MITEL MT90500AL Datasheet

MT90500
Multi-Channel ATM AAL1 SAR
Features
AAL1 Segmentation and Reassembly device compatible with Structured Data Transfer (SDT) as per ANSI T1.630 and ITU I.363 standards
Transports 64kbps and N x 64kbps traffic over ATM AAL1 cells (also over AAL5 or AAL0)
Simultaneous processing of up to 1024 bidirectional Virtual Circuits
Flexible aggregation capabilities (Nx64) to allow any combination of 64 kbps channels while maintaining frame integrity (DS0 grooming)
Support for clock recovery - Adaptive Clock Recovery, Synchronous Residual Time Stamp (SRTS), or external
Primary UTOPIA port (Level 1, 25 MHz) for connection to external PHY devices with data throughput of up to 155 Mbps
Secondary UTOPIA port for connection to an external AAL5 SAR processor, or for chaining multiple MT90500 devices
16-bit microprocessor port, configurable to Motorola or Intel timing
TDM bus provides 16 bidirectional serial TDM
DS5171 ISSUE 4 April 1999
Ordering Information
MT90500AL 240 Pin Plastic QFP
-40 to +85 C
streams at 2.048, 4.096, or 8.192 Mbps for up to 2048 TDM 64 kbps channels
Compatible with ST-BUS, MVIP, H-MVIP and SCSA interfaces
Supports master and slave TDM bus clock operation
Loopback function at TDM bus interface
Local TDM bus provides clocks, input pin and output pin for 2.048 Mbps operation
Master clock rate up to 60 MHz
Dual rails (3.3V for power minimization, 5V for standard I/O)
IEEE1149 (JTAG) interface
To/From External PHY
From External ATM SAR
Main UTOPIA Interface
Secondary UTOPIA Interface
TX
UTOPIA
MUX
RX
UTOPIA
UTOPIA Module
VC
Lookup
Tables
Boundary Scan
Control Structures
and Circular Buffers
External Memory Controller
TX
AAL1
SAR
RX
AAL1
SAR
JTAG
Interface
TX / RX
External Synchronous SRAM
TDM Module
TDM Bus
Interface
Internal
TDM
Frame Buffer
Microprocessor
16-bit Microprocessor Address
and Data Buses
TDM
Clock Logic
Clock
Recovery
Registers
Interface
TDM Bus 16 Lines 2048 x 64 kbps (max.)
Local TDM Bus 32 x 64 kbps in
32 x 64 kbps out Clock Signals
Figure A - MT90500 Block Diagram
1
MT90500
Applications
B-ISDN (Broadband ISDN) systems requiring flexible N x 64kbps transport
Connecting TDM backplane to TDM backplane over ATM network (GO-MVIP MC4, or other)
Systems requiring ANSI T1.630 Structured Data Transfer services for 1 to 122 TDM channels per VC
Systems requiring ITU-T I.363.1 circuit transport over Structured Data Transfer for 1 to 96 TDM channels per VC
Systems requiring AF-VTOA-0078.000 (ATM Forum CES v2.0) “Logical Nx64 Basic Service”
Systems requiring AF-VTOA-0083.000 Voice and Telephony over ATM (CBR-AAL5).
Mapping between CBR-AAL0, CBR-AAL5, and AAL1
Mapping between CBR partially-filled cells and full cells
Mapping between CBR single-voice cells and Nx64 cells
ATM uplink for expansion of COs, PBXs, or open switching platforms using an adjunct ATM switch
ATM Public Network access for PBX or CO
ATM Edge Switches and CPE Integrated­Access over ATM
TDM traffic transfer over an asynchronous cell bus
Systems requiring Nx64 over CBR-AAL5.
Description
The MT90500 Multi-Channel AAL1 SAR is a highly integrated solution which allows systems based on a telecom bus to be interfaced to ATM networks using ATM Adaptation Layer 1 (AAL1), ATM Adaptation Layer 5 (AAL5) and ATM Adaptation Layer 0 (AAL0). The MT90500 can be connected directly to a ST-BUS time division multiplexed (TDM) backplane containing up to 1024 full duplex 64kbps channels. Up to 1024 bi-directional ATM VC connections can be simultaneously processed by the MT90500 AAL1 SAR device.
On the synchronous TDM bus side, the MT90500 device interfaces with sixteen bidirectional ST-BUS serial links operating at 2.048, 4.096 or 8.192 Mbps. TDM bus compatibility with MVIP-90, H-MVIP, and SCSA interfaces is also provided.
On the ATM interface side, the MT90500 device meets the ATM Forum standard UTOPIA Bus Level
1. This supports connection to a range of standard physical layer (PHY) transceivers.
The MT90500 provides a built-in UTOPIA multiplexer which allows external ATM cells to be multiplexed with internally-generated cells in the transmit direction. This feature can be used to connect another MT90500 (to expand the TDM bandwidth of the system to 4096 TDM channels), or to connect an external AAL5 SAR (to multiplex non-CBR ATM cell traffic with the MT90500 CBR stream).
Primary
Off-the-shelf
ATM PHY
Device
16-bit CPU port for internal register and external memory pro­gramming
CPU
UTOPIA Port
Off-the-shelf SAR Device
(AAL5)
Local Memory
MT90500 AAL1 SAR
Secondary UTOPIA Port
External Synchronous SRAM
TDM Data, Clock and Sync Lines
MVIP-90 H-MVIP ST-BUS SCSA
IDL
Figure B - MT90500 Device Application Block Diagram
2
MT90500
Table of Contents
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.3 ATM Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Serial TDM Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 CBR ATM Cell Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 External Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 UTOPIA Interface and Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Microprocessor Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.1 Module Level Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.2 TX_SAR Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.3 RX_SAR Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.4 UTOPIA Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.5 TDM Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.6 Timing Module Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.1 RX_SAR Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.2 TDM Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.3 Timing Recovery Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 TDM Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1 TDM Clock Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.1 TDM Timing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.2 REF8KCLK Selection Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.1.1.3 Main TDM Bus Timing and Clock Generation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1.4 TDM Clock Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1.5 Clock Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 TDM Interface Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2.1 Main TDM Bus Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2.2 TDM Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2.3 Per-channel Output Enable Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2.4 Local Bus Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2.5 Local Bus Data Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 TDM Data to External Memory Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
4.1.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3.2 Transmit Circular Buffer Control Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3.3 Transmit Circular Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 External Memory to TDM Data Output Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4.2 External Memory to Internal Memory Control Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 External Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 TX_SAR Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 TX_SAR Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1.2 Supported ATM Cell Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4.3.1.3 Transmit Event Scheduler Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1.3.2 Fixed TDM Payload Schedulers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1.3.3 AAL1 Long/Short Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1.3.4 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3
MT90500
4.3.2 TX_SAR Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
4.3.2.1 Transmit Event Schedulers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
4.3.2.2 Transmit Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.3 Non-CBR Data Cell Transmission Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.4 The RX_SAR Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.4.1 RX_SAR Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.4.2 RX_SAR Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.4.2.1 RX_SAR Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.4.2.2 RX_SAR Error Counter and Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.4.2.3 Receive Overruns and Underruns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.4.2.4 Lost Cell Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.5 UTOPIA Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4.5.1 UTOPIA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4.5.2 Cell Transmission and Mux Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.5.3 Receive Cell Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.5.4 Non-CBR Data Cell Reception Ability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.6 Clock Recovery from ATM Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.6.1 Adaptive Clock Recovery Sub-Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.6.2 SRTS Clock Recovery Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
4.6.2.1 Transmit SRTS Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
4.6.2.2 Receive SRTS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
4.7 Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
4.7.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
4.7.2 A Programming Example - How to Set Up a VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
4.7.3 Microprocessor Access and Device Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
4.8 Test Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
4.8.1 Test Access Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
4.8.2 JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
4.8.3 Boundary Scan Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
4.8.4 BSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.1 Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.1.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.1.2 Interrupt Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
5.1.3 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
5.2 Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
5.2.1 Microprocessor Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
5.2.2 TX_SAR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
5.2.3 RX_SAR Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
5.2.4 UTOPIA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.2.5 TDM Interface and Clock Interface Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
5.2.6 TDM Time Slot Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
6. Electrical Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.1 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.2 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
6.2.1 Main TDM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
6.2.2 Local TDM Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
6.2.3 CPU Interface - Accessing Registers and External Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
6.2.4 Interface with External Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
6.2.5 UTOPIA Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
6.2.5.1 Primary UTOPIA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
6.2.5.2 Secondary UTOPIA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
6.2.6 SRTS User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
6.2.7 Message Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
6.2.8 Boundary-Scan Test Access Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
7. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
7.1 Board Level Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
4
MT90500
7.2 System Level Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 TDM Clock Recovery Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.2 SRTS Clock Recovery Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.3 Free-running Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4 External Memory Space and Bandwidth Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.1 External Memory Space Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.2 Memory Structure Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.3 External Memory Bandwidth Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5 CBR Throughput Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.6 Other Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
7.6.1 Payload Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.6.2 TDM Switching and Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.6.3 DS0 Trunking, or Dynamic TDM channel re-mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6.4 SCSA Message Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8. Physical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5
MT90500
List of Figures
Figure 1 - MT90500 Block Diagram...................................................................................................................12
Figure 2. Pin Connections................................................................................................................................26
Figure 3 - TDM Clock Selection and Generation Logic.....................................................................................29
Figure 4 - TDM Frame Buffer to External Memory Transfer..............................................................................33
Figure 5 - Transmit Circular Buffer Control Structure........................................................................................34
Figure 6 - External Memory to TDM Frame Buffer Transfer..............................................................................35
Figure 7 - External Memory to Internal Memory Control Structure....................................................................37
Figure 8 - Memory Read Pipeline Length..........................................................................................................38
Figure 9 - Logical Byte Address vs. Physical Address and Memory Banks......................................................39
Figure 10 - Read / Write Turnaround Cycles.......................................................................................................40
Figure 11 - Read / Read Turnaround Cycles.......................................................................................................41
Figure 11 - Read / Write turnaround Cycles........................................................................................................41
Figure 12 - AAL1 ATM Cell Format.....................................................................................................................42
Figure 13 - Partially-Filled AAL1 and CBR-AAL0 Cell Formats...........................................................................43
Figure 14 - CBR-AAL5 Cell Format....................................................................................................................44
Figure 15 - Transmit Event Scheduler.................................................................................................................49
Figure 17 - Transmit Control Structure Format (CBR-AAL5)...............................................................................50
Figure 16 - Transmit Control Structure Format (AAL1 & CBR-AAL0) .................................................................51
