mikroElektronika multimedia workStation v7 User Manual

USER'S GUIDE
workStation
for PIC18FJ®, dsPIC33®, PIC24® and PIC32
®
Many on-board modules
Multimedia peripherals
Easy-add extra boards
mikroBUS™ sockets
Four connectors for each port
Amazing Connectivity
Fast USB 2.0 programmer and
In-Circuit Debugger
mikromedia
6 mikromedia boards supported
PIC18FJ®,dsPIC33®/PIC24® and PIC32
®
mikromedia™ has developed into a well-known brand. Not only that we set new standards in design and
selection of on-board modules, but we also created an entire ecosystem of users who use our visual tools and
compilers to develop TFT applications faster and easier than ever before. The ease of use is our top priority.
This is why we wanted to take things to the next level.
mikromedia™ workStation v7 is unlike anything you have seen before. With custom pin markings it will
revolutionize the way people look at dierent architectures. Switching from one mikromedia to another while
using virtually the same code is a very powerful concept. We are condent this will be especially interesting
in education and among developers who need exibility and rapid prototyping.
To our valued customers
Nebojsa Matic,
Owner and General Manager
of mikroElektronika
page 3
Table of contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
It's good to know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction
04
05
mikroBUS™ sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Click Boards
are plug and play . . . . . . . . . . . . . . . . . . . .
Input/Output Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connectivity
24
26
27
Installing programmer drivers . . . . . . . . . . . . . . . . . . . . . .
Programming software . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-board programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmer/debugger
20
21
mikroICD™ - In Circuit Debugger . . . . . . . . . . . . . . . . . . .
22
18
Other modules
ADC inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS1820 - Digital Temperature Sensor . . . . . . . . . . . . . .
Piezo Buzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM35 - Analog Temperature Sensor . . . . . . . . . . . . . . . .
Additional GNDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Breadboard area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
32
35
33
36
37
UART via RS-232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UART via USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Navigation switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Communication
28
29
30
31
06
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply
How to power the board?. . . . . . . . . . . . . . . . . . . . . . . . .
07
What's Next?
What’s Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
mikromedia
What is mikromedia™ board?. . . . . . . . . . . . . . . . . . . . . . . .
mikromedia
board socket . . . . . . . . . . . . . . . . . . . . . . . . .
Which one to use? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to properly place into the socket? . . . . . . . . . . . . .
BSP makes programming easier . . . . . . . . . . . . . . . . . . .
11
08
12
10
14
Package Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
Installing BSP libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
page 4
Introduction
introduction
After several years of successful production of mikromedia™ boards,
we have decided to delight users of our products and make a new
development system that expands functionality of all mikromedia™
boards with Microchip® microcontrollers. The idea was to make a
development system with as many peripherals as possible to
cover multimedia modules. On the other hand we wanted to t in
dimensions of other development systems with 2-layer PCB. We
present you the board which is powerful, well organized, with
high-quality components, on-board programmer and debugger
and it's ready to be your strong ally in development. We hope
you will enjoy it as much as we do.
mikromedia
workStation v7 Development Team
This is a perfect tool for education. Since board supports mikromedia boards for PIC18®, dsPIC®, PIC24® and PIC32®, you can easily switch to one you need in your development.
Workstation helps you to connect your mikromedia board to the rest of the world. Button, LED and four headers for each pin are the arsenal you need. mikromedia becomes the brain of your device.
Supports all Microchip® mikromedias It’s like the body for the brain
Perfect for education mikromedia with wires
Not two, not three but four
dierent mikroBUS host
sockets enable you to do do whatever you imagine. Simply snap in your Click board, and add a whole new functionality.
For easier connections
Four mikroBUS sockets
Powerful on-board mikroProg™ programmer and In-Circuit debugger can program and debug all supported mikromedias. Once you use it, you won’t be able to imagine a development without it.
Debugger on board
Debugger on board
page 5
Copyright ©2011 Mikroelektronika.
All rights reserved. Mikroelektronika, Mikroelektronika logo and other
Mikroelektronika trademarks are the property of Mikroelektronika. All other trademarks are the property of their respective owners.
Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
It's good to know
Package contains
introduction
System Specications
power supply
7–23V AC or 9–32V DC or via USB cable (5V DC)
board dimensions
266 x 220 mm (10.47 x 8.66 inch)
weight
515 g (1.135 lbs)
power consumption
~135 mA (all modules are disconnected)
User Manual DVD with examples
and documentation
5 8
Damage resistant protective box
mikromedia™ workStation v7 board for PIC
®
USB cable
1 2 3
Wire jumpers
4
Board schematic
6
mikroProg Suite™ and mikroICD
manuals
7
page 6
Power supply
Figure 3-2: Power supply unit schematic
VCC-5V
POWER
R28 2K2
LD1 ON/OFF
8
7
6
5
1
2
3
4
U5
SWC
SWE
CT
GND
DRVC
IPK
VIN
CMPR
MC34063A
R29
0.22
R30 3K
VCC-SW C22 220pF
D5
MBRS140T3
L1 220uH
E8 220uF/35V /LESR
VCC-EXT
R31 1K
VCC-5V
J1
213
SWITCH1
VCC-USB
VCC-SW
+ -
D2
1N4007
D1
1N4007
D4
1N4007
D3
1N4007
CN36
CN35
E7
220uF/35V/LESR
5V SWITCHING POWER SUPPLY
1
3
REG1
C21 100nF
VCC-5V
2
GND
Vout
Vin
MC33269DT3.3
E5 10uF
3.3V VOLTAGE REGULATOR
VCC-3.3V
E6
220uF/35V/LESR
C20 100nF
VCC-USB
FP1
C5 100nF
1
4
VCC
GND
CN5
USB
Figure 3-1: Power supply unit of mikromedia™ workStation v7
Board contains switching power
supply that creates stable voltage
and current levels necessary
for powering each part of
the board. Power supply section contains specialized
MC33269DT3.3 power regulator
which creates VCC-3.3V power supply,
thus making the board capable of supporting
3.3V microcontrollers. Power supply unit can be
powered in three dierent ways: with USB power supply
(CN5), using external adapters via adapter connector (CN36)
or additional screw terminals (CN35). External adapter voltage levels
must be in range of 9-32V DC and 7-23V AC. Use jumper J1 to specify
which power source you are using. Upon providing the power using either external
adapters or USB power source you can turn on power supply by using SWITCH 1 (Figure
3-1). Power LED ON (Green) will indicate the presence of power supply.
power supply
page 7
power supply
How to power the board?
To power the board with USB cable, place jumper J1 in USB position. You can then plug in the USB cable as shown on images
1
and 2 and turn the power
switch ON.
To power the board via adapter connector, place jumper J1 in EXT position. You can then plug in the adapter cable as shown on images
3
and 4 and turn the
power switch ON.
To power the board using screw terminals, place jumper J1 in EXT position. You can then screw-on the cables in the screw terminals as shown on images
5
and 6
and turn the power switch ON.
Board power supply creates stable 3.3V necessary for operation of the microcontroller and all on-board modules.
