Microchip Technology TC826CBU Datasheet

TC826
Analog-to-Digital Converter with Bar Graph Display Output
Features
• Bipolar A/D Conversion
• 2.5% Resolution
• Direct LCD Display Drive
• ‘Thermometer’ BAR or DOT Display
• Over Range Plus Polarity Indication
• PrecisionOn-Chip Reference: 35ppm/°C
• Differential Analog Input
• Low Input Leakage: 10pA
• Display Flashes on Over Range
• Display HOLD Mode
• Auto-Zero Cycle Eliminates Zero Adjust Potentiometer
• 9V Battery Operation
• Low Power Consumption: 1.1mW
• 20mV to 2.0V Full Scale Operation
• Non-Multiplexed LCD Drive for Maximum Viewing Angle
Device Selection Table
Part Number Package Temperature Range
TC826CBU 64-Pin PQFP 0°Cto+70°C
General Description
In many applications, a graphical display is preferred over a digital display. Knowing a process or system operates,forexample,within design limitsismorevalu­able than a direct system variable read out. A bar or moving dot display supplies informationprecisely with­out requiringfurther interpretation by the viewer.
The TC826 is a complete analog-to-digital converter with direct liquid crystal (LCD) display drive. The 40 LCD data segments plus zero driver give a 2.5% reso­lution bar display. Full scale differential input voltage range extendsfrom 20mV to2V.TheTC826 sensitivity is 500µV. A low drift35ppm/°C internal reference,LCD backplane oscillator and driver, input polarity LCD driver, and over rangeLCD driver make designs simple and low cost. The CMOS design required only 125µA from a 9V battery.In +5V systems, a TC7660DC to DC converter can supply the -5V supply. The differential analog input leakage is a low 10pA.
Two display formats are possible. The BAR mode dis­play is like a ‘thermometer’ scale. The LCD segment driver that equals the input, plus allbelow it are on. The DOT mode activates only the segment equal to the input. In either mode, t he polarity signal is active for negative input signals. An over range input signal causesthedisplayt o flashandactivates the over range annunciator. A HOLD mode can be selected that freezes the display and prevents updating.
The dual slope integrating conversion method with auto-zero phase maximizes noise immunity and elimi­nates zero scale adjustment potentiometers. Zero scale drift is a low 5µV/°C. Conversion rate is typically 5 per second and is adjustable by a single external resistor.
A compact, 0.5" s quare, flat package minimizes PC board area. The high pin count LSI package makes multiplexed LCD displays unnecessary. Low cost, directdriveLCD displays offer the widest viewing angle and are readily available. A standard display is avail­able now for TC826 prototypingwork.
2002 Microchip TechnologyInc. DS21477B-page 1
TC826
Package Type
64-Pin PQFP
ANALOG
COMMON
REF IN
C
C
OSC2
BAR 0
Typical Application
NC
+IN
REF
REF
V
V
BUF
C
V
INT
V
OSC1
NC
1
2
3
-IN
4
5
+
6
-
7
DD
8
9
AZ
10
11
SS
12
13
14
BP
15
16
NC
BAR/DOT
HOLD
TEST
61
626364 49
19
BAR 3
BAR 2
BAR 1
OR
POL-
5818591760
TC826CBU
BAR 5
BAR 4
BAR 40
BAR 6
BAR 39
BAR 7
BAR 38
26
BAR 8
BAR 37
27
BAR 9
BAR 36
BAR 10
BAR 34
BAR 35
BAR 12
BAR 11
BAR 33
302928
BAR 13
BAR 32
5051255224532354225521562057
31
BAR 14
BAR 31
32
BAR 15
48
NC
47
BAR 30
46
BAR 29
45
BAR 28
44
BAR 27
43
BAR 26
42
BAR 25
41
BAR 24
40
BAR 23
39
BAR 22
38
BAR 21
37
BAR 20
36
BAR 19
35
BAR 18
34
BAR 17
33
BAR 16
1M
1M
1M
Component
R
INT
C
INT
C
REF
C
AZ
C
INT
C
AZ
V
61
62
BAR/DOT
HOLD
R
INT
V
BUFCAZ
TC826
63
TEST
12
V
SS
V
DD
9V
2V
Full Scale
2M 20k 20k
0.033mf 0.033mf 0.033mf
1mf 1mf 1mf
0.068mf 0.068mf 0.014mf R1 + R2 = 250k
R
1
200mV
Full Scale
REFINANALOG
COMMON -IN +IN
58 2 43 60
R
2
-IN +IN
20mV
Full Scale
11109
INT
BAR 0-
BAR 40 POL-
6
C
+
REF
7
C
-
REF
13
OSC1
14
OSC2
15
BP
59
OR
Segment Drive
–OR
C
REF
1.0mf
R
OSC
430k
Backplane
41 Segment LCD Bar Graph
DS21477B-page 2
2002 Microchip TechnologyInc.
TC826
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings*
Supply Voltage (V+ to V-).......................................15V
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affectdevice reliability.