Figure 18 - a: Sample Three-Channel Transmit Control Structure (AAL1/CBR-AAL0).......................................53
Figure 18 - b: Sample One-Channel Transmit Control Structure (CBR-AAL5) ...................................................53
Figure 19 - Overview of CBR Data Transmission Process..................................................................................54
Figure 20 - VC Pointer For Scheduler-Controlled Non-CBR Data Cell ...............................................................55
Figure 21 - Transmit Non-CBR Data Cell Structure Format................................................................................56
Figure 22 - RX_SAR Control Structure................................................................................................................58
Figure 23 - Overrun and Underrun Situations.....................................................................................................60
Figure 24 - MT90500 Daisy Chain Example........................................................................................................62
Figure 25 - Mux and Internal FIFO Sub-Module Block Diagram .........................................................................63
Figure 26 - Receive Cell Selection Process........................................................................................................65
Figure 27 - MT90500 Cell Receive Process........................................................................................................66
Figure 28 - Look-up Table Non-CBR Data Entry.................................................................................................67
Figure 29 - Received Non-CBR Data Cell Internal Format..................................................................................68
Figure 30 - Overview of CBR Data Reception Process.......................................................................................69
Figure 31 - Adaptive Clock Recovery Sub-Module (Simplified Functional Block Diagram).................................70
Figure 32 - Timing Reference Cell Processing State Machine............................................................................71
Figure 33 - Transmit SRTS Operation.................................................................................................................73
Figure 34 - Receive SRTS Operation..................................................................................................................74
Figure 35 - Clock Recovery Using SRTS Method (Hardware)............................................................................75
Figure 36 - Clock Recovery Using SRTS Method (CPU)....................................................................................76
Figure 37 - A Typical JTAG Test Connection......................................................................................................79
Figure 38. MT90500 Interrupt Structure.............................................................................................................81
Figure 39 - Nominal TDM Bus Timing...............................................................................................................114
Figure 40 - Main TDM Bus Output Clocking Parameters - Positive Frame Pulse.............................................115
Figure 41 - Main TDM Bus Output Clocking Parameters - Negative Frame Pulse ...........................................115
Figure 42 - Main TDM Bus - Serial Output Timing............................................................................................116
Figure 43 - Main TDM Bus - 2/4 Sampling........................................................................................................118
Figure 44 - Main TDM Bus - 3/4 Sampling........................................................................................................118
Figure 45 - Main TDM Bus - 4/4 Sampling........................................................................................................119
Figure 46 - Local TDM Bus Output Parameters - Positive Frame Pulse...........................................................121
6
MT90500
Figure 47 - Local TDM Bus Output Parameters - Negative Frame Pulse ........................................................ 121
Figure 48 - Local TDM Bus - Positive Frame Pulse, 2/4 Sampling .................................................................. 122
Figure 49 - Local TDM Bus - Negative Frame Pulse, 3/4 Sampling................................................................. 123
Figure 50 - Local TDM Bus - Negative Frame Pulse, 4/4 Sampling................................................................. 123
Figure 51 - Intel CPU Interface Timing - Read Access..................................................................................... 124
Figure 52 - Intel CPU Interface Timing - Write Access..................................................................................... 125
Figure 53 - Motorola CPU Interface Timing - Read Access ............................................................................. 126
Figure 54 - Motorola CPU Interface Timing - Write Access.............................................................................. 127
Figure 55 - External Memory Interface Timing - Read Cycle ........................................................................... 129
Figure 56 - External Memory Interface Timing - Write Cycle............................................................................ 130
Figure 57 - Primary UTOPIA Bus - Transmit Timing........................................................................................ 131
Figure 58 - Primary UTOPIA Bus - Receive Timing......................................................................................... 132
Figure 59 - Secondary UTOPIA Interface......................................................................................................... 133
Figure 60 - SRTS User Interface Timing.......................................................................................................... 134
Figure 61 - Message Channel Timing .............................................................................................................. 135
Figure 62 - MT90500 Device Application Block Diagram................................................................................. 137
Figure 63 - UTOPIA Bus Interconnections for Two MT90500s and an AAL5 SAR.......................................... 139
Figure 64 - The MT90500 within a LAN Hub.................................................................................................... 141
Figure 65 - Using the MT90500 with External SAR and ATM Links in a LAN Environment............................. 142
Figure 66 - Access Product using Internal High Speed Cell Bus on the Backplane......................................... 142
Figure 67 - TDM Traffic Transport Over a Cell Bus.......................................................................................... 143
Figure 68 - Connecting CTI Platforms to ATM LANs........................................................................................ 143
Figure 69 - The GO-MVIP, PC-ATM Bus Standard Architecture...................................................................... 144
Figure 70 - SRTS Clocking Application............................................................................................................ 146
Figure 71 - TDM Payload Switching................................................................................................................. 154
Figure 72 - TDM-to-TDM Loopback/Switching................................................................................................. 155
Figure 73 - SCSA Message Bus Application................................................................................................... 156
7
MT90500
List of Tables
Table 1 - Primary UTOPIA Bus Pins................................................................................................................19
Table 2 - Secondary UTOPIA Bus Pins...........................................................................................................20
Table 3 - Microprocessor Bus Interface Pins...................................................................................................20
Table 4 - External Memory Interface Pins........................................................................................................21
Table 5 - Master Clock, Test, and Power Pins.................................................................................................22
Table 6 - TDM Port Pins...................................................................................................................................23
Table 7 - Reset State of I/O and Output Pins...................................................................................................24
Table 8 - Pinout Summary................................................................................................................................25
Table 9 - Memory Size Combinations..............................................................................................................39
Table 10 - Effect of PSEL Field on P-byte Generation.......................................................................................53
Table 11 - Register Summary ............................................................................................................................82
Table 12 - Main Control Register .......................................................................................................................84
Table 13 - Main Status Register.........................................................................................................................84
Table 14 - Window to External Memory Register - CPU....................................................................................85
Table 15 - Read Parity Register.........................................................................................................................85
Table 16 - Memory Configuration Register ........................................................................................................86
Table 17 - TX_SAR Control Register.................................................................................................................87
Table 18 - TX_SAR Status Register...................................................................................................................87
Table 19 - TX_SAR Scheduler Base Register ...................................................................................................88
Table 20 - TX_SAR Frame End Register...........................................................................................................88
Table 21 - TX_SAR End Ratio Register.............................................................................................................88
Table 22 - TX_SAR Control Structure Base Address Register..........................................................................89
Table 23 - Transmit Data Cell FIFO Base Address Register .............................................................................89
Table 24 - Transmit Data Cell FIFO Write Pointer Register...............................................................................89
Table 25 - Transmit Data Cell FIFO Read Pointer Register...............................................................................90
Table 26 - RX_SAR Control Register.................................................................................................................91
Table 27 - RX_SAR Status Register..................................................................................................................92
Table 28 - RX_SAR Misc. Event ID Register.....................................................................................................92
Table 29 - RX_SAR Misc. Event Counter Register............................................................................................92
Table 30 - RX_SAR Underrun Event ID Register...............................................................................................93
Table 31 - RX_SAR Underrun Event Counter Register .....................................................................................93
Table 32 - RX_SAR Overrun Event ID Register.................................................................................................93
Table 33 - RX_SAR Overrun Event Counter Register .......................................................................................93
Table 34 - UTOPIA Control Register..................................................................................................................94
Table 35 - UTOPIA Status Register...................................................................................................................94
Table 36 - VPI / VCI Concatenation Register.....................................................................................................95
Table 37 - VPI Match Register...........................................................................................................................95
Table 38 - VPI Mask Register ............................................................................................................................95
Table 39 - VCI Match Register...........................................................................................................................95
Table 40 - VCI Mask Register............................................................................................................................96
Table 41 - VPI Timing Register..........................................................................................................................96
Table 42 - VCI Timing Register..........................................................................................................................96
Table 43 - Lookup Table Base Address Register...............................................................................................96
Table 44 - Receive Data Cell FIFO Base Address Register ..............................................................................97
Table 45 - Receive Data Cell FIFO Write Pointer Register................................................................................97
Table 46 - Receive Data Cell FIFO Read Pointer Register................................................................................97
Table 47 - TDM Interface Control Register ........................................................................................................98
Table 48 - TDM Interface Status Register..........................................................................................................99
8
MT90500
Table 49 - TDM I/O Register........................................................................................................................... 100
Table 50 - TDM Bus Type Register................................................................................................................. 101
Table 51 - Local Bus Type Register................................................................................................................ 102