Power supply: via DC connector or screw terminals
(7V to 23V AC or 9V to 32V DC), or via USB cable (5V DC)
Power capacity: up to 500mA with USB, and up to 600mA with external power supply
Set J1 jumper to USB position
1. With USB cable
3. With laboratory power supply
Set J1 jumper to EXT position
Set J1 jumper to EXT position
2. Using adapter
1
3
5
2
4
6
mikromedia
mikromedia™ board socket
mikromedia for PIC18FJ® mikromedia for PIC24® mikromedia for PIC24EP® mikromedia for dsPIC33® mikromedia for dsPIC33EP® mikromedia for PIC32®
Figure 4-1: mikromedia™ board socket
After testing and building
the nal program, this
mikromedia
can also be taken
out of the board socket and used
in your nal device which makes it
a great choice for both beginners and professionals. The mikromedia
socket
schematic is shown on Figure 4-2
page 8
1
2
3
4
5
6
mikromedia™ workStation v7 contains four female headers that together form a socket for specialized
small development boards with a microcontroller and on-chip modules, called mikromedia
boards. Two of
them are used for general purpose I/O and power pins (1x26). The other two are used for the mikroProg
programmer (1x5) or ICD2/3 (1x6). Before placing the mikromedia
board into the appropriate socket (Page 10), you have to solder two 1x26 male headers to the side pads and one 1x5 male header for mikroProg
programmer. Currently, six mikromedia™ boards are supported, but there is a tendency to
increase the number:
page 9
mikromedia
53 54 55 56 57
58
59
60
61
62
63
1
2
3
4
567
8
9
10
111213
14
15
161718
192021
222324
25
26
272829
3031323334353637383940414243444546474849505152
5V
GND
SCK
MISO
MOSI
3.3V
GND
RST
GND
L
R
RX
TX
SCL
SDA
3.3V
GND
ANALOG INT
PWM
3.3V GND
PGD PGC
NC
RST
3.3V
GND
PGD
PGC
RST
MM1
G0.0
G0.1
G0.2
G0.3
G0.4
G0.5
G0.6
G0.7
G1.0
G1.1
G1.2
G1.3
G1.4
G1.5
G1.6
G1.7
G2.0
G2.1
G2.2
G2.3
A0
A1
G2.4
G2.5
G2.6
G2.7
G3.0
G3.1
G3.2
G3.3
G3.4
G3.5
G3.6
G3.7
G4.0
G4.1
G4.2
G4.3
G4.4
G4.5
G4.6
G4.7
LOUT
ROUT
VCC-5V
MCU-PGC
MCU-PGD
MCU-PGC MCU-PGD
MCU-VPP
MCU-VPP
mikromedia
for PICI8FJ, dsPIC33,PIC24 and PIC32
DATA BUS
Figure 4-2: mikromedia™ board socket schematic
page 10
1 2 3
Before you plug the mikromedia™ board into the socket, make sure that the power supply is turned o. Images below show how to correctly plug the board. First make sure that mikromedia
board
orientation matches the silkscreen outline on the
mikromedia™ workStation v7 board socket. Place the mikromedia
board over the socket so that each male
header is properly aligned with the female socket, as shown in Figure 4-4. Then put the mikromedia
board slowly down until all the pins match the
socket (make sure you don't push the screen). Check again if everything is placed correctly and press the mikromedia
board until it is completely plugged
into the socket as shown in Figure 4-5. Now you can turn the power supply on.
How to properly place your mikromedia™ board into the socket?
Figure 4-3: On-board mikromedia
socket has silkscreen markings which will help you to correctly orient the mikromedia
board before inserting.
Figure 4-4: Place the mikromedia
board in the socket so that pins are aligned properly.
Figure 4-5: Properly placed mikromedia
board.
mikromedia
page 11
16
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
Connection Pads
TFT 320x240 display
USB MINI-B connector
CHARGE indication LED
Li-Polymer battery connector
3.5mm headphone connector
Power supply regulator
Serial Flash memory
VS1053 Stereo mp3 coder/decoder
RESET button
microcontroller (PIC32MX460F512L)
Accelerometer
Crystal oscillator
Power indication LED
microSD Card Slot
ICD2/3 connector
mikroProg™ connector
01
02
03
06
07
08
09
11
10
12
13
14
15
16
04
05
What is mikromedia™ board?
The mikromedia™ board is a compact development system with lots of on-board peripherals which allow development of devices with multimedia content. The central part of the system is a PIC18FJ®, PIC24®,
dsPIC33® or PIC32® microcontroller, depending on
mikromedia
board. The mikromedia™ features integrated modules such as Audio module (with stereo MP3 codec and 3.5mm audio connector for headphones), resistive
TFT 320x240 touch screen display (with 262.144
dierent colors), battery charger, accelerometer, microSD card slot and 8 Mbit ash memory. mikromedia
board also contains a MINI-B USB connector, two 1x26 connection pads, LI-Polymer battery connector and other. It comes pre programmed with bootloader, but can also be programmed with standalone programmers, such as mikroProg
or
ICD2/3. mikromedia
is compact and slim, and perfectly
ts in the palm of your hand, which makes it a convenient
platform for mobile devices. It can be powered through a
USB MINI-B cable or battery supply. When you put any of them in mikromedia
workStation v7 system number
of modules and functionality signicantly increase.
Key components are marked as in the example of
mikromedia for PIC32
®
(Figure 4-6) and are similar
for other mikromedia
. The most important dierences
between mikromedia
boards are shown on page 12 and
13. A detailed description can be found in appropriate manuel provided with the mikromedia
board.
mikromedia
Figure 4-6: Key components of mikromedia for PIC32® board
17
17
10
page 12
mikromedia
Which one to use?
Architecture: 8-bit CPU speed: 12 MIPS Flash memory: 128 kB RAM memory: 3,904 Bytes Operating MCU Voltage: 2 – 3.6 V USB DEVICE: Yes USB UART: No Consumption (back light is ON): 51.7 mA Back light current: 42mA Max I2C speed: 400 kHz Max microSD SPI speed: 12 MHz Max Flash memory SPI speed: 12 MHz Max Audio codec SPI speed: 3 MHz
Architecture: 16-bit CPU speed: 16 MIPS Flash memory: 256 kB RAM memory: 16 kB Operating MCU Voltage: 2 – 3.6 V USB DEVICE: Yes USB UART: No Consumption (back light is ON): 56.2 mA Back light current: 42mA
Max I
2
C speed: 400 kHz Max microSD SPI speed: 16 MHz Max Flash memory SPI speed: 16 MHz Max Audio codec SPI speed: 2 MHz
mikromedia for PIC18FJ mikromedia for PIC24
Architecture: 16-bit CPU speed: 70 MIPS Flash memory: 512 kB RAM memory: 52 kB Operating MCU Voltage: 3 – 3.6 V USB DEVICE: Yes USB UART: No Consumption (back light is ON): 57 mA Back light current: 42mA
Max I
2
C speed: 400 kHz
Max microSD SPI speed: 35 MHz
Max Flash memory SPI speed 35 MHz
Max Audio codec SPI speed: 2.1 MHz
mikromedia for PIC24EP
page 13
mikromedia
For now we are giving you the choice to choose between 6 mikromedia boards. Each of them is specic in its own way. The main idea here is to show you comparative key features
in one place, which makes it easier for you to choose.