Analog Input Voltage(Either Input) (Note 1)... V+ to V­Power Dissipation (T
70°C)
A
64-Pin Plastic Flat Package ...............................1.14W
Operating Temperature Range:
Commercial Package (C)........................ 0°C to +70°C
StorageTemperature Range..............-65°C to +150°C
TC826 ELECTRICAL SP EC IFICATIONS
Electrical Characteristics: V
Symbol Parameter Min Typ Max Unit Test Conditions
Zero Input -0 ±0 +0 Display V Zero Reading Dri ft 0.2 1 µV/°C V
NL Linearity Error -1 0.5 +1 Count Max Deviation from Best Straight Line R/O Rollover Error -1 0 +1 Count -V EN Noise 60 µV ILK InputLeakage Current 10 20 pA V CMRR Comm on Mode Rejection Ratio 5 0 µV/V VCM = ±1V
Scale Factor Temperature Coefficient 1 ppm/°C 0 ≤ T
V
CTC
V
COM
VSD LCD Segment Drive Voltage 4 5 6 V VBD LCD Backplane DriveVoltage 4 5 6 V I
DD
Note 1: Input voltagesmay exceedthe supplyvoltages when the input currentis limited to 100µA.
Analog Common Temperature Coefficient
Analog Common Voltage 2.7 2.9 3.35 V 250kbetweenCommonand V
Power Supply Current 125 175 µA
2: Static sensitivedevice. Unused devicesshould be stored in conductive material to protect devices from staticdischarge
and static fields.
3: Backplane drive is in phase with segmentdrive for ‘off’ segment and 180°C out of phase for ‘on’ segment. Frequency is
10 times conversion rate.
4: Logic input pins 58, 59, and 60 should be connected through 1Mseries resistors to V
=9V;R
S
=430kΩ;TA= 25°C; Full Scale = 20mV, unless otherwise stated.
OSC
=0.0V
IN
=0.0V
IN
0°C ≤ T
=+V
IN
P-PVIN
35 100 ppm/°C 250kbetween Common and
P-P P-P
=0V =0V
IN
=0V
V
IN
A
External Ref. Temperature Coefficient = 0ppm/°C
V+, 0°C ≤ T
SS
+70°C
A
IN
7+0°C
+70°C
A
for logic 0.
DD
2002 Microchip TechnologyInc. DS21477B-page 3
TC826
2.0 PIN DESCRIPTION
ThedescriptionsofthepinsarelistedinTable2-1.
TABLE 2-1: PIN FUNCTION TABLE
Pin Number
(64-Pin PQFP)
1 NC Positive analog signal input. 2ANALOG
3 +IN Positive analog signal input. 4 -IN Negative analog signal input. 5 REF IN Reference voltage positiveinput. Measured relative to analog common.
6C 7C 8V
9V 10 C 11 V 12 V 13 OSC1 Oscillator resistor (R 14 OSC2 Oscillator resistor (R 15 BP LCDBackplane driver. 16 BAR 0 LCD Segment driver: Bar 0. 17 NC No connection. 18 BAR 1 LCD Segment driver: Bar 1. 19 BAR 2 LCD Segment driver: Bar 2. 20 BAR 3 LCD Segment driver: Bar 3. 21 BAR 4 LCD Segment driver: Bar 4. 22 BAR 5 LCD Segment driver: Bar 5. 23 BAR 6 LCD Segment driver: Bar 6. 24 BAR 7 LCD Segment driver: Bar 7. 25 BAR 8 LCD Segment driver: Bar 8. 26 BAR 9 LCD Segment driver: Bar 9. 27 BAR10 LCD Segment driver: Bar 10. 28 BAR 11 LCD Segment driver: Bar 11. 29 BAR12 LCD Segment driver: Bar 12. 30 BAR13 LCD Segment driver: Bar 13. 31 BAR14 LCD Segment driver: Bar 14. 32 BAR15 LCD Segment driver: Bar 15. 33 BAR16 LCD Segment driver: Bar 16. 34 BAR17 LCD Segment driver: Bar 17. 35 BAR18 LCD Segment driver: Bar 18. 36 BAR19 LCD Segment driver: Bar 19. 37 BAR20 LCD Segment driver: Bar 20. 38 BAR21 LCD Segment driver: Bar 21. 39 BAR22 LCD Segment driver: Bar 22. 40 BAR23 LCD Segment driver: Bar 23.