Table 52 - TDM Bus to Local Bus Transfer Register....................................................................................... 102
Table 53 - Local Bus to TDM Bus Transfer Register....................................................................................... 103
Table 54 - TX Circular Buffer Control Structure Base Register....................................................................... 103
Table 55 - External to Internal Memory Control Structure Base Register....................................................... 103
Table 56 - TX Circular Buffer Base Address Register..................................................................................... 104
Table 57 - TDM Read Underrun Address Register......................................................................................... 104
Table 58 - TDM Read Underrun Count Register............................................................................................. 104
Table 59 - Clock Module General Control Register......................................................................................... 104
Table 60 - Clock Module General Status Register.......................................................................................... 105
Table 61 - Master Clock Generation Control Register .................................................................................... 106
Table 62 - Master Clock / CLKx2 Division Factor............................................................................................ 107
Table 63 - Timing Reference Processing Control Register............................................................................. 107
Table 64 - Event Count Register..................................................................................................................... 108
Table 65 - CLKx1 Count - Low Register.......................................................................................................... 108
Table 66 - CLKx1 Count - High Register......................................................................................................... 108
Table 67 - DIVX Register ................................................................................................................................ 109
Table 68 - DIVX Ratio Register....................................................................................................................... 109
Table 69 - SRTS Transmit Gapping Divider Register ..................................................................................... 109
Table 70 - SRTS Transmit Byte Counter Register.......................................................................................... 110
Table 71 - SRTS Receive Gapping Divider Register ...................................................................................... 110
Table 72 - SRTS Receive Byte Counter Register........................................................................................... 110
Table 73 - Output Enable Registers................................................................................................................ 111
Table 74 - Absolute Maximum Ratings ........................................................................................................... 112
Table 75 - Recommended Operating Conditions............................................................................................ 112
Table 76 - DC Characteristics......................................................................................................................... 112
Table 77 - Main TDM Bus Output Clock Parameters...................................................................................... 114
Table 78 - Main TDM Bus Data Output Parameters ....................................................................................... 116
Table 79 - Main TDM Bus Input Clock Parameters......................................................................................... 117
Table 80 - Main TDM Bus Input Data Parameters.......................................................................................... 117
Table 81 - Local TDM Bus Clock Parameters................................................................................................. 120
Table 82 - Local TDM Bus Data Output Parameters....................................................................................... 120
Table 83 - Local TDM Bus Data Input Parameters ......................................................................................... 122
Table 84 - Intel Microprocessor Interface Timing - Read Cycle Parameters................................................... 124
Table 85 - Intel Microprocessor Interface Timing - Write Cycle Parameters................................................... 125
Table 86 - Motorola Microprocessor Interface Timing - Read Cycle Parameters ........................................... 126
Table 87 - Motorola Microprocessor Interface Timing - Write Cycle Parameters............................................ 127
Table 88 - MCLK - Master Clock Input Parameters ........................................................................................ 128
Table 89 - External Memory Interface Timing - Clock Parameters ................................................................. 128
Table 90 - External Memory Interface Timing - Read Cycle Parameters........................................................ 128
Table 91 - External Memory Interface Timing - Write Cycle Parameters........................................................ 128
Table 92 - Primary UTOPIA Interface Parameters - Transmit......................................................................... 131
Table 93 - Primary UTOPIA Interface Parameters - Receive.......................................................................... 132
Table 94 - Secondary UTOPIA Parameters Timing........................................................................................ 133
Table 95 - SRTS Interface Parameters........................................................................................................... 134
Table 96 - Message Channel Parameters....................................................................................................... 134
Table 97 - Boundary-Scan Test Access Port Timing ...................................................................................... 136
Table 98 - MT90500 Connections to 18-bit Synchronous SRAM.................................................................... 138
9
MT90500
Table 99 - MT90500 Connections to 32/36-bit Synchronous SRAM................................................................138
Table 100 - MT90500 UTOPIA Signal Directions...............................................................................................140
Table 101 - Recommended TDM Channel Numbers for SRTS VCs .................................................................145
Table 102 - Limits on CDV on Receive SRTS VC..............................................................................................146
Table 103 - Summary of External Memory Structures .......................................................................................149
10
MT90500
1. Introduction
1.1 Functional Overview
The Mitel MT90500 Multi-Channel AAL1 SAR bridges a standard isochronous TDM (Time Division Multiplexed) backplane to a standard ATM (Asynchronous Transfer Mode) bus. On the TDM bus side, the MT90500 can interface to 16 bidirectional TDM bus links operating at 2.048, 4.096 or 8.192 Mbps (compatible with MVIP / H­MVIP, SCSA and Mitel ST-BUS). On the ATM interface side, the MT90500 provides the UTOPIA bus standardized by the ATM Forum. The device provides the AAL1 Structured Data Transfer (referred to as SDT from now on in this document) and pointerless Structured Data Transfer mappings defined by ANSI T1.630­1993 and ITU-T I.363. In addition, the MT90500 provides CBR (Constant Bit Rate) mapping of TDM to AAL0, and to AAL5 (CBR-AAL5). In all data transfer for mats, the user simply ports the T1/E1, T3/E3, etc. traffic onto the TDM backplane before applying it to the MT90500. As well, the device also suppor ts TDM clock recovery using adaptive, SRTS, or external clock recovery.
In the receive direction, ATM cells with VCs destined for the MT90500 are extracted from the UTOPIA bus and sent toward the TDM interface. In the transmit direction, the MT90500 provides multiplexing capabilities at the UTOPIA interf ace to allo w the use of an external AAL5 SAR device, or multiple MT90500 devices. This is useful when CBR data and VBR/ABR/UBR data traffic must be transmitted from the local node on the same physical link. As well, the ability to multiplex internal AAL1 cells with external AAL5 cells can be used to interleave associated signalling cells and control messages with the AAL1 CBR traffic.
The MT90500 also offers some internal support for non-CBR data traffic. If the application's signalling (non­CBR) data throughput is not high, the MT90500 can transmit and receive AAL5 (or other non-CBR data) to / from a pair of FIFOs. This requires the microprocessor to perform SAR functions via software, but may remove the requirement for an external data SAR. Alternatively, if standard AAL5 signalling is not required by the system, the user can use some TDM channels for HDLC or proprietary signalling.
Segmentation and reassembly of TDM data to / from ATM cells is highly flexible. The MT90500 allows the user to select one or more TDM channels to be carried on an ATM logical connection with associated VPI/VCI. The number of TDM channels (1 to 122), the VPI/VCI, the data transfer method (SDT or pointerless Structured Data Transfer), cell partial-fill level, and the AAL (AAL1, CBR-AAL5, or CBR-AAL0) are all programmable. The time slot assignment circuit has 64 kbps granularity and allows a group of TDM channels to be carried on a single ATM logical channel (channel grooming). There is no limitation for distributing n x 64 channels on the TDM bus (i.e. TDM channels on a given VC can be concatenated or dispersed anywhere on the 16 serial data streams).
Up to 1024 bidirectional virtual circuits (VCs) can be handled simultaneously by the internal AAL1 processors. At the maximum TDM rate of 8.192 Mbps, up to 2048 input/output 64 kbps channels are available (1024 bidirectional TDM channels). If the ATM VCs are carrying multiple TDM channels (n x 64), less VCs will be created. The user is given the ability to flexibly define which 64 kbps channels will be converted into ATM VCs. It should be noted that since the MT90500’s serial TDM port is fully bidirectional, the ATM logical connections can be defined as full duplex channels (e.g. voice conversation) or one-way connections (e.g. video playback). Using the full duplex capabilities, up to 1024 simultaneous phone calls could be handled by the MT90500.
The MT90500 allows the user to scale the size of the external synchronous memory to suit the application. The external memory’s size is influenced by the number of vir tual circuits required, the number of TDM channels being handled, and the amount of cell delay variation (CDV) tolerance required for the receive VCs. User­defined lookup tables, data cell FIFOs, and multiple event schedulers also influence the amount of external memory required.
The MT90500 supports two clocking schemes on the TDM bus: clock master and clock slave. In clock master, the MT90500 drives the clocks onto the TDM backplane (the TDM clock is recovered from an incoming ATM VC, or from an external source). In clock slave mode, the MT90500 receives its 8 kHz framing and clocks (4.096, 8.192 or 16.384 MHz) from the TDM backplane, and times its internal functions from that.
Figure 1 on page 12 shows the MT90500 block diagram. The Applications section of this document illustrates several connectivity options with external PHY and SAR devices.
11
MT90500
To/From External PHY
From External SAR
Main UTOPIA Interface
Secondary UTOPIA Interface
MT90500
TX UTOPIA
MUX
RX
UTOPIA
BLOCK
UTOPIA Module
VC Look-up
Tables
AAL1
SAR
TX / RX Control
Circular Buffers
External Memory
Controller
TX
AAL1
SAR
RX
Structures and
Internal
TDM
Frame
Buffer
External Synchronous SRAM
TDM Module
TDM Bus
Interface
Logic
TDM Clock
Logic
Clock
Recovery
Registers
TDM Bus 16 lines 2048 x 64kbps (max.)
Local TDM Bus 32 x 64 kbps in / 32 x 64 kbps out
Clock Signals
Boundary-
Scan Logic
JTAG Interface
Microprocessor Interface Logic
16-bit Microprocessor Inter­face
Figure 1 - MT90500 Block Diagram
1.2 Reference Documents
MT90500 Programmer’s Manual. MSAN-171 - TDM Clock Recovery from CBR-over-ATM Links Using the MT90500. ITU-T Rec. I.363.1, “B-ISDN ATM Adaptation Layer Specification: Type 1 AAL,” 08/1996. ANSI T1.630, “Broadband ISDN - ATM Adaptation Layer for Constant Bit Rate Services Functionality and
Specification,” 1993. AF-PHY-0017, “UTOPIA, An ATM-PHY Interface Specification: Level 1, Version 2.01,” March 21, 1994. AF-VTOA-0078.000, “Circuit Emulation Service Interoperability Specification, Version 2.0,” Jan. 1997. AF-VTOA-0083.000, “Voice and Telephony Over ATM to the Desktop Specification, Version 2.0,” May 1997. M. Noorchasm
Forum Contribution 95-1454.
et al.
, “Buffer Design for Constant Bit Rate Services in Presence of Cell Delay Variation,” ATM
Paul E. Fleischer and Chi-Leung Lau, “Synchronous Residual Time Stamp f or Timing Reco very in a Broadband Network,” United States Patent 5,260,978, Nov. 1993.
IEEE Std. 1149.1a-1993, “IEEE Standard Test Access Port and Boundary Scan Architecture.”
12
1.3 ATM Glossary
MT90500
AAL -
applications into the size and format of an ATM cell.
AAL0 - native ATM cell transmission; proprietary protocol featuring 5-byte header and 48-byte user payload. AAL1 - ATM Adaptation Layer used for the transport of constant bit rate, time-dependent traffic (e.g. voice,
video); requires transfer of timing infor mation between source and destination; maximum of 47-bytes of user data permitted in payload as an additional header byte is required to provide sequencing information.
AAL5 - ATM Adaptation Layer usually used for the transport of variable bit rate, delay-tolerant data traffic and signalling which requires little sequencing or error-detection support.
ANSI T1.630 - American National Standards Institute specification: Broadband ISDN - ATM Adaptation Layer for Constant Bit Rate Services Functionality and Specification.
Asynchronous - 1. Not synchronous; not periodic. 2. The temporal property of being sourced from independent timing references. Asynchronous signals have different frequencies, and no fixed phase relationship. 3. In telecom, data which is not synchronized to the public network clock. 4. The condition or state when an entity is unable to determine, prior to its occurrence, exactly when an event will transpire.
ATM ­length cells; asynchronous in the sense that the recurrence of cells containing information from an individual user is not necessarily periodic. (While ATM cells are transmitted synchronously to maintain clock between sender and receiver, the sender transmits data cells when it has something to send and transmits empty cells when idle, and is not limited to transmitting data ever y Nth cell.)
Cell - fixed-size information package consisting of 53 bytes (octets) of data; of these, 5 bytes represent the cell header and 48 bytes carry the user payload and required overhead.