Architecture: 32-bit CPU speed: 120 MIPS Flash memory: 512 kB RAM memory: 32 kB Operating MCU Voltage: 2.3 – 3.6 V USB DEVICE: Yes USB UART: No Consumption (back light is ON): 113 mA Back light current: 42mA
Max I
2
C speed: 400 kHz Max microSD SPI speed: 20 MHz Max Flash memory SPI speed: 40 MHz Max Audio codec SPI speed: 3.33 MHz
Architecture: 16-bit CPU speed: 40 MIPS Flash memory: 256 kB RAM memory: 30 kB Operating MCU Voltage: 3 – 3.6 V USB DEVICE: No USB UART: Yes Consumption (back light is ON): 59.7 mA Back light current: 42mA
Max I
2
C speed: 400 kHz Max microSD SPI speed: 16 MHz Max Flash memory SPI speed: 16 MHz Max Audio codec SPI speed: 4 MHz
Architecture: 16-bit CPU speed: 70 MIPS Flash memory: 512 kB RAM memory: 52 kB Operating MCU Voltage: 3 – 3.6 V USB: Yes USB-UART: No Consumption (back light is ON): 56.2 mA Back light current: 42mA
Max I
2
C speed: 400 kHz Max microSD SPI speed: 35 MHz Max Flash memory SPI speed: 35 MHz Max Audio codec SPI speed: 2.1 MHz
mikromedia for PIC32mikromedia for dsPIC33 mikromedia for dsPIC33EP
page 14
mikromedia
BSP makes programming easier
« Board Support Package in mikroElektronika compilers
In embedded world, BSP or Board Support Package is
the common name for all hardware-specic codes which simplies working with the board. That is why we made
a BSP package support for mikromedia
workStation
v7 board, to make programming of mikromedia
boards
much easier. Various mikromedia boards have dierent
connections of microcontroller pins on side pads. mikromedia
workStation v7 development system has a unique set of markings on a silk screen which enables you to use each pin connected to mikromedia
side pads with
the well organized layout, combined together into ve I/O
groups labeled as G0, G1, G2, G3 and G4. BSP abstracts what's "underneath the hood" and enables you to have one development system for various mikromedia
boards. For example, pin number 5 on the side pad of mikromedia for PIC18FJ is connected to the RF2 microcontroller pin. On the other hand, pin number 5 on the side pad of mikromedia for PIC32 is connected to the RB2 microcontroller pin.
BSP package and mikromedia workStation v7 oers you
the possibility to use this pin with the unique name G0.0, and this stands for all PIC mikromedia boards. In addition to simple I/O functions, BSP package also provides you
a simple way of using ADC, I2C, SPI and UART libraries without knowing, for example if it is UART1 or UART2 module connected to mikromedia
side pads. Before using, you need to choose the appropriate BSP package depending on the programming language (C, Basic, Pascal) and the type of mikromedia (PIC18FJ
®
, PIC24®,
PIC24EP
®
, dsPIC33®, dsPIC33EP®, PIC32®). BSP can only be used with Mikroelektronika compilers. If you use other compilers or if you do not want to use BSP, connections between mikromedia
side pads and workStation board
pins are as shown on the images below.
5V
GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6 G1.7 G2.0 G2.1 G2.2 G2.3
3.3V GND
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V GND
5V
GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6
G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6
G1.7 G2.0 G2.1 G2.2 G2.3
3.3V
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V
5V
GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6 G1.7 G2.0 G2.1 G2.2 G2.3
3.3V
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V
What is BSP?
mikromedia for PIC18FJ mikromedia for PIC24 mikromedia for PIC24EP
page 15
mikromedia
5V GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6 G1.7 G2.0 G2.1 G2.2 G2.3
3.3V GND
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V GND
5V GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6 G1.7 G2.0 G2.1 G2.2 G2.3
3.3V
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V
5V GND
A0
A1 G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7 G1.0 G1.1 G1.2 G1.3 G1.4 G1.5 G1.6 G1.7 G2.0 G2.1 G2.2 G2.3
3.3V
RST GND LOUT ROUT G2.4 G2.5 G2.6 G2.7 G3.0 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G4.0 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7
3.3V
Install board support package (BSP) in 3 simple steps:
1. Download package from libstock website 2. Install it with Package manager software 3. Use it as a library in mikroE compilers
mikromedia for PIC32mikromedia for dsPIC33 mikromedia for dsPIC33EP
A
v
a
i
l
a
b
l
e
o
n
P
r
o
d
u
c
t
D
V
D
!
Step 1 - Start Installation
Step 3 - Install for All users or current user
Step 5 - Installation in progress
Step 2 - Accept EULA and continue
Step 4 - Choose destination folder
Step 6 - Finish Installation
Package Manager
What is the Package manager?
Installation wizard - 6 simple steps
Package manager is a free software which enables you to integrate your libraries into all MikroElektronika Compilers for PIC
®
, dsPIC®, PIC24® and PIC32®. Package
manager can also make a redistributive archive with goal to be installed on other
computers. Packages can contain other valuable information such as
Library les, Help les and Examples. To begin, rst locate the
installation archive on the Product DVD:
After downloading, extract the package and double click the
executable setup le, to start installation.
DVD:\\download\eng\software\compilers\package-manager\ package_manager_v240.zip
Copyright ©2011 Mikroelektronika. All rights reserved. Mikroelektronika, Mikroelektronika logo and other Mikroelektronika trademarks are the property of Mikroelektronika.
All other trademarks are the property of their respective owners. Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
page 16
mikromedia
page 17
®
Installing BSP libraries
www.libstock.com/projects/view/368/mikromedia-workstation-v7-bsp
1. Download libraries from Libstock website
2. Open package with Package manager
Libstock is a community website created by mikroElektronika where users can share and download projects, libraries and examples for free.
In order to install BSP libraries, you need the appropriate .MPKG le which can be downloaded from following address on LibStock website:
After downloading run the package le (.MPKG) and Package Manager window will appear
(Figure 4-7).
3
1
2
1
2
3
Navigation section shows the contents of the package (libraries, help les and
examples).
Information section shows the list of supported microcontrollers (appropriate controller is automatically marked
"Install package" button to install package
All you need to do is to click on the "Install package" button, and the opened package will start to install in previously chosen compiler. The installation process is complete when the "Finished successfully" massage appears in Information section, Figure 4-8.
Open the appropriate Mikroelektronika Compiler and in the "Library Manager" section (at the end of the list) you will see unmarked "mikromedia Workstation" library.
For more information, see the Help within each package.
4
4
"Uninstall package" button to uninstall package
Figure 4-7: Package Manager window
Figure 4-8: Installation is complete
3. Install packages
mikromedia
page 18
programming
On-board programmer
How do I start?
In order to start using mikroProg™ and program your
microcontroller, you just have to follow two simple steps:
1. Install the necessary software
- Install USB drivers (Page 20)
- Install mikroProg Suite
for PIC® software (Page 21)
2. Power up the board, and you are ready to go.
- Plug in the programmer USB cable
- Turn on Power switch
- LINK and POWER LED should light up.
mikromedia
workStation v7 is equipped with RJ-12 connector compatible with Microchip® ICD2® and ICD3® external programmers. You can either use the on-board mikroProg
programmer or external programming tools as long as you use only one of them at the same time. Insert your ICD programmer cable into connector CN7, as shown in images
1
and 2.
1 2
Programming with ICD2/ICD3
Figure 5-1: mikroProg™ is well protected under metal casing
Why so many LEDs?