Symbol Description
COMMON
+ Reference capacitor connection.
REF
- Reference capacitor connection.
REF
DD
BUF
AZ INT SS
Establishesthe internal analog ground point.A nalog common is set to 2.9V belowthe positivesupply COMMON by an internalzener reference circuit. The voltage difference betweenV inputatREFIN(Pin5).
REF IN Full Scale/2.
Positive supply terminal. Buffer output. Integration resistor connection. Negative comparator input. Auto-zero capacitor connection. Integrator output.Integrationcapacitorconnection. Negative supply terminal.
DD
and analogcommoncan be used to supply the TC826 voltagereference
) connection.
OSC
) connection.
OSC
DS21477B-page 4
2002 Microchip TechnologyInc.
TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)
Pin Number
(64-Pin PQFP)
41 BAR24 LCD Segment driver: Bar 24. 42 BAR25 LCD Segment driver: Bar 25. 43 BAR26 LCD Segment driver: Bar 26. 44 BAR27 LCD Segment driver: Bar 27. 45 BAR28 LCD Segment driver: Bar 28. 46 BAR29 LCD Segment driver: Bar 29. 47 BAR30 LCD Segment driver: Bar 30. 48 NC No connection. 49 BAR31 LCD Segment driver: Bar 31. 50 BAR32 LCD Segment driver: Bar 32. 51 BAR33 LCD Segment driver: Bar 33. 52 BAR34 LCD Segment driver: Bar 34. 53 BAR35 LCD Segment driver: Bar 35. 54 BAR36 LCD Segment driver: Bar 36. 55 BAR37 LCD Segment driver: Bar 37. 56 BAR38 LCD Segment driver: Bar 38. 57 BAR39 LCD Segment driver: Bar 39. 58 BAR40 LCD Segment driver: Bar 40. 59 OR LCDsegment driver thatindicated input out-of-rangecondition. 60 POL- LCD segment driver that indicates input signal is negative. 61 BAR/DOT
62 HOLD
63 TEST
64 NC No connection.
Symbol Description
Inputlogic signalthatselectsBARorDOTdisplay format.Normally in BAR mode.Connect to V
through 1MresistorforDOT format.
SS
Inputlogicsignal that preventsdisplay from changing.P ulled high internally to inactive state.Connect to V
Input logic signal. Sets TC826 to BAR Display mode. BAR 0 to 40, plus OR flash on and off.ThePOL-LCDdriver is on. Pulled high internally to inactivestate. Connectto V 1Mseries resistor to activate.
through 1Mseries resistor for HOLD mode operation.
SS
TC826
with
SS
2002 Microchip TechnologyInc. DS21477B-page 5
TC826
3.0 DETAILED DESCRIPTION
3.1 Dual Slope Conversion Principles
The TC826 is a dualslope,integratinganalog-to-digital converter. The conventionaldual slope converter mea­surement cycle has two distinct phases:
• Input Signal Integration
• Reference VoltageIntegration (De-integration) The input signal being converted is integrated for a
fixed time period (T clock pulses. An opposite polarity constant reference voltage is then i ntegrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal (T (Figure3-1).
In a simple dual slope converter, a complete conver­sion requires the integrator output to ‘ramp-up’ and ‘ramp-down’.
FIGURE 3-1: BASIC DUAL SLOPE CONVERTER
). Time is measured by counting
SI
)
RI
C
A simple mathematicalequation relates the input signal reference voltage and integration time:
EQUATION 3-1:
t
1
INT
V
IN
0
RC
Where:
= Ref erence Voltage
V
R
= Si gnal Integration Time (Fixed)
V
SI
= Ref erence Voltage I ntegration Time
T
RI
(Variable)
(t)dt =
V
RTRI
RC
Analog Input
Signal
Output
Integrator
+/–
REF
Voltage
Fixed Signal
Integrate
Time
R
Switch Driver
Polarity Control
Variable
Reference
Integrate
Time
Integrator
+
VIN 1/2 V
VIN 1/4 V
Comparator
+
Phase Control
FULL SCALE
FULL SCALE
Control
Logic
Clock
Counter
Display
DS21477B-page 6
2002 Microchip TechnologyInc.
Loading...
+ 12 hidden pages