ATM Adaptation Layer
; standardized protocols used to translate higher layer services from multiple
Asynchronous Transfer Mod
e; a method in which information to be transferred is organized into fixed-
CBR ­control and strict performance parameters. Used for services such as voice, video, or circuit emulation.
CDV ­results from buffering and cell scheduling.
CES ­characteristics of a constant bit rate, dedicated-bandwidth circuit (e.g. T1).
CLP ­with CLP = 1 can be discarded in a congestion situation.
CSI ­using SDT, indicates the presence of a pointer byte; used to transport RTS values in odd-numbered cells using
SRTS for clock recovery. GFC -
default value is “0000”, meaning that GFC protocol is not enforced. HEC -
check for an error and correct the contents of the header; CRC algorithm allows for single-error correction and multiple-error detection.
I.363 - ITU-T Recommendation specifying the AALs for B-ISDN (Broadband ISDN). Isochronous - The temporal property of an event or signal recurring at known periodic time intervals (e.g. 125
µs). Isochronous signals are dependent on some uniform timing, or carry their own timing information embedded as part of the signal. Examples are DS-1/T1, E1 and TDM in general. From the root words, “iso” meaning equal, and “chronous” meaning time.
Constant Bit Rate
Cell Delay Variation
Circuit Emulation Service
Cell Loss Priority
; an ATM service category supporting a constant or guaranteed rate, with timing
; a QoS parameter that measures the peak-to-peak cell delay through the network;
; ATM Forum service providing a virtual circuit which emulates the
; a 1-bit field in the ATM cell header that corresponds to the loss priority of a cell; cells
Convergence Sublayer Indication
Generic Flow Control
Header Error Control
; 4-bit field in the ATM header used for local functions (not carried end-to-end);
; using the fifth octet in the ATM cell header, ATM equipment (usually the PHY) may
bit in the AAL1 header byte; when present in an even-numbered cell
OAM bit ­indicates if the ATM cell carries management information such as fault indications.
Plesiochronous - The temporal property of being arbitrarily close in frequency to some defined precision. Plesiochronous signals occur at nominally the same rate, any var iation in rate being constrained within specific limits. Since they are not identical, over the long ter m they will be skewed from each other. This will force a
Operations, Administration and Maintenance
; MSB within the PTI field of the ATM cell header which
13
MT90500
switch to occasionally repeat or delete data in order to handle buffer underflow or overflow. (In telecommunications, this is known as a frame slip).
PHY ­physical interfaces that interconnect the various ATM devices.
PTI ­information or user data; LSB indicates that a AAL5 cell is the final cell in a frame.
QoS ­VC (e.g cell delay var iation; cell transfer delay, cell loss ratio).
RTS ­SAR -
reassembling, at the destination, these cells back into infor mation frames; lower sublayer of the AAL which inserts data from the information frames into cells and then adds the required header, trailer, and/or padding bytes to create 48-byte payloads to be transmitted to the ATM layer.
SDT -
are segmented into cells for transfer and additional overhead bytes (pointers) are used to indicate structure boundaries within cells (therefore aiding clock recover y).
SN ­misinserted ATM cells.
SNP ­which are designed to provide error-correction on the SN.
SRTS ­source clock and the network reference clock (time stamps) are transmitted to allow reconstruction of the source clock. The destination reconstructs the source clock based on the time stamps and the network reference clock. (Note that the same network reference clock is required at both ends.)
Physical Layer
Payload Type Identifier
Quality of Service
Residual Time Stamp
; bottom layer of the ATM Reference Model; provides ATM cell transmission over the
; 3-bit field in the ATM cell header - MSB indicates if the cell contains OAM
; ATM performance parameters that characterize the transmission quality over a given
; see SRTS.
Segmentation and Reassembly
Structured Data Transfer
Sequence Number
; 4-bit field in the AAL1 header byte used as a sequence counter for detecting lost or
Sequence Number Protection
; format used within AAL1 for blocks consisting of N * 64 kbps channels; blocks
; 4-bit field in the AAL1 header byte consisting of a CRC and a parity bit
Synchronous Residual Time Stamp;
; method of partitioning, at the source, frames into ATM cells and
method for clock recovery in which difference signals between a
SSRAM ­Synchronous - 1. The temporal property of being sourced from the same timing reference. Synchronous
signals have the same frequency, and a fixed (often implied to be z ero) phase offset. 2. A mode of transmission in which the sending and receiving terminal equipment are operating continually at the same rate and are maintained in a desired phase relationship by an appropriate means.
UDT -
structure boundaries (e.g. circuit emulation); term used within ANSI standard - not explicitly stated in ITU. UTOPIA -
connectivity between ATM components. VC -
devices; provides sequential, unidirectional transport of ATM cells. Also VCI -
virtual channel (VC) within a vir tual path (VP) that carr ies a particular cell. VP -
channels (VC). VPI -
belongs. VTOA -
interoperability with existing N-ISDN and PBX services.
Glossary References:
The ATM Glossary The ATM Forum Glossary ATM and Networking Glossary Mitel Semiconductor Glossary of Telecommunications Terms
Synchronous Static RAM.
Unstructured Data Transfer
Universal Test and Operations Physical Interface for ATM;
Virtual Channel;
Virtual Channel Identifier ;
Virtual Path;
Virtual Path Identifier;
one of several logical connections defined within a virtual path (VP) between two ATM
16-bit value in the ATM cell header that provides a unique identifier for the
a unidirectional logical connection between two ATM devices; consists of a set of virtual
8-bit value in the ATM cell header that indicates the virtual path (VP) to which a cell
Voice and Telephony over ATM;
- ATM Year 97 - Version 2.1, March 1997
- May 1997 (http://www.techguide.com/comm/index.html)
; format used within AAL1 for transmission of user data without regard for
a PHY-level interface to provide
Virtual Circuit.
intended to provide voice connectivity to the desktop, and to provide
- May 1995.
14
2. Features
2.1 General
The MT90500 device external interfaces are:
TDM (Time Division Multiplexed) bus composed of 16 serial streams running at up to 8.192 Mbps ,
plus related clocks and control signals, configurable by software. This interface also includes vari­ous signals for TDM clock signal generation. This bus carries telecom or other data in N x 64 kbps streams.
Local serial TDM bus interface (a TDM input pin, a TDM output pin, and clocks).
A primary UTOPIA bus running at up to 25 MHz, suitable for connection to a 25 Mbps or 155 Mbps
PHY device.
A secondary UTOPIA bus, f or connection of an optional external SAR (e.g. data) device running at
up to 25 MHz. In this case, the MT90500 device emulates a PHY device for the external SAR.
A synchronous 36-bit wide memory interface running at up to 60 MHz.
A 16-bit microprocessor interface used for device configuration, status, and control.
Signals for general clocking, reset, and JTAG boundary-scan.
MT90500
2.2 Serial TDM Bus
Compatible with ST-BUS, MVIP, H-MVIP, IDL, and SCSA interfaces.
Provides 16 bidirectional serial streams that can operate at TDM data rates of 2.048, 4.096 or
8.192 Mbps for up to 2048 TDM 64 kbps channels (1024 bidirectional DS0 channels: supports 32 E1 framers, or 42 T1 framers, or 10 J2 framers).
Serial TDM bus clocking schemes: TDM timing bus slav e (MT90500 sla v ed to TDM bus), TDM tim-
ing bus master (MT90500 drives clocks onto TDM bus - freerun, or synchronized to 8 kHz refer­ence) and TDM bus master-alternate (MT90500 slaved to TDM bus, but ready to switch to 8 kHz reference).
Additional Local TDM Bus interface (2.048 Mbps) allows local TDM devices to access the main
TDM bus.
2.3 CBR ATM Cell Processor
Independent Segmentation and Reassembly blocks for receive and transmit (RX_SAR and TX_SAR) support CBR (Constant Bit Rate) transport of half- or full-duplex TDM channels.
Compatible with “Structured Data Transfer (SDT) services” as per ANSI T1.630 standard for 1 to
122 TDM channels per VC.
Compatible with ITU-T I.363.1 “circuit transport” of 8 kHz structured data using Structured Data
Transfer (SDT) for 1 to 96 TDM channels per VC (using buffer-fill level monitoring).
Compatible with ITU-T I.363.1 “voiceband signal transport.”
Compatible with AF-VTOA-0078.000 “N x 64 Basic Ser vice” (non-CAS) Circuit Emulation (using
buffer-level monitoring, rather than lost cell insertion).
Compatible with AF-VTOA-0078.000 for SDT of partially-filled AAL1 cells with N-channel struc-
tures (where N does not exceed the value of the partial-fill).
AAL1 SAR-PDU Header processing (AAL1 Sequence Number checking).
Supports up to 1024 bidirectional VCs (virtual circuits) simultaneously.
Supports up to 1024 transmit TDM channels and 1024 receive TDM channels simultaneously.
Supports CBR-AAL0 (48 byte cell payload).
Supports CBR-AAL5 as per AF-VTOA-0083.000, also supports Nx64 trunking over CBR-AAL5.
15
MT90500
Supports partially-filled cells (AAL1, CBR-AAL5, and CBR-AAL0).
User-defined, per-VC, Cell Delay Variation tolerance: 8 to 128 ms buffer size (up to 64 ms CDV).
Handles TDM channels at 64 kbps granularity.
Each individual VC can be composed of N x 64 kbps wideband channels (N = 1, 2, ..., 122).
Flexible aggregation capability (N x 64 kbps) maintains frame integrity, while allowing any combi-
nation of 64 kbps channels (DS0 grooming).
Supports “multi-casting” of one TDM DS0 input channel to multiple Transmit ATM VCs, and of one
Receive ATM DS0 to multiple TDM outputs.
A VC can contain any combination of TDM channels from any combination of TDM streams
(Nx64) and maintain frame integrity for those channels.
Supports several 8 kHz synchronisation operations: synchronized to external 8 kHz reference,
synchronized to network clock, and synchronized to timing derived from an ATM VC (including ITU-T I.363.1 Adaptive and SRTS clock recovery mechanisms).
2.4 External Memory Interface
To implement SAR functions and buffers, the MT90500 device uses external Synchronous SRAM.
External Synchronous SRAM size is chosen by user, and depends on Cell Delay Variation (CDV)
and the number of simultaneous 64 kbps channels handled. The amount of Synchronous SRAM is scalable to suit the application, and may range from 128 Kbytes to 2,048 Kbytes.