Three LEDs indicate specic programmer operation, Figure 5-1. Link LED lights up when USB link is established with your PC, Active LED lights up when programmer is active. Data LED lights up when data is being transferred between the programmer and PC software (compiler or mikroProg Suite
for PIC®).
What is mikroProg™?
mikroProg™ is a fast USB 2.0 programmer with mikroICD™ hardware In-Circuit Debugger. Smart engineering allows mikroProg
to support all PIC10, PIC12, PIC16, PIC18, PIC24, dsPIC30/33, PIC32 MCU families in a single programmer! It supports over 570 microcontrollers from Microchip®. Outstanding performance and easy operation are among it's top features.
page 19
programming
GND
LED- DATA LED- ACT LED- USB
MCU- PGD
MCU- PGC
MCL R#
USBDP -CON
USBDN- CON
VCC- USB
VCC- 5V VCC- 3.3V
MCU- VP P
VCC-5VVCC-3.3V
LED-DATA
LED-USB
VCC-3.3V
LED-ACT
LINK
R9 2K2
R10 4K7
R11 6K8
LD2 LD3 LD4
VCC-USB
USBDN-CON
USBDP-CON
FP1
C5 100nF
1
2
3
4
VCC
GND
D-
D+
CN5
USB
VCC-3.3V
MCU-PGC MCU-PGD
3 4 5 6
1 2
CN7
ICD
C6
100nF
VCC-3.3V
MCLR#
MCU-PGC MCU-PGD
VCC-5VVCC-3.3V
MCU-VPP
MCU-VPP
VCC-3.3V
MCLR#
R2 10K
R3 1K
C2 100nF
T1
RESET
DATA BUS
ACTIVE DATA
Figure 5-2: mikroProg™ block schematic
page 20
programming
Step 1 - Start Installation
Step 3 - Installing drivers Step 4 - Finish installation
Step 2 - Accept EULA
On-board mikroProg™ requires drivers in order to work. Drivers are located on the Product DVD that you
received with the mikromedia
workStation
v7 package:
When you locate the drivers, please
extract les from the ZIP archive. Folder with extracted les contains sub folders with drivers for dierent
operating systems. Depending on which operating system you use, choose adequate folder and open it.
Installing programmer drivers
DVD://download/eng/software/ development-tools/universal/ mikroprog/mikroprog_for_pic_ drivers_v200.zip
In the opened folder you should be able to locate the driver
setup le. Double click on setup le to begin installation of the
programmer drivers.
Welcome screen of the installation. Just click on Next button to proceed.
Drivers are installed automatically in a matter of seconds.
You will be informed if the drivers are installed correctly. Click on Finish button to end installation process.
Carefully read End User License Agreement. If you agree with it, click Next to proceed.
Copyright ©2011 Mikroelektronika. All rights reserved. Mikroelektronika, Mikroelektronika logo and other Mikroelektronika trademarks are the property of Mikroelektronika.
All other trademarks are the property of their respective owners. Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
A
v
a
i
l
a
b
l
e
o
n
P
r
o
d
u
c
t
D
V
D
!
page 21
A
v
a
i
l
a
b
l
e
o
n
P
r
o
d
u
c
t
D
V
D
!
programming
Step 1 - Start Installation
Step 3 - Install for All users or current user
Step 5 - Installation in progress
Step 2 - Accept EULA and continue
Step 4 - Choose destination folder
Step 6 - Finish Installation
Programming software
mikroProg Suite™ for PIC
®
Installation wizard - 6 simple steps
On-board mikroProg™ programmer requires special programming software called
mikroProg Suite
for PIC®. This software is used for programming all of Microchip®
microcontroller families, including PIC10, PIC12, PIC16, PIC18, dsPIC30/33, PIC24
and PIC32. Software has intuitive interface and SingleClick
programming technology. To begin, rst locate the installation
archive on the Product DVD:
After downloading, extract the package and double click the
executable setup le, to start installation.
DVD://download/eng/software/development-tools/universal/ mikroprog/mikroprog_suite_for_pic_v225.zip
Copyright ©2011 Mikroelektronika. All rights reserved. Mikroelektronika, Mikroelektronika logo and other Mikroelektronika trademarks are the property of Mikroelektronika.
All other trademarks are the property of their respective owners. Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
page 22
programming
mikroICD™ - In Circuit Debugger
What is Debugging?
Every developer comes to a point where he has to monitor the
code execution in order to nd errors in the code, or simply
to see if everything is going as planed. This hunt for bugs or errors in the code is called debugging. There are two ways to do this: one is the software simulation, which enables you to simulate what is supposed to be happening on the microcontroller as your code lines are executed and the other, most reliable one, is monitoring the code execution on the MCU itself. And this latter one is called In-Circuit debugging. "In-Circuit" means that it is the real deal - code executes right on the target device.
What is mikroICD™?
The on-board mikroProg™ programmer supports mikroICD™ - a highly eective tool for a Real-Time debugging on hardware level. The mikroICD
debugger enables you to execute your program on the host PIC microcontroller and view variable values, Special Function Registers (SFR), RAM, CODE and EEPROM memory along with the mikroICD
code execution on hardware. Whether you are a beginner, or a professional, this powerful tool, with intuitive interface and convenient set of commands will enable you to track down bugs quickly. mikroICD
is one of the fastest, and most reliable debugging
tools on the market.
Supported Compilers
All MikroElektronika compilers, mikroC, mikroBasic and mikroPascal for PIC®, dsPIC® and PIC32® natively support mikroICD
. Specialized mikroICD DLL module allows compilers to
exploit the full potential of fast hardware debugging. Along with compilers, make sure to install the appropriate programmer drivers and mikroProg Suite for PIC® programming software, as described on pages 20 and 21.
When you build your project for debugging, and program
the microcontroller with this HEX le, you can start the
debugger using [F9] command. Compiler will change layout to debugging view, and a blue line will mark where code execution is currently paused. Use debugging toolbar in the Watch Window to guide the program execution, and stop anytime. Add the desired variables to Watch and monitor their values. Complete guide to using mikroICD
with your compiler
is provided within the mikromedia
workStation v7 package.
How do I use the debugger?
Figure 5-4: mikroC PRO for PIC32® compiler in debugging view, with SFR registers in Watch Window
Figure 5-3: mikroICD™ manual explains debugging thoroughly
mikroICD
in-circuit debugger
page 23
programming
Here is a short overview of which debugging commands are supported in mikroElektronika compilers. You can see what each command does, and what are their shortcuts when you are in debugging mode. It will give you some general picture of what your debugger can do.
Toolbar
Icon
Command Name Shortcut Description
Start Debugger [F9] Starts Debugger.
Run/Pause Debugger [F6] Run/Pause Debugger.
Stop Debugger [Ctrl + F2] Stops Debugger.
Step Into [F7]
Executes the current program line, then halts. If the executed program line calls another routine, the debugger steps into the
routine and halts after executing the rst instruction within it.
Step Over [F8]
Executes the current program line, then halts. If the executed program line calls another routine, the debugger will not step into it. The whole
routine will be executed and the debugger halts at the rst instruction
following the call.
Step Out [Ctrl + F8]
Executes all remaining program lines within the subroutine. The debugger halts immediately upon exiting the subroutine.
Run To Cursor [F4] Executes the program until reaching the cursor position.
