI5 YI4 YI3 YI2 YI1 YI0 XI0
GND
V
DD
AC
D3 C2 B1 D2 E3 C1 E2 D1 F2 F3
E1 G2 G3
F1 G1
H2
H1
H3
J3 J1
K1
J2 K2 K3
L1
L2
M1
N1
M2
L3 N2 P1
M3
N3 B2 A1
GG
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Signal
XI1 XI2 XI3 XI4 XI5 XI6 XI7 XI8
XI9 XI10 XI11 XI12 XI13 XI14 XI15
CEY CEX
XR15 XR14 XR13 XR12 XR11 XR10
XR9 XR8 XR7 XR6 XR5 XR4 XR3 XR2 XR1 XR0
YR15 YR14 YR13
AC
N4 P3 R2 P4 N5 R3 P5 R4 N6 P6 R5 P7 N7 R6 R7 P8 R8 N8 N9 R9
R10
P9 P10 N10 R11 P11 R12 R13 P12 N11 P13 R14 N12 N13 P14 R15
GG
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 106 107 108
Signal
GND
V
DD
YR12 YR11 YR10
YR9 YR8 YR7 YR6 YR5 YR4 YR3 YR2 YR1 YR0
EOPSS
V
DD
SOBFP
WTB1 WTB0 WTA1 WTA0 MBFP
CLK OSEL1 OSEL0
OER
SFTA0 SFTA1 GWR0 GWR1 GWR2 GWR3 GWR4
PR15 PR14
AC
P2
R1 P15 M14
L13
N15
L14 M15 K13 K14
L15
J14
J13 K15
J15 H14 H15 H13 G13 G15 F15 G14 F14 F13 E15 E14 D15 C15 D14 E13 C14 B15 D13 C13 B14 A15
GG
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
AC
N14
M13
A14 B12 C11 A13 B11 A12
C10
B10 A11 B13
C12
A10
A9 B8 A8 C8 C7 A7 A6 B7 B6 C6 A5 B5 A4 A3 B4 C5 B3 A2 C4 C3 B9 C9
NOTE. All GND and VDD pins must be used
Table 2 Pin connections for AC144 (Power) and GG144 packages
PDSP16116
6
NORMAL MODE OPERATION
When the MBFP mode select input is held low the ‘Normal’ mode of operation is selected. This mode supports all complex multiply operations that do not require block floating point arithmetic.
Complex two’s complement fractional data is loaded into the X and Y input registers via the X and Y Ports on the rising edge
of CLK. The X and Y port registers are individually enabled by the
CEX
and
CEY
signals respectively. If the registers are re­quired to be permanently enabled, then these signals may be tied to ground.
The Real and Imaginary components of the fractional data
are each assumed to have the following format:
Bit Number
15
Weighting
14131211109 76543210
S
2
15
2
14
2
13
2
12
2
11
2
10
2
9
2
8
2
6
2
5
2
4
2
3
2
2
2
1
8
2
7
Where S = sign bit, which has an effective weighting of 22
0
The value of the 16-bit two’s complement word is (213S)1(bit143221)1(bit133222)1(bit123223) …
Multiplier Stage
On each clock cycle the contents of the input registers are passed to the four multipliers to start a new complex multiply operation. Each complex multiply operation requires four partial products (XR3YR), (XR3YI), (XI3YR), (XI3YI), all of which are calculated in parallel by the four 16316 multipliers. Only one clock cycle is
required to complete the multiply stage before the multiplier results are loaded into the multiplier output registers for passing on to the adder/ subtractors in the next cycle. Each multiplier produces a 31­bit result with the duplicate sign bit eliminated. The format of the output data from the multipliers is:
Bit Number
30
Weighting
292827262524 76543210
S
2
30
2
29
2
28
2
27
2
26
2
25
2
24
2
23
2
6
2
5
2
4
2
3
2
2
2
1
The effective weighting of the sign bit is 22
0
Adder/Subtractor Stage
The 31-bit real and imaginary results from the multipliers are passed to two 32-bit adder/subtractors. The adder calcu­lates the imaginary result [(XR 3 YI) 1 (XI 3 YR)] and the
Rounding
The ROUND control when asserted rounds the most significant 16 bits of the full 32-bit result from the shifter. If the ROUND signal is active (high), then bit 16 is set to ‘1’, rounding the most significant 16 bits of the shifted result. (The least
significant 16 bits are unaffected). Inserting a ‘1’ ensures that the rounding error is never greater than 1 LSB and that no DC bias is introduced as a result of the rounding processes. The format of the rounded result is:
The effective weighting of the sign bit is 22
1
Bit Number
30
Weighting
29 28 27 17 16 15 14 13 2 1 0
S
2
30
2
29
2
28
2
17
2
16
2
15
2
14
2
13
2
3
2
2
2
1
2
0
31 18
2
1
2
ROUNDED VALUE
LSBs
The effective weighting of the sign bit is 22
1
Bit Number
30
Weighting
29282726 76543210
S
2
30
2
29
2
28
2
27
2
26
2
25
2
24
2
23
2
4
2
3
2
2
2
1
2
0
31 8
2
22
subtractor calculates the real result (XR 3 YR) = (XI 3 YI). Each adder/subtractor produces a 32-bit result with the following format:
Result Correction
Due to the nature of the fraction two’s complement repre­sentation it is possible to represent 21 exactly but not 11. With conventional multipliers this causes a problem when 21 is mul­tiplied by 21 as the multiplier produces an incorrect result. The PDSP16116 includes a trap to ensure that the most positive number (value = 1·2
230
, hex = 7FFFFFFFF) is substituted for the incorrect result. The multiplier result is therefore always a correct fractional value. Fig.2 shows the value ‘1’ being multi­plexed into the data path controlled by four comparators.
Complex Conjugation
Either the X or Y input data may be complex conjugated by asserting the CONX or CONY signals respectively. Asserting either of these signals has the effect of inverting (multiplying by 21 ) the imaginary component of the respective input. Table 3 shows the effect of CONX and CONY on the X and Y inputs.
Table 3 Conjugate functions
CONYCONX
Low High Low High
Low Low High High
Function
(XR 1 XI)3(YR 1 YI) (XR 2 XI)3(YR 1 YI) (XR 1 XI)3(YR 2 YI) Invalid
Operation
X 3 Y Conj. X 3 Y X 3 Conj. Y Invalid
Loading...
+ 11 hidden pages