2.5 UTOPIA Interface and Multiplexer
UTOPIA Level 1 compatible 8-bit bus, running at up to 25 Mbyte/s, for connection to PHY devices with data throughput of up to 155 Mbps.
Transmit multiplexer mixes cells from TX_SAR and Secondary UTOPIA port, suppor ting another
MT90500, and/or an external SAR device (e.g. AAL5) connected to a single PHY device.
Programmable multiplexer priority gives internally generated AAL1 cells equal, or higher, priority
than cells coming from Secondary UTOPIA port.
Supports non-CBR data cells and OAM cells destined for microprocessor with Receive and Trans-
mit Data Cell FIFOs.
Flexible receive cell handling: AAL1 (as well as CBR-AAL0 and CBR-AAL5) cells are sent to the
TDM port; data cells (non-CBR data and OAM cells) are sent to the Receive Data Cell FIFO; cells with unrecognized VCs may be queued or ignored.
Cell reception based on look-up-table allows flexible VC assignment for CBR VCs (allows non-
contiguous VC assignment).
Programmable VPI/VCI Match and Mask filtering reduces unnecessary look-up-table accesses.
2.6 Microprocessor Interface
16-bit microprocessor port, configurable to Motorola or Intel timing.
Programmable interrupts for control and statistics.
Allows access to internal registers for initialization, control, and statistics.
Allows access to external SSRAM for initialization, control, and observation.
2.7 Miscellaneous
Master clock rate up to 60 MHz.
Dual rails (3.3V for power minimization, 5V for standard I/O).
Loopback function provided at the TDM interface.
16
MT90500
IEEE 1149 (JTAG) Boundary-Scan Test Access Port for testing board-level interconnect.
Packaging: 240-pin PQFP.
2.8 Interrupts
The MT90500 provides a wide variety of interrupt source bits, allowing for easy monitoring of MT90500 operation. All interrupt source bits, including the module level interrupt bits, have an associated mask bit which enables or disables assertion of the interrupt pin. This enables the user to tailor the interrupt pin activity to the application. Interrupt source bits are set regardless of the state of the associated mask bit, so even source bits which are disabled from causing an interrupt pin assertion may be polled by the CPU by reading the appropriate register.
2.8.1 Module Level Interrupts
The following interrupt bits are used to indicate which MT90500 circuit module is the source of the interrupt. They are set when one or more interrupt source bits in the particular circuit module is set. The CPU can find the source of an interrupt by reading the register containing these bits and then reading the indicated module’s interrupt register.
TX_SAR Module Interrupt
RX_SAR Module Interrupt
UTOPIA Module Interrupt
TDM Module Interrupt
Timing (TDM Clock Generation) Module Interrupt
2.8.2 TX_SAR Interrupts
Transmit Non-CBR Data Cell FIFO Overrun Interrupt
Scheduler error (Indicates that the TX_SAR has too heavy a work load.)
2.8.3 RX_SAR Interrupts
AAL1-byte Parity Error Interrupt
AAL1-byte CRC Error Interrupt
AAL1-byte Sequence Number Error Interrupt
Pointer-byte Parity Error Interrupt
Pointer-byte Out of Range Error Interrupt
Underrun Error Interrupt
Overrun Error Interrupt
Miscellaneous Counter Rollover Interrupt
Underrun Counter Rollover Interrupt
Overrun Counter Rollover Interrupt
2.8.4 UTOPIA Interrupts
Receive Non-CBR Data Cell FIFO Overrun Interrupt
RX UTOPIA Module Internal FIFO Overrun Interrupt
Receive Non-CBR Data Cell FIFO Receive Cell Interrupt
2.8.5 TDM Interrupts
Clock Absent Interrupt
Clock Fail Interrupt
TDM Out of Bandwidth Interrupt
17
MT90500
TDM Read Underrun Error Interrupt
TDM Read Underrun Counter Rollover Interrupt
2.8.6 Timing Module Interrupts
8 kHz Reference Failure Interrupt
SRTS TX Underrun Interrupt
SRTS TX Overrun Interrupt
SRTS RX Underrun Interrupt
SRTS RX Overrun Interrupt
Adaptive Clock Loss of Timing Reference Cell Interrupt
Adaptive Clock Loss of Synchronization Interrupt
2.9 Statistics
The MT90500 provides a number of statistics to allow monitoring of the MT90500. These statistics generally parallel the operation of some of the interrupt source bits. The counters (except the Timing Recovery counters) also set rollover interrupt source bits when they reach their terminal counts and return to zero.
2.9.1 RX_SAR Statistics
Miscellaneous Event Counter: This 16-bit register’s value is incremented each time a (mask­selected) miscellaneous error occurs.
AAL1-byte Parity Error
AAL1-byte CRC Error
AAL1 Sequence Number Error
Pointer-byte Parity Error
Pointer-byte Out of Range Error
Miscellaneous Event ID Register: The address of the RX Control Structure that caused the last
miscellaneous error.
Underrun Count: This 16-bit register’s value is incremented each time a CBR Receive Underrun
occurs.
Underrun ID Number: The address of the RX Control Structure that caused the last underrun
error.
Overrun Count: This 16-bit register is incremented each time a CBR Receive Overrun occurs.
Overrun ID Number: The address of the RX Control Structure that caused the last overrun error.
2.9.2 TDM Statistics
TDM Read Underrun Time Slot Stream. Contains the time slot and stream on which the last TDM read underrun was detected.
TDM Read Underrun Counter. Each time a TDM read underrun occurs, this register’s value is
incremented.
2.9.3 Timing Recovery Statistics
Event Counter: Counts the reception of timing reference cells or 8 kHz markers.
CLKx1 Counter: 24-bit counter which keeps a running count of TDM byte-periods.
18
MT90500
3. Pin Descriptions
I/O types are: Output (O), Input (I), Bidirectional (I/O), Power (PWR), or Ground (GND). Input pad types are: TTL, CMOS, Differential, or Schmitt. The notations “PU” and “PD” are used, respectively,
to indicate that a pad has an internal pullup or pulldown resistor. TTL (5V) inputs are pulled-up to the 5V rail, CMOS (3.3V) inputs are pulled-up to the 3.3V rail. These weak internal resistors should not be relied upon for fast data transitions. The 3.3V CMOS inputs have a switching threshold of 1.6V, and tolerate input levels of up to 5V; therefore they are 5V TTL compatible (with the exception of the TRISTATE pin, which is not 5V tolerant).
Output pad types are generally described by voltage and current capability. Output types used are: 3.3V, 4mA; 5V, 4mA; 5V, 12mA; and open-drain. A notation of “SR” indicates that the pad is slew-rate limited. 3.3V CMOS outputs will satisfy 5V TTL input thresholds at the rated current.
Table 1 - Primary UTOPIA Bus Pins
Pin # Pin Name I/O Type Description
49, 48, 47, 46,
45, 44, 39, 38
52 PTXSOC O 5V, 4mA Primary UTOPIA transmit start of cell signal. Asserted by the MT90500 when
51 PTXEN O 5V, 4mA Primary UTOPIA transmit data enable. Active LOW signal asserted by the
53 PTXCLAV I TTL PU Primary UTOPIA transmit cell available indication signal. For cell level flow
82 PTXCLK I/O TTL PU /
50 PTXPAR O 5V, 4mA Primary UTOPIA transmit parity. This signal is the odd parity bit over
57, 58, 59, 62,
63, 64, 65, 66
56 PRXSOC I TTL PU Primary UTOPIA receive start of cell signal. Asserted by the PHY when
55 PRXEN I TTL PU Primary UTOPIA bus data enable. Active LOW signal normally asserted by the
54 PRXCLAV I TTL PU Primary UTOPIA receive cell available indication signal. For cell level flow control,
79 PRXCLK I TTL PU Primary UTOPIA bus receive clock. This clock, which can run at up to 25 MHz, is
Refer to Figure 63 on page 139 for implementation details regarding the interface between two MT90500s and an external AAL5 SAR.
PTXDATA[7:0] O 5V, 4mA Primary UTOPIA transmit data bus. Byte-wide data driven from MT90500 to PHY
device. Bit 7 is the MSB.
PTXDATA[7:0] contains the first valid byte of the cell.
MT90500 during cycles when PTXDATA[7:0] contains valid cell data.
control, PTXCLAV is asserted by the PHY to indicate to the MT90500 that the PHY can accept the transfer of a complete cell.
Primary UTOPIA transmit clock. Data transfer & synchronization clock provided by
5V, 4mA
SR
PRXDATA[7:0] I TTL PU Primary UTOPIA receive data bus. Byte-wide data driven from the PHY to the
the MT90500 to the PHY for transmitting data on PTXDATA[7:0]; software configurable (in Main Control Register at 0000h) to run at up to 25 MHz. Note that this pin should be configured as an output for exact compliance with UTOPIA Level 1, V2.01.
PTXDATA[7:0].
MT90500. PRXDATA[7] is the MSB.
PRXDATA[7:0] contains the first valid byte of a cell.
secondary SAR to indicate that PRXDATA[7:0], PRXSOC, and PRXCLAV will be sampled at the end of the next clock cycle. If no secondary SAR is used, ground this pin at the MT90500 and PHY devices. Note that the UTOPIA standard permits this signal to be permanently asserted (see UTOPIA Level 1, V2.01, footnote 6).
PRXCLAV is asserted by the PHY to indicate it has a complete cell available for transfer to the RX UTOPIA port.
provided by the secondary SAR device. If no secondary SAR is used, connect to PTXCLK (this will provide exact compliance with the UTOPIA Level 1, V2.01 specification).
19
MT90500
Table 2 - Secondary UTOPIA Bus Pins
Pin # Pin Name I/O Type Description
70, 71, 72, 73,
74, 75, 76, 77
69 STXSOC I TTL PU Secondary UTOPIA transmit start of cell signal. Asserted by the external SAR
68 STXEN I TTL PU Secondary UTOPIA transmit data enable. Active LOW signal asserted by the
67 STXCLAV O 5V, 4mA Secondary UTOPIA transmit cell available indication signal. For cell level flow
85 STXCLK I TTL PU Secondary UTOPIA transmit clock, which can run at up to 25 MHz. Data transfer &
Note: MT90500 Secondary UTOPIA port emulates a PHY device for connection to an external SAR (ATM-layer device). Refer to Figure 63 on page 139 for implementation details regarding the interface between the MT90500 and an external AAL5 SAR.