Toggle Breakpoint [F5]
Toggle breakpoints option sets new breakpoints or removes those already set at the current cursor position.
Show/Hide breakpoints [Shift+F4] Shows/Hides window with all breakpoints
Clears breakpoints [Shift+Ctrl+F5] Delete selected breakpoints
Jump to interrupt [F2]
Opens window with available interrupts (doesn't work in mikroICD
mode)
mikroICD™ commands
page 24
One of the most distinctive features of mikromedia
workStation v7 are it’s Input/Output PORT groups. They
add so much to the connectivity potential of the board.
Everything is grouped together
PORT headers, PORT buttons and PORT LEDs are next to each other and
grouped together. It makes development easier, and the entire mikromedia
workStation v7 cleaner and well organized. We have also provided an additional PORT
headers on the left side of the board, so you can access any pin you want from that side
of the board too.
Tri-state pull-up/down DIP switches
Tri-state DIP switches, like SW1 on Figure 6-3, are used to enable 4K7 pull-up or pull-down resistor on any desired port pin. Each of these switches has three
states:
1. middle position disables both pull-up and pull-down feature from the PORT pin
2. up position connects the resistor in pull-up state to the selected pin
3. down position connects the resistor in pull-down state to the selected PORT pin.
Figure 6-1: I/O group contains PORT headers, tri-state pull up/down DIP switch, buttons and LEDs all in one place
VCC
GND
BUTTON
R6
220
R7
220
VCC-3.3V
J6J5
1 2 3 4 5 6 7 8
+
_
SW2
G0_LEVE L
G0.0
G0.1
G0.2
G0.3
G0.4
G0.5
G0.6
G0.7
G0_LED
LD0_8LD0_7LD0_6LD0_5LD0_4LD0_3LD0_2LD0_1
RN6_8 10K
RN6_7 10K
RN6_6 10K
RN6_5 10K
RN6_4 10K
RN6_3 10K
RN6_2 10K
RN6_1 10K
T0_8T0_7T0_6T0_5T0_4T0_3T0_2T0_1
G0.0
G0.1
G0.2
G0.3
G0.4
G0.5
G0.6
G0.7
VCC-3.3V
VCC-3.3V
G0.0
G0.1
G0.2
G0.3
G0.4
G0.5
G0.6
G0.7
G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7
UP
DOWN
PULL
1 2 3 4 5 6 7 8
+
_
SW1
CN2
G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7
CN3
G0.0 G0.1 G0.2 G0.3 G0.4 G0.5 G0.6 G0.7
CN4
1 2 3 4 5 6 7 8 9
10
CN1
N1X10
VCC-3.3V
VCC-3.3V VCC-3.3V
G0.0
G0.2
G0.4
G0.6
G0.1
G0.3
G0.5
G0.7
1 2 3 4 5 6 7 8
O
N
SW3
DATA BUS
4K7
Figure 6-3: Schematic of the single I/O GROUP0
Input/Output Group
Figure 6-2: Tri-state DIP switch on GROUP0
Button press level tri-state DIP switch is used to determine which logic level will be applied to port pins when buttons are pressed
connectivity
page 25
connectivity
page 25
Headers Buttons LEDs
Figure 6-4: IDC10 male headers enable easy connection with mikroElektronika accessory boards
With enhanced connectivity as one of the key features of mikromedia
workStation v7, we have provided
four connection headers for each PORT. I/O PORT group contains two male IDC10 header (like CN3 and CN4 Figure 6-3) and one 1x10 row of connection pads (like CN1 Figure 6-3). There is one more IDC10 header available on the left side of the board next to breadboard. IDC10 can be used to connect accessory boards with IDC10 female sockets.
The logic state of all microcontroller digital inputs may
be changed using push buttons. Tri-state DIP switch SW2 is
available for selecting which logic state will be applied to corresponding MCU pin when button is pressed, for each I/O port separately. If you, for example, place SW2.1 in VCC position, then pressing of any push button in GROUP0 I/O group will apply logic one to the appropriate microcontroller pin. The same goes for GND. If DIP switch is in the middle position neither of two logic states will be applied to the appropriate microcontroller pin. You can disable pin protection 220ohm resistors by placing jumpers J5 and J6, which will connect your push buttons directly to VCC or GND. Be aware that doing so you may accidentally damage MCU in case of wrong usage.
Figure 6-5: Button press level DIP switch (tri-state)
In the far upper right section of the board, there is a RESET button, which can be used to manually reset the microcontroller. There is an additional button at the top of the mikromedia
board.
Reset Button
LED (Light-Emitting Diode) is a highly
ecient electronic
light source. When connecting LEDs, it is necessary to place a current limiting resistor in series so that LEDs are provided with the current value
specied by the manufacturer. The current varies from
0.2mA to 20mA, depending on the type of the LED and the manufacturer. The mikromedia
workStation v7 board uses low-current LEDs with typical current consumption of 0.2mA or
0.3mA. Board contains 40 LEDs which can be used for visual indication of the logic state on PORT pins. An active LED indicates that a logic high (1) is present on the pin. In order to enable GROUP LEDs, it is necessary to enable the corresponding DIP switch on SW3 (Figure 6-6).
Figure 6-6: SW3.1 through SW3.5 switches are used to enable GROUP LEDs
G0.0
1 2 3 4 5 6 7 8 9 10 11 12
5V
GND
ANALOG INT
SMD LED
SMD resistor
limiting current
through the LED
page 26
AN RST CS SCK MISO MOSI
3.3V GND
PWM
INT
RX
TX SCL SDA
5V
GND
1
VCC-3.3V VCC-5V
G4.5
G4.4
G0.5
G3.2
G3.1
G2.4G0.1
G4.6 G4.7G2.3
G2.1 G2.2
AN RST CS SCK MISO MOSI
3.3V GND
PWM
INT
RX TX
SCL
SDA
5V
GND
3
VCC-3.3V VCC-5V
G4.5
G4.4
G0.7
G3.6
G3.5
G2.6G0.3
G4.6 G4.7G2.3
G2.1 G2.2
AN RST CS SCK MISO MOSI
3.3V GND
PWM
INT
RX
TX SCL SDA
5V
GND
2
VCC-3.3V VCC-5V
G4.5
G4.4
G0.6
G3.4
G3.3
G2.5G0.2
G4.6 G4.7G2.3
G2.1 G2.2
AN RST CS SCK MISO MOSI
3.3V GND
PWM
INT
RX TX
SCL
SDA
5V
GND
4
VCC-3.3V VCC-5V
G4.5
G4.4
G1.0
G4.0
G3.7
G2.7G0.4
G4.6 G4.7G2.3
G2.1 G2.2
DATA BUS
Figure 7-1: Connection schematic of on-board mikroBUS™ host sockets
connectivity
mikroBUS™ sockets
Easier connectivity and simple conguration are
imperative in modern electronic devices. Success of the USB standard comes from it’s simplicity of usage and high and reliable data transfer rates. As we in mikroElektronika see it, Plug-and-Play devices with minimum settings are the future in embedded world too. This is why our engineers have come up with a simple, but brilliant pinout with lines that most of today’s accessory boards require, which almost completely eliminates the need of additional hardware settings. We called this new standard the mikroBUS
. mikromedia
workStation v7 supports mikroBUS
with four on-board host sockets. As you can see, there are no additional DIP switches, or jumper selections. Everything is already routed to the most appropriate pins of the microcontroller sockets.