STXDATA[7:0] I TTL PU Secondary UTOPIA transmit data bus. Byte-wide data driven from the external
SAR to the MT90500. Bit 7 is the MSB.
device when STXDATA[7:0] contains the first valid byte of the cell.
external SAR during cycles when STXDATA[7:0] contains valid cell data.
control, STXCLAV is asserted by the MT90500 to indicate to the external SAR that the MT90500 can accept the transfer of a complete cell.
synchronization clock provided by the external SAR to the MT90500 for transmitting data over STXDATA[7:0].
Table 3 - Microprocessor Bus Interface Pins
Pin # Pin Name I/O Type Description
37 Intel/Motorola I TTL PU Intel interface (1) / Motorola interface (0)
36 IC I TTL PU Internal connection (must be HIGH). 203 CS I TTL PU Active LOW chip select signal. 237 WR/R\W I TTL PU Active LOW Write Strobe (Intel) / Read-Write (Motorola). 239 RD/DS I TTL PU Active LOW Read Strobe (Intel) / Active LOW Data Strobe (Motorola). 238 RDY/DTACK O 5V, 4mA Ready (Intel) / Data Transfer Acknowledge (Motorola). Acts as active LOW
pseudo-open-drain in Motorola mode (DTACK, see Figure 53 on page 126). Acts as normal output in Intel mode, high impedance when CS is HIGH (RDY).
84 INT O 5V, 4mA SR
(Open-Drain)
223, 222, 219, 218, 217, 216, 215, 214, 212, 211, 210, 209, 208, 206, 205,
204 184 AEM I TTL PU Access External Memory - CPU accesses external memory when HIGH
185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
198, 199, 202
Note: MT90500 TTL inputs are pulled up to the 5 Volt rail. See Table 76 on page 112.
D[15:0] I/O TTL PU /
5V, 4mA SR
A[15:1] I TTL PU CPU Address lines A15-A1.
Active LOW interrupt line.
CPU data bus.
(internal memory and registers when LOW).
All microprocessor accesses to the device are word-wide, but addresses in this document are given as byte-addresses. The virtual A[0] bit selects between high and low bytes in a word.
20
MT90500
Table 4 - External Memory Interface Pins
Pin # Pin Name I/O Type Description
98 MEMCLK O 3.3V, 4mA Memory Clock. Internally connected to MCLK.
147 MEM_CS0L O 3.3V, 4mA Active LOW memory chip select signal. This chip select is used in all memory
modes. When there are two chips per bank, MEM_CS0L is associated with MEM_DAT[15:0] of Bank 0.
176 MEM_CS0H O 3.3V, 4mA Active LOW memory chip select signal. This chip select is used when there
are two 16-bit memory chips per bank. MEM_CS0H is associated with MEM_DAT[31:16] of Bank 0.
148 MEM_CS1L O 3.3V, 4mA Active LOW memory chip select signal. This chip select is used when there
are two banks and two chips per bank. MEM_CS1L is associated with MEM_DAT[15:0] of Bank 1.
177 MEM_CS1H O 3.3V, 4mA Active LOW memory chip select signal. This chip select is used when there
are two banks and two chips per bank. MEM_CS1H is associated with MEM_DAT[31:16] of Bank 1.
178, 179, 149,
150
180 MEM_OE O 3.3V, 4mA Active LOW output enable.
123, 122, 121, 118, 117, 116, 115, 103, 102,
99, 146, 144,
130, 128, 127,
126, 125, 124
166, 167, 168, 170, 171, 173, 174, 175, 153, 154, 155, 156, 158, 159, 162, 164, 133, 134, 135, 136, 137, 138, 142, 143, 105, 106, 107, 108, 109, 112,
113, 114
165, 152, 131,
104
Note: MT90500 3.3 V CMOS inputs are pulled up to the 3.3 Volt rail. See Table 76 on page 112.
MEM_WR[3:0] O 3.3V, 4mA Active LOW byte-write enables. MEM_WR[3] is associated with
MEM_DAT[31:24]; MEM_WR[2] is associated with MEM_DAT[23:16]; MEM_WR[1] is associated with MEM_DAT[15:8]; MEM_WR[0] is associated with MEM_DAT[7:0].
MEM_ADD[17:0] O 3.3V, 4mA Memory address lines.
MEM_DAT[31:0] I/O 3.3V CMOS
PU / 3.3V 4mA
MEM_PAR[3:0] I/O 3.3V CMOS
PU / 3.3V 4mA
Memory data lines. MEM_DAT[31:24] represent the upper byte; MEM_DAT[23:16] represent the upper-middle byte; MEM_DAT[15:8] represent the lower-middle byte; MEM_DAT[7:0] represent the lower byte.
Memory parity lines. MEM_PAR[3:0] are the optional “parity” bits that allow TDM Read Underrun detection. MEM_PAR[3] is related to MEM_DAT[31:24], MEM_PAR[2] is related to MEM_DAT[23:16], MEM_PAR[1] is related to MEM_DAT[15:8], and MEM_PAR[0] is related to MEM_DAT[7:0]. When unused, these pins must be pulled up via external resistors.
21
MT90500
Table 5 - Master Clock, Test, and Power Pins
Pin # Pin Name I/O Type Description
87 MCLK I TTL PU Master Clock. This signal drives the internal logic (including the RX_SAR and
the TX_SAR) and the external memory (through MEMCLK). 60 MHz for most applications. MCLK should be more than 5 times CLKx1, and should be more than 3 times FNXI.
78 RESET I 5V TTL
Schmitt PU
97 TMS I 3.3V CMOSPUJTAG Test Mode Select signal.
93 TCK I 3.3V CMOSPUJTAG Test Clock.
95 TDI I 3.3V CMOSPUJTAG Test Data In.
96 TDO O 3.3V, 4mASRJTAG Test Data Out.
94 TRST I 3.3V CMOSPDJTAG Test Reset input (active LOW). Should be asserted LOW on power-up
1, 7, 16, 29, 43, 61, 86, 91, 110,
119, 129, 139, 151, 163, 172, 182, 197, 213,
229
100, 141, 161 CORE_VSS GND Ground for core logic.
20, 40, 80, 201,
221
92, 111, 120,
132, 145, 157,
169, 181
2, 13, 24, 42,
60, 88, 183,
207, 225, 240 101, 140, 160 CORE_VDD_3V PWR Power for core logic (3.3 V).
21, 41, 81, 200,
220
89 IC I IC TEST, must be grounded.
90 TRISTATE I 3.3V CMOS
IO_VSS GND Ground for I/O logic.
RING_VSS GND Ground for core logic.
IO_VDD_3V PWR Power for I/O logic (3.3 V).
IO_VDD_5V PWR Power for I/O logic (5 V).
RING_VDD_3V PWR Power for core logic (3.3 V).
PU
3.3V ONLY
Chip reset signal (active LOW). Note that the MT90500 is synchronously reset, and that MCLK should be applied during reset. To asynchronously tristate outputs, assert the TRISTATE pin. The TRST pin (JTAG reset) should also be asserted LOW during chip reset. Reset should last at least 2 µs when MCLK is 60 MHz. Also see SRES bit in register 0000h.
Note: TDO is tristated by TRISTATE pin.
and during reset. Must be HIGH for JTAG boundary-scan operation. Note: This pin has an internal pull-down.
Output Tristate Control. Asynchronously tristates all output pins when LOW. Can be asserted LOW on power-up and during reset. Pull up to 3.3V for normal operation. NOT 5V TOLERANT.
22
Table 6 - TDM Port Pins
Pin # Pin Name I/O Type Description
MT90500
25, 23, 22, 19, 18, 17, 15, 14,
12, 11, 10, 9,
8, 6, 5, 4
230 CLKx2PI I Diff + Differential clock signal input (+) running at twice the serial TDM data
227 CLKx2NI I Diff - Differential clock signal input (-) running at twice the serial TDM data
233 CLKx1 I/O TTL PU /
232 FSYNC I/O TTL PU /
30 IC I TTL PU Internal connection (must be HIGH). 32 CORSIGA /
235 CORSIGB / MC /
33 CORSIGC /
34 CORSIGD /
35 CORSIGE /
83 EX_8KA I TTL PU An 8 kHz clock input that can be used as reference in the generation of the
234 SEC8K I/O TTL PU /
226 REF8KCLK O 5V, 12mA SR An 8 kHz clock generated internally. This signal is generated from one of
224 PLLCLK I TTL PU 16.384 / 32.768 MHz TDM clock reference from external PLL.
31 FREERUN O 5V, 12mA SR Active HIGH external PLL freerun indication.
236 LOCx2 O 5V, 4mA SR Local TDM Bus Clockx2.
3 LOCx1 O 5V, 4mA SR Local TDM Bus Clockx1. 28 LSYNC O 5V, 4mA SR Local TDM Bus Frame Sync. 26 LOCSTo O 5V, 4mA SR Local TDM Bus Serial Data Out Stream. 27 LOCSTi I TTL PU Local TDM Bus Serial Data In Stream.
231 CLKx2/
228 CLKx2NO O 5V, 12mA CLKx2 Negative Output. Differential negative output clock. (Inverse of
ST[15:0] I/O TTL PU /
5V, 12mA SR
5V, 12mA SR
5V, 12mA SR
I/O TTL PU /
CLKFAIL
FNXI
MCTX /
SRTSENA
MCRX /
SRTSDATA
MCCLK
CLKx2PO
5V, 12mA SR
I/O TTL PU /
5V, 12mA SR
I/O TTL PU /
5V, 4mA SR
I/O TTL PU /
5V, 4mA SR
I/O TTL PU /
5V, 4mA SR
5V, 12mA
I/O TTL PU /
5V, 12mA
TDM data streams. Used to pass PCM (voice) bytes or other data types. In order to enable any of these pins as outputs, the GENOE bit in the TDM Interface Control Register (6000h) must be set, as well as the appropriate channel bits in the Output Enable Registers.
stream frequency. This pin is used only in differential clock mode (H-MVIP) and should be tied HIGH when not in use. For normal (non-differential) clock mode input, use CLKx2/CLX2PO pin.
stream frequency. This pin is used only in differential clock mode (H-MVIP) and should be grounded when not in use.