SCL - I2C Clock line SDA - I2C Data line +5V - VCC-5V power line GND - Reference Ground
mikroBUS host connector
Each mikroBUS host connector consists of two 1x8 female headers containing pins that are most likely to be
used in the target accessory board. There are three groups of communication pins: SPI, UART and I
2
C communication.
There are also single pins for PWM, Interrupt, Analog input, Reset and Chip Select. Pinout contains two power
groups: +5V and GND on one header and +3.3V and GND on the other 1x8 header.
MISO - SPI Slave Output line MOSI - SPI Slave Input line +3.3V - VCC-3.3V power line GND - Reference Ground
PWM - PWM output line
INT - Interrupt line RX - UART Receive line TX - UART Transmit line
AN - Analog pin RST - Reset pin CS - SPI Chip Select line SCK - SPI Clock line
page 27
BlueTooth click
Click Boards™ are plug-n-play!
GPS click
RS485 3.3V click
DAC click
CAN SPI 3.3V click
SHT1x click
WiFi PLUS click
RTC click
BEE click
mikroElektronika portfolio of over 200 accessory boards is now enriched by an additional set of mikroBUS
compatible Click Boards™. Almost each month
several new Click boards
are released. It is our intention to provide the community with as much of these boards as possible, so you will be able to expand your mikromedia
workStation v7 board with additional functionality
with literally zero hardware conguration. Just plug and play. mikromedia
workStation v7 supports only 3.3V Click Boards
. Visit the Click boards™
web page for the complete list of available boards:
connectivity
http://www.mikroe.com/eng/categories/view/102/click-boards/
ETH click
page 28
UART via RS-232
The UART (universal asynchronous receiver/ transmitter) is one of the most common ways of exchanging data between the MCU and peripheral components. It is a serial protocol with separate transmit and receive lines, and can be used for full­duplex communication. Both sides must be initialized with the same baud rate, otherwise the data will not be received correctly.
RS-232 serial communication is performed through a 9-pin SUB-D connector and the microcontroller UART module. In order to enable this communication, it is necessary to establish a connection between RX and TX lines on SUB-D connector and the same pins on the target microcontroller using DIP switches. Since RS-232 communication voltage levels
are dierent than microcontroller logic
levels, it is necessary to use a RS­232 Transceiver circuit, such as
MAX3232 as shown on Figure 8-1.
9
10
11
12
13
14
15
161
2
3
4
5
6
7
8
C1+
V+
C1-
C2+
C2-
V-
T2OUT
R2IN
T1IN
T2IN
VCC
GND
T1OUT
R1IN
R1OUT
R2OUT
U1
MAX3232
5
9
4
8
3
7
2
6
1
1
5
9
6
CN19
RS-232 CONNECTOR
C7
100nF
C10
100nF
C12 100nF
C11 100nF
E1 10uF
VCC-3.3V VCC-3.3V
RX-232
TX-232
R22 100K
VCC-3.3V
1 2 3 4
5
6 7 8
O
N
SW3
G4.4 G4.5
DATA BUS
Figure 8-1: UART via RS-232 connection schematic
Enabling RS-232
In order to enable RS-232 communication you must push SW3.6 (G4.4) and SW3.7 (G4.5) to ON position. This connects the RX and TX lines to appropriate mikromedia
board UART module.
communication
page 29
UART via USB
Modern PC computers, laptops and notebooks are no longer equipped with RS-232 connectors and UART controllers. They are nowadays replaced with USB connectors and USB controllers. Still, certain technology enables UART communication to be done via USB connection. FT232RL from FTDI® convert UART signals to the appropriate USB standard. In order to use USB-UART module on mikromedia
workStation v7 board, you must rst install FTDI drivers on
your computer. Drivers can be found on Product DVD:
USB-UART communication is being done through
a FT232RL controller, USB connector (CN21),
and microcontroller UART module. To establish this connection, you must connect RX and TX lines to the appropriate pins of the mikromedia
board. This
connection is done using DIP switches SW4.6 and SW4.7.
15
16
17
18
19
20
21
22
23
24
25
26
27
281 2 3 4 5 6 7 8 9
10 11 12 13 14
VCC-3.3V
C8 100nFC9100nF
VCC-5VVCC-5VVCC-3.3V
TXD DTR# RTS# VCCIO RXD RI# GND NC DSR# DCD# CTS# CBUS4 CBUS2 CBUS3
CBUS0 CBUS1
OSCO
OSCI TEST
AGND
NC
GND
GND
VCC
RESET#
3V3OUT
USBDM
USBDP
FT232RL
U2
FT232RL
VCC-5V
C13 100nF
LD7 LD8
RX-LED1 TX-LED1
R20 4K7
R19 2K2
VCC-3.3V VCC-3.3V
R21 4K7
R23 10K
1
2
3
4
VCC
GND
D-
D+
CN21
USB B
E2 10uF
US B UA R T I
CON NECTOR
FTDI1-D_N FTDI1-D_P
G4.4 G4.5
1 2 3 4 5 6 7 8
O
N
SW4
TX-FTDI
RX-FTDI
DATA BUS
Figure 9-1: UART via USB connection schematic
Enabling USB-UART
DVD://download/eng/software/development-tools/ universal/ftdi/vcp_drivers.zip
In order to enable USB-UART communication, you must push SW4.6 (G4.4) and SW4.7 (G4.5) to ON position. This connects the RX and TX lines to appropriate mikromedia
board UART module.
communication
A
v
a
i
l
a
b
l
e
o
n
P
r
o
d
u
c
t
D
V
D
!
Copyright ©2011 Mikroelektronika.
All rights reserved. Mikroelektronika, Mikroelektronika logo and other
Mikroelektronika trademarks are the property of Mikroelektronika. All other trademarks are the property of their respective owners. Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
page 30
When working with multi media applications it is far more intuitive to use a single joystick
than several dierent push
buttons that are more far apart.
This is more natural for users
and they can browse through
on-screen menus, or even play
games much easier. mikromedia
workStation v7 features navigation
switch with ve dierent positions:
Up, Down, Left, Right and Push. Each
of those acts as a button, and is connected
to one of the following microcontroller pins:
G0.6, G1.0, G0.5, G0.7, G4.1 (respectively). After
pressing the navigation switch in desired direction,
associated microcontroller pins are connected to GND,
which can be detected in user software. To enable LEFT, UP,
RIGHT, DOWN, PUSH ports you must turn on DIP switches SW4.1-SW4.5.
Navigation switch
Figure 10-2: Navigation switch is an intuitive solution for browsing through on-screen menus.
LEFT
RIGHT DOWN
PUSH
4
5
6
1
2
3
KEY1
LEFT
UP RIGHT
DOWN
PUSH
R18 220
DATA BUS
1 2 3 4 5 6 7 8
O
N
SW4
UP
G0.5 G0.6 G0.7 G1.0 G4.1
R321K
R331K
R341K
VCC-3.3V
R351K
R361K
VCC-3.3V
Figure 10-1: Navigation switch connection schematic.
other modules
page 31
It's hard to imagine modern multimedia devices without high quality audio reproduction modules. Sound and music are almost important as graphical user interface. mikromedia
workStation v7 contains
two audio power ampliers capable of delivering 675mW of continuous average power into an 8Ω load. Ampliers are connected each with one speaker, thus
with mikromedia stereo VS1053 audio codec making a stereo audio system. Speakers has maximum power of 0.20W with 81dB maximum output sound level. Left and right audio signals are brought to the board directly from the mikromedia board (socket) via two connection pins LOUT and ROUT (left and right stereo
signals). You can disconnect each o the ampliers,
from the mikromedia socket LOUT and ROUT pins, by placing J8 and J9 jumpers in OFF position, respectively. After programming and testing Stereo system can be
implement in your nal design.
other modules
Audio module
1 2 3
54
6
7
8
SHTDWN BYPASS IN+ IN- Vo1
Vdd
GND
Vo2
U3
LM4864
R26
75K
C14
100nF
R24
22K
C16
100nF
VCC-3.3V
J8
1
2
SP1
LOUT
1 2 3
54
6
7
8
SHTDWN BYPASS IN+ IN- Vo1
Vdd
GND
Vo2
U4
LM4864
E4 10uF
C19 100nF
E10
100uF/20V
C18 100nFE9100uF/20V
E3 10uF
R27
75K
C15
100nF
R25
22K
C17
100nF
VCC-3.3V
J9
1
2
SP2
ROUT
ON
OFF
ON
OFF
DATA BUS
Figure 11-1: Audio module connection schematic.
page 32
DS1820 is a digital temperature
sensor that uses 1-wire®
interface for it’s operation. It is
capable of measuring temperatures
within the range of -55 to 128°C,
and provides ±0.5°C accuracy for temperatures within the range of -10 to 85°C. It requires 3V to 5.5V power supply for stable operation. It takes maximum
of 750ms for the DS1820 to calculate temperature with 9-bit resolution. 1-wire® serial communication enables data to be transferred over a single communication line, while the process itself is under the control of the master microcontroller. The advantage of such communication is that only one microcontroller pin is used. Multiple
sensors can be connected on the same line. All slave devices by default have a unique ID code, which enables the master device to easily identify all devices sharing the same interface. Board provides a separate so cket (TS1) for the DS1820. Communica tion line with the microcontroller is selected with a J3 jumper.
DS1820 - Digital Temperature Sensor
DATA BUS
R4
G1.7
G2.0
VCC-3.3V
mikromedia™ workStation v7 enables you to establish 1-wire® communication between DS1820 and the microcontroller over G1.7 or G2.0 pins. The selecti on of either of those two lines is done using J3 jumper. When placing the sensor in the socket make sure that half-circle on the board’s silkscreen markings matches the rounded part of the DS1820 sensor. If you accidentally connect the sensor the other way, it may be permanently damaged. Make sure to disconnect other peripherals (except those in 1-wire network), LEDs and additional pull-up or pull­down resistors from the interface lines in order not to interfere with signal/data integrity.
Figure 12-1: DS1820 not connected
Figure 12-2: DS1820 placed in socket
Figure 12-3: DS1820 connected to G1.7 pin
Figure 12-4: DS1820 connected to G2.0 pin
Figure 12-5: DS1820 connected to G2.0 pin
Enabling DS1820 Sensor
1 2 3 4
other modules
page 33
The LM35 is a low-cost precision integrated-circuit temperature sensor, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from its output to
obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full -55 to +150°C temperature range. It has a linear + 10.0 mV/°C scale factor
and less than 60 μA current drain. As it draws only 60 μA from its supply, it
has very low self-heating, less than 0.1°C in still air. mikromedia
workStation
v7 provides a separate socket (TS2) for the LM35 sensor in TO-92 plastic packaging. Readings are done with microcontroller using single analog input line, which is selected with a J4 jumper.
DATA BUS
R5 1K
C3
100nF
G0.0
G0.3
Figure 13-5: LM35 connected to G0.0 pin
mikromedia
workStation v7 enables you to get analog readings from the LM35
sensor using G0.0 or G0.3 microcontroller pins. The selection of either of those two lines is done using J4 jumper. When placing the sensor in the socket make sure that half-circle on the board’s silkscreen markings matches the rounded part of the LM35 sensor. If you accidentally connect the sensor the other way, it can be permanently damaged and you might need to replace it with another one. During the sensor readings make sure that no other device is using the selected analog line, as that may interfere with the readings.
Figure 13-1: LM35 not connected
Figure 13-2: LM35 placed in socket
Figure 13-3: LM35 connected to G0.3 pin
Figure 13-4: LM35 connected to G0.0 pin
Enabling LM35 Sensor
1 2 3 4
LM35 - Analog Temperature Sensor
other modules
page 34
Digital signals have two discrete states, which are decoded as high and low, and interpreted as logic 1 and
logic 0. Analog signals, on the other hand, are continuous,
and can have any value within dened range. A/D
converters are specialized circuits which can convert analog
signals (voltages) into a digital representation, usually in form
of an integer number. The value of this number is linearly
dependent on the input voltage value. Most microcontrollers
nowadays internally have A/D converters connected to one or
more input pins. Some of the most important parameters of A/D
converters are conversion time and resolution. Conversion time
determines how fast can an analog voltage be represented in form
of a digital number. This is an important parameter if you need fast data
acquisition. The other parameter is resolution. Resolution represents the
number of discrete steps that supported voltage range can be divided into. It
determines the sensitivity of the A/D converter. Resolution is represented in maximum
number of bits that resulting number occupies. For example if microcontroller has 10-bit
resolution, meaning that maximum value of conversion can be represented with 10 bits, which converted
to integer is 2
10
=1024. This means that supported voltage range, for example from 0-3.3V, can be divided into 1024 discrete steps of about 3.22mV. mikromedia
workStation v7 board provides an interface in form of two potentiometers for simulating analog input
voltages that can be routed to any of the 7 supported analog input pins of mikromedia
board.
ADC inputs
P1
10K
R1
220
VCC-3.3V
J2
P2
10K
R8
220
VCC-3.3V
J7
C4 100nF
C1 100nF
G0.0
G0.1
G0.2
G0.3
G0.4
A0
A1
DATA BUS
Enabling ADC inputs
In order to connect the output of the potentiometer P1 to G0.0, G0.1, G0.2, G0.3 or G0.4 analog mikromedia
inputs,
you have to place the jumper J2 in the desired position. If you want to connect potentiometer P2 to A0 or A1 analog mikromedia
inputs, place jumper J7
in the desired position. By moving the potentiometer knob, you can create voltages in range from GND to VCC.
Figure 14-1: use J2 and J7 jumpers to connect analog input lines with potentiometers P1 and P2
Figure 14-2: Schematic of ADC input
other modules
page 35
Piezo electricity is the charge which accumulates in certain solid materials in response to mechanical pressure, but also providing the charge to the piezo electric material causes it to physically deform. One of the most widely used applications of piezo electricity is the production of sound generators, called piezo buzzers. Piezo buzzer
is an electric component that comes in dierent shapes
and sizes, which can be used to create sound waves when provided with analog electrical signal. mikromedia
workStation v7 comes with piezo buzzer which can be connected to G4.2 or G4.3 microcontroller pin. Connection is established using SW3.8 or SW4.8 DIP switch. Buzzer is driven by transistor Q1 (Figure 25-1). Microcontrollers can create sound by generating a PWM (Pulse Width Modulated) signal – a square wave signal, which is nothing more than
a sequence of logic zeros and ones. Frequency of the square signal determines the pitch of the generated sound, and duty cycle of the signal can be used to increase or decrease the volume in the range from 0% to 100% of the duty cycle. You can generate PWM signal using hardware capture-compare module, which is usually available in most microcontrollers, or by writing a custom software which emulates the desired signal waveform.