Clockx1. This signal represents the CLKx2 signal divided by 2.
Frame sync. Bidirectional 8 kHz reference to/from main TDM Bus.
CORSIGA I/O when not used by the TDM bus. Clock fail on SCSA bus.
CORSIGB I/O when not used by the TDM bus. Message Channel (I/O) on the SCSA bus. SRTS FNX Network Clock Input - this input line is required when SRTS clock recovery mode is used. Note: When used for clock recovery, this clock must be < MCLK / 3.
CORSIGC I/O when not used by the TDM bus. Message Channel Transmit (input) toward SCSA bus from HDLC controller. This signal represents SRTS ENA output when SRTS clock recovery mode is selected.
CORSIGD I/O when not used by the TDM bus. Message Channel Receive (output) from SCSA bus toward HDLC controller. This signal represents SRTS DATA output serial line when SRTS clock recovery mode is selected.
CORSIGE I/O when not used by the TDM bus. Message Channel HDLC controller clock (output) from the SCSA bus.
REF8KCLK or SEC8K lines. Secondary alternate 8 kHz clock. Compatible with MVIP and H-MVIP
modes.
several internal sources which are programmed by the user. This output can provide a reference clock to an external PLL to generate the 16.384 /
32.768 MHz required for the operation of the IC in master mode.
CLKx2 Input/Output / CLKx2 Positive Output. Normal (non-differential) CLKx2 input in TDM Clock Slave mode. CLKx2 output (differential and non­differential) in TDM Clock Master mode.
CLKx2PO). Used in TDM Clock Master, differential clock mode (H-MVIP); active whenever MT90500 is TDM Clock Master. (Leave unconnected if non-differential clock desired.)
23
MT90500
Table 7 - Reset State of I/O and Output Pins
Pin Name I/O Reset State Additional Control Information
PTXDATA[7:0] O Active during and after reset. N / A
PTXPAR O Active during and after reset. N / A PTXCLK I/O High-impedance The PTXCLK_SEL bits in the Main Control Register (0000h) are LOW
after reset; PTXCLK is tristated and an input.
PTXEN O Active during and after reset. N / A
PTXSOC O Active during and after reset. N / A
STXCLAV O Active during and after reset. N / A
MEMCLK O Continues to drive at MCLK
rate during reset.
MEM_CS[1:0][H:L] O Active during and after reset. N / A
MEM_WR[3:0] O Active during and after reset. N / A
MEM_OE O Active HIGH during reset. RESET LOW forces this pin HIGH. After reset, this pin goes LOW. MEM_ADD[17:0] O Active during and after reset. N / A MEM_DAT[31:0] I/O High-impedance N / A
MEM_PAR[3:0] I/O High-impedance N / A
RDY/DTACK O Active during and after reset.
Tristated when CS is HIGH.
INT O High-impedance The interrupt enable bits in the Main Control Register at 0000h are reset to
D[15:0] I/O High-impedance N / A
TDO O Determined by TRST and / or
TAP controller state
ST[15:0] I/O High-impedance The GENOE bit in the TDM Interface Control Register (6000h) is LOW
CLKx1 I/O Input The CLKMASTER bit in the TDM Bus Type Register (6010h) resets to ‘0’;
FSYNC I/O Input The CLKMASTER bit in the TDM Bus Type Register (6010h) resets to ‘0’;
CORSIGA/
CLKFAIL
CORSIGB / MC /
FNXI
CORSIGC / MCTX /
SRTSENA
CORSIGD / MCRX /
SRTSDATA
CORSIGE
/ MCCLK
SEC8K I/O Input The SEC8KEN bit in the Master Clock Generation Control Register
REF8KCLK O Active during and after reset. Due to the reset values of the Master Clock Generation Control Register
FREERUN O Active HIGH during and after
LOCx2 O Active during and after reset. N / A LOCx1 O Active during and after reset. N / A
I/O Input The TDM I/O Register at 6004h resets to all zeroes; all CORSIGxCNF are
I/O Input See CORSIGA.
I/O Input See CORSIGA.
I/O Input See CORSIGA.
I/O Input See CORSIGA.
reset.
N / A
In Motorola mode, pin drives HIGH during reset. In Intel mode, drives LOW during reset.
zero; interrupts are masked after reset.
N / A
after reset; these TDM data pins are tristated and in loopback mode.
the MT90500 is TDM Slave, and CLKx1 is input from the TDM bus.
the MT90500 is TDM Slave and FSYNC is input from the TDM bus.
set to “00” and all CORSIGx pins are configured as inputs.
(6090h) resets to ‘0’; SEC8K is an input.
(6090h) and the Master Clock / CLKx2 Division Factor (6092h), REF8KCLK is initially equal to MCLK / 8194.
The FREERUN bits in the Master Clock Generation Control Register at 6090h are “00” after reset; the FREERUN pin is reset to active HIGH.
24
MT90500
Table 7 - Reset State of I/O and Output Pins
Pin Name I/O Reset State Additional Control Information
LSYNC O Active during and after reset. N / A
LOCSTo O Active during and after reset. N / A
CLKx2/CLKx2PO I/O Input The CLKMASTER bit in the TDM Bus Type Register (6010h) resets to ‘0’;
the MT90500 is TDM Slave and CLKx2 is input from the TDM bus.
CLKx2NO O High-impedance The CLKMASTER bit in the TDM Bus Type Register (6010h) resets to ‘0’;
the MT90500 is TDM Slave and therefore no clock signals are driven from the MT90500.
Note: All pins are placed in high-impedance by asserting the TRISTATE pin.
Table 8 - Pinout Summary
Type Input Output I/O Power Ground
Primary UTOPIA 13 11 1
Secondary UTOPIA 11 1
External Memory Interface 28 36
Microprocessor Interface 21 2 16
Miscellaneous 8 1 TDM Interface 6 7 25
Power 26
Ground 27
Total
187 + 26 + 27 = 240
59 50 78 26 27
25
MT90500
MEM_OE
MEM_WR2
MEM_WR3
MEM_CS1H
MEM_CS0H
MEM_DAT24
MEM_DAT25
MEM_DAT26
IO_VSS
MEM_DAT27
MEM_DAT28
IO_VDD_3V
MEM_DAT29
MEM_DAT30
MEM_DAT31
MEM_PAR3
MEM_DAT16
IO_VSS
MEM_DAT17
CORE_VDD_3V
MEM_DAT18
IO_VDD_3V
CORE_VSS
MEM_DAT20
MEM_DAT19
MEM_DAT21
MEM_DAT22
MEM_DAT23
MEM_PAR2
IO_VSS
IO_VDD_3V
IO_VSS
IO_VDD_5V
AEM
A15 A14 A13 A12 A11 A10
A9 A8 A7 A6 A5 A4
IO_VSS
A3
RING_VDD_3V
IO_VDD_5V
RING_VDD_3V
IO_VDD_5V
CLKx2/CLKx2PO
RDY/DTACK
IO_VDD_5V
A2
RING_VSS
A1 CS D0 D1 D2
D3 D4 D5 D6 D7
IO_VSS
D8 D9
D10 D11 D12 D13
RING_VSS
D14 D15
PLLCLK
REF8KCLK
CLKx2NI
CLKx2NO
IO_VSS
CLKx2PI
FSYNC
CLKx1
SEC8K
CORSIGB
LOCx2
WR/R\W
RD/DS
182 184 186 188 190 192 194 196 198 200
202 204 206 208 210 212 214 216 218 220
222 224 226 228 230 232 234 236 238 240
240 PIN PQFP
22 24 26 28 30
2018161412108642
152154156158160162164166168170172174176178180
26
ST0
ST1
ST2
ST3
ST4
ST5
ST6
ST7
ST8
LOCx1
IO_VSS
IO_VDD_5V
IO_VSS
ST9
IO_VDD_5V
Figure 2. Pin Connections
ST10
ST11
IO_VSS
ST12
ST13
RING_VSS
RING_VDD_3V
ST14
ST15
LOCSTo
IO_VDD_5V
LSYNC
LOCSTi
IO_VSS
IC
MEM_WR0
MEM_WR1
MEM_CS1L
MEM_CS0L
MEM_ADD7
IO_VDD_3V
MEM_ADD6
MEM_DAT8
MEM_DAT9
CORE_VDD_3V
IO_VSS
MEM_DAT10
MEM_DAT11
CORE_VSS
MEM_DAT12
MEM_DAT13
MEM_DAT14
MEM_DAT15
IO_VDD_3V
MEM_PAR1
MEM_ADD5
IO_VSS
MEM_ADD4
MEM_ADD3
MEM_ADD2
MEM_ADD1
MEM_ADD0
MEM_ADD17
MEM_ADD16
MT90500
MEM_ADD15
240 PIN PQFP
122124126128130132134136138140142144146148150
52 54 56 58 6050484644424038363432
120 118 116 114 112 110 108 106 104 102 100
98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62
IO_VDD_3V IO_VSS MEM_ADD14 MEM_ADD13 MEM_ADD12 MEM_ADD11 MEM_DAT0 MEM_DAT1 MEM_DAT2
IO_VDD_3V IO_VSS
MEM_DAT3 MEM_DAT4 MEM_DAT5 MEM_DAT6 MEM_DAT7 MEMPAR0 MEM_ADD10 MEM_ADD9 CORE_VDD_3V
CORE_VSS MEM_ADD8 MEMCLK TMS
TDO TDI
TRST TCK
IO_VDD_3V IO_VSS TRISTATE IC IO_VDD_5V MCLK IO_VSS STXCLK INT EX_8KA PTXCLK RING_VDD_3V
RING_VSS PRXCLK RESET STXDATA0 STXDATA1 STXDATA2 STXDATA3 STXDATA4 STXDATA5 STXDATA6 STXDATA7 STXSOC STXEN
STXCLAV PRXDATA0 PRXDATA1 PRXDATA2 PRXDATA3 PRXDATA4
IO_VSS
CORSIGA
CORSIGC
CORSIGD
FREERUN
IC
CORSIGE
PTXDATA0
MOTOROLA
INTEL/
RING_VSS
PTXDATA1
IO_VDD_5V
RING_VDD_3V
IO_VSS
PTXDATA2
PTXDATA3
PTXDATA4
PTXDATA5
PTXDATA6
PTXDATA7
PTXEN
PTXPAR
PTXSOC
PRXEN
PRXSOC
PTXCLAV
PRXCLAV
PRXDATA7
PRXDATA6
PRXDATA5
IO_VDD_5V
27
MT90500
4. Functional Description
As shown in Figure 1, “MT90500 Block Diagram,” on page 12, the MT90500 device consists of the following major components: TDM Module, External Memory Controller, TX_SAR, RX_SAR, UTOPIA Module, Clock Recovery, Microprocessor Interface, and Test Interface. This section descr ibes each module in detail.