Supported sound frequencies
Piezo buzzer’s resonant frequency (where you can expect it's best performance) is 3.8kHz, but you can also use it to create sound in the range between 2kHz and 4kHz.
SW3
R17
10K
Q1 BC846
R16 1K
VCC-5V
PZ1 BUZZER
1 2 3 4 5 6 7 8
O
N
SW4
BUZZERG4.3
1 2 3 4 5 6 7 8
O
N
BUZZERG4.2
PERSPECTIVE
VIEW
TOP
VIEW
DATA BUS
In order to use the on-board Piezo Buzzer in your
application, you rst have to connect the transistor
driver of piezo buzzer to the appropriate pin. This is done using SW3.8 or SW4.8 DIP switch (never in the same time). Once the switch is in ON position, it connects the buzzer driver to G4.2 or G4.3 pin.
Buzzer starts "singing" when you provide PWM signal from the microcontroller to the buzzer driver. The pitch of the sound is determined by the frequency, and amplitude is determined by the duty cycle of the PWM signal.
Enabling Piezo Buzzer
How to make it sing?
Figure 15-1: Piezo buzzer connected to G4.3 microcontroller pin
Freq = 3kHz, Duty Cycle = 50%
Freq = 3kHz, Volume = 50%
Freq = 3kHz, Volume = 80%
Freq = 3kHz, Volume = 20%
Freq = 3kHz, Duty Cycle = 80%
Freq = 3kHz, Duty Cycle = 20%
TO SOCKETS
VCC-5V
R3
1K
PZ1
Q8
10K
R27
VIEW
TOP
VIEW
RE1
RC2
J21
BUZZER
TO SOCKETS
VCC-5V
R3
1K
PZ1
Q8
10K
R27
VIEW
TOP
VIEW
RE1
RC2
J21
BUZZER
TO SOCKETS
VCC-5V
R3
1K
PZ1
Q8
10K
R27
VIEW
TOP
VIEW
RE1
RC2
J21
BUZZER
Piezo Buzzer
other modules
1
other modules
page 36
2
Figure 16-1:
Two oscilloscope GND pins
are conveniently positioned so
each part of the board can be reached
with an oscilloscope probe
mikromedia
workStation v7 board contains two GND pins located in dierent
sections of the board, which allow you to easily connect oscilloscope GND reference when you monitor signals on microcontroller pins, or signals of on-board modules.
GND is located below the mikromedia
board socket on the left side.
GND is located below the mikromedia
board socket on the right
side.
Additional GNDs
1
2
1
2
page 37
other modules
Figure 17-1: Example with Breadboard area
mikromedia
workStation v7 contains Breadboard area as well as additional 1x52
female header, side by side. That allows you to expand your mikromedia
workStation v7 board with additional functionality. That can be done by placing your additional components (such as resistors, LED diodes, motors, DIP IC's, etc.) on available Breadboard area. There are 63 vertical lines on both halves of the Breadboard area.
Each line consists out of 5 female connectors (connected together). There are also four horizontal lines for GND and VCC. Female connectors are arranged in standard distance form factor. 1x26 female header allows you to easily connect Breadboard connectors to mikromedia socket pins, using male to male wire jumpers provided with the package. Example is shown on Figure 17-1.
Breadboard area
page 38
What’s Next?
You still don’t have an appropriate compiler? Locate PIC®, dsPIC® or
PIC32
®
compiler that suits you best on the Product DVD provided
with the package:
Choose between mikroC, mikroBasic and mikroPascal and download fully functional demo version, so you can begin building your PIC
®
,
dsPIC
®
and PIC32® applications.
Once you have chosen your compiler, and since you already got the board, you are ready to start writing your
rst projects. We have equipped our
compilers with dozens of examples that demonstrate the use of each and every feature of the mikromedia
workStation v7 board, and all of our accessory boards as well. This makes an excellent starting point for your future projects. Just load the example, read well commented code, and see how it works on hardware. Browse through the compiler Examples
path to nd the following folder:
You have now completed the journey through each and every feature of mikromedia
workStation v7 board. You got to know it’s modules, organization, supported
microcontrollers, programmer and debugger. Now you are ready to start using your new board. We are suggesting several steps which are probably the best way to begin. We invite you to join thousands of users of mikromedia
brand. You will nd very useful projects and tutorials and can get help from a large ecosystem of users. Welcome!
Compiler
Projects
DVD://download/eng/software/compilers/
\Development Systems\
If you want to nd answers to your
questions on many interesting topics we invite you to visit our forum at
http://www.mikroe.com/forum
and browse through more than 150
thousand posts. You are likely to nd
just the right information for you. On the other hand, if you want to download free projects and libraries, or share your own code, please visit the Libstock
website. With user proles, you can
get to know other programmers, and
subscribe to receive notications on
their code.
http://www.libstock.com/
Community
We all know how important it is that we can rely on someone in moments when we are stuck with our projects, facing a deadline, or when we just want to ask a simple, basic question, that’s pulling us back for a while. We do understand how important this is to people and therefore our Support Department is one of the pillars upon which our company is based. MikroElektronika
oers Free Tech Support to the end
of product lifetime, so if something goes wrong, we are ready and willing to help!
http://www.mikroe.com/esupport/
Support
A
v
a
i
l
a
b
l
e
o
n
P
r
o
d
u
c
t
D
V
D
!
Copyright ©2011 Mikroelektronika.
All rights reserved. Mikroelektronika, Mikroelektronika logo and other
Mikroelektronika trademarks are the property of Mikroelektronika.
All other trademarks are the property of their respective owners. Unauthorized copying, hiring, renting, public performance and
broadcasting of this DVD prohibited.
20122011
www.mikroe.com
page 39
DISCLAIMER
All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other copyright material. No part of this manual, including product and software described herein, must not be reproduced, stored in a retrieval system, translated or transmitted in any form or
by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for distribution. Any modication
of this manual is prohibited.
MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions of
merchantability or tness for a particular purpose.
MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika, its
directors, ocers, employees or distributors be liable for any indirect, specic, incidental or consequential damages (including damages for loss of business prots and business
information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.
TRADEMARKS
The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, EasyPIC™, EasyPIC PRO™, mikromedia™, mikroBus™ and Click boards
are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.
All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used for
identication or explanation and to the owners’ benet, with no intent to infringe.
Copyright © MikroElektronika
, 2012, All Rights Reserved.
HIGH RISK ACTIVITIES
The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazardous environments
requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air trac control, direct life support
machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental damage (‘High Risk
Activities’). MikroElektronika and its suppliers specically disclaim any expressed or implied warranty of tness for High Risk Activities.
If you want to learn more about our products, please visit our web site at www.mikroe.com
If you are experiencing some problems with any of our products or just need additional
information, please place your ticket at www.mikroe.com/esupport
If you have any questions, comments or business proposals,
do not hesitate to contact us at oce@mikroe.com
mikromedia workStation v7 for PIC
®
Manual ver. 1.00
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
MikroElektronika: MIKROE-1189
Loading...