4.1 TDM Module
This circuit module is the interface to the Time Division Multiplexed (TDM) buses, which carry N x 64kbps data. The TDM module interfaces are:
16 bidirectional TDM data streams on pins ST[15:0]; these pins can be configured through soft-
ware registers to support various bus formats (ST-BUS, MVIP, H-MVIP, SCSA, or IDL) and data rates of 2.048 Mbps, 4.096 Mbps, or 8.192 Mbps; (F or the selection of the b us type , see TDM Bus Type Register at address 6010h in Section 5.)
the TDM bus clocks (CLKx2, CLKx1) and frame synchronization signal (FSYNC);
the TDM bus ancillary signals such as SEC8K (MVIP) and CLKFAIL (SCSA);
a local TDM bus (LOCx2, LOCx1, LSYNC, LOCSTi, and LOCSTo); the format of the bus, which
runs at 2.048 Mbps (LOCx2 = 4.096 Mbps), is user-programmable via software (see Local Bus Type Register at address 6020h).
The TDM module moves TDM data from the TDM serial inputs to the external memory (where it is read by the TX_SAR) in the transmit direction, and from the external memory (where it was written by the RX_SAR) to the TDM outputs in the receive direction. This is done with the aid of an internal TDM frame buff er, which is used to buffer 4 frames of each TDM channel in both directions; i.e. four frames in the receive direction (ATM to TDM), and four frames in the transmit direction (TDM to ATM). The TDM module can be divided into four main processes:
TDM Clock Logic, which controls all the operations related to clock generation and clock signal
monitoring on the TDM bus;
TDM Interface Operation, which controls the input and output of the serial TDM data;
TDM Data to External Memory Process, which transfers TDM input data into Transmit Circular
Buffers in the external memory;
External Memory to TDM Data Output Process, which transfers TDM output data from Receive
Circular Buffers in the external memory to the TDM output bus.
Each of these processes are described in detail below.
4.1.1 TDM Clock Logic
The TDM Clock Logic controls all of the operations related to clock generation and clock signal monitoring on the TDM bus. The block diagram of the TDM Clock Logic is shown in Figure 3. This module consists of several blocks, including: selection logic for an 8 kHz reference for the external PLL (REF8KCLK), the main TDM bus clock generation logic, the local TDM bus clock generation logic, the clock drivers & clock selection for the SEC8K signal, and the clock failure detection logic.
4.1.1.1 TDM Timing Modes
The MT90500 supports 4 major TDM timing modes. There are also a number of TDM timing features which are independent of the TDM timing mode being used:
The SEC8K pin (MVIP compatibility) can be programmed as either output or input. The SEC8KEN
bit in the MCGCR Register (6090h) enables the SEC8K pin driver. If the SEC8K pin is enabled as an output, the SEC8KSEL bit in the same register selects the source for this signal (the EX_8KA input, or the internal 8 kHz FS_INT signal which is derived from CLK16).
28
MT90500
CLKx2
CLKx1
Main TDM Bus
FSYNC
MCLK
SEC8K
Square
SEC8K_SQ
MT90500
Master/Slave
SEC8KEN
1 0
SEC8KSEL
0 1
ATM Cells
Internal CPU Bus
External CPU Bus
FS_INT
FSYNC
FS_INT
EX_8KA_INT
SRTS Clock
FNXI
Adaptive
Clock
Recovery
Recovery
Main TDM
Bus Timing
Generation
SRTS
and
Clock Logic
Square
LOCx2
PHLEN
CLK16
(16.384 MHz)
Divide by
1,2,4,or 8
DIV1...8
DIVCLK_SRC
0
Divide by 2
to 16384
1
RXVCLK SEC8K_INT
EX_8KA_INT
10
EX_8KA
All control bits shown are in Master Clock Generation Control Register (6090h).
BEPLL
REFSEL<1:0>
EX_8KA_SQ
Local TDM
Bus
Clock
Generation
Logic
1 0
0
1
2
3
CLKx2
CLKx1
FSYNC
LOCx1
LSYNC
PLLCLK
FREERUN
REF8KCLK
Detection
Logic
REF8KCLK
Clock Absent
Detection
Logic
Local TDM Bus
MT9041 or
other PLL
External
PLL
(Optional)
Figure 3 - TDM Clock Selection and Generation Logic
The CLKx2 signal can be selected as single-ended or differential. (Differential CLKx2 allows com-
patibility with the H-MVIP bus.) In TDM Timing Slav e, the CLKx2 signal can be input on the CLKx2 pin, or the differential CLKx2PI and CLKx2NI pins. This selection is made with CLKTYPE in the TDM Bus Type Register at address 6010h. In TDM Timing Master, the CLKx2 signal is output on the CLKx2/CLKx2PO pin, and an inverted clock is available on the CLKx2NO pin.
The MT90500 supports the following TDM timing modes:
TDM Timing Bus Slave - CLKx2 Reference (CLKMASTER = ‘0’ in TDM Bus Type Register at 6010h) In this mode, the MT90500 is configured as a TDM Timing Slave and all internal TDM timing is synchronized to
the TDM clock inputs: CLKx2, CLKx1, and FSYNC. The following sub-modes are also selectable:
The CLKx1 can be an input at the CLKx1 pin, or it can be derived internally from CLKx2. This is
controlled by TCLKSYN (address 6010h). If the CLKx1 pin is not used as an input in TDM Slave mode, it remains high-impedance.
TDM Timing Slave operation takes its 8 kHz framing from the FSYNC input pin, which would usu-
ally be driven by the TDM bus. To support other implementations, the REF8KCLK output remains active in TDM Slave mode. An 8 kHz reference output can be made available at REF8KCLK, selectable from the EX_8KA input, the SEC8K pin, or one of the internal dividers. In addition, the FREERUN output can be used to monitor the presence of REF8KCLK.
29
MT90500
TDM Timing Bus Master - Freerun (CLKMASTER = ‘1’ in TDM Bus Type Register at 6010h) In this mode, the MT90500 is configured as the TDM Timing Master and the MT90500 drives the three TDM
bus clocks: CLKx2, CLKx1, and FSYNC . The MT90500 cloc k gener ator b lock uses either the MCLK input or the PLLCLK input to generate all of the required clocks. Typically in this mode MCLK or PLLCLK is connected to an oscillator, and no other synchronization source is used. Several selections must be made:
The selection of MCLK or PLLCLK is determined by the BEPLL bits in the Master Clock Genera-
tion Control Register at 6090h.
The selected clock is divided by 1, 2, 4, or 8 to obtain a 16.384 MHz clock, called CLK16. This divi-
sion is controlled by the DIV1...8 bits at 6090h.
TDM Timing Bus Master - 8 kHz Reference (CLKMASTER = ‘1’ in TDM Bus Type Register at 6010h) In this mode, the MT90500 is configured as the TDM Timing Master and the MT90500 drives the three TDM
bus clocks, synchronized to one of several possible 8 kHz references. Typically, in this mode, the PLLCLK input is driven by an external PLL (such as the Mitel MT9041), which is controlled by the REF8KCLK and FREERUN outputs. The following options are also selectable:
One of four 8 kHz reference sources must be selected, using the REFSEL bits at 6090h. (See
Figure 3 and Section 4.1.1.2 for further details.)
If the external PLL is controlled by the FREERUN output pin, the pin’s operation must be specified
by the FREERUN bits at 6090h. The CPU can force the FREERUN pin to either state, or allow the FREERUN pin to follow the REF8KCLK failure-detection bit (REFFAIL at 6082h).
Bus Master-Alternate (CLKMASTER = ‘0’, CLKALT = ‘1’ in TDM Bus Type Register at 6010h) In this mode, the MT90500 is configured as a TDM Timing Slave, but stands ready to become the Timing
Master, should the timing on the TDM bus fail. The switch is normally automatic (based on the CLKFAIL input), but can also performed by the CPU (for instance: by programming the chip into TDM Timing Master following a Clock Absent interrupt). The following options are also selectable:
To make the switch from Alternate to Master automatic, several settings are required: CLKALT at
6010h is set HIGH, and the CORSIGA pin is configured as the CLKFAIL input (CORSIGACNF = “11” at 6004h).
The Master-Alternate operates normally as a TDM Timing Slave, and has the same options as the
TDM Timing Slave listed above.
The Master-Alternate can be set up to switch to Master-Freerun operation, should the TDM bus
clocks fail. The same options as listed above for Master-Freerun apply to this mode.
The Master-Alternate can be set up to switch to Master-8 kHz Reference operation, should the
TDM bus clocks fail. The same options as listed above for Master-8 kHz Reference apply to this mode. Additionally, REF8KCLK can be obtained from the TDM bus by dividing CLKx2. This allows the external PLL to be phase-locked to the TDM bus clocks. Note that in this case the FREERUN output should be set up to automatically place the external PLL in freerun should the TDM bus clocks fail.
The internal 8 kHz (FS_INT) of the Master-Alternate can be phase-locked to the TDM bus FSYNC
by setting PHLEN = ‘1’ at 6090h. (This is only valid when the FSYNC type at 6010h is set to “00”.) This will align the internal “stand-by” FSYNC, CLKx2, and CLKx1 to the TDM bus to within a clock cycle of the internal 16.384 MHz clock, allowing for minimal phase-shift should the Master-Alter­nate MT90500 take over the TDM bus clocks.
4.1.1.2 REF8KCLK Selection Logic
The REF8KCLK output pin of the MT90500 is intended to provide a clock ref erence to an optional external PLL. This signal would usually be an 8 kHz frame pulse, but other signals are possible. The external PLL (e.g. Mitel MT9041) can be used to multiply the REF8KCLK output to 16.384 MHz (or 32.768 MHz) and attenuate jitter. The 16.384 MHz can then be applied to the PLLCLK input pin to allow the MT90500 to generate the TDM
30
Loading...
+ 129 hidden pages