Note the following details of the code protection feature on Microchip devices:
YSTEM
CERTIFIE DBYDNV
== ISO/TS16949==
•Microchip products meet the specification contained in their particular Microchip Data Sheet.
•Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•Microchip is willing to work with the customer who is concerned about the integrity of their code.
•Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, K
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
DS50002375A-page 2 2015 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
®
MCUs and dsPIC® DSCs, KEELOQ
®
code hopping
Object of Declaration: HV7351 Ultrasound Tx Beamformer Evaluation Board
DS50002375A-page 6 2015 Microchip Technology Inc.
HV7351
ULTRASOUND TX BEAMFORMER
EVALUATION BOARD USER’S GUIDE
Preface
NOTICE TO CUSTOMERS
All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.
Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXXXXA”, where “XXXXXXXX” is the document number and “A” is the revision level
of the document.
For the most up-to-date information on development tools, see the MPLAB
Select the Help menu, and then Topics to open a list of available online help files.
®
IDE online help.
INTRODUCTION
This chapter contains general information that will be useful to know before using the
HV7351 Ultrasound Tx Beamformer Evaluation Board. Items discussed in this chapter
include:
• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History
DOCUMENT LAYOUT
This document describes how to use the HV7351 Ultrasound Tx Beamformer
Evaluation Board as a development tool to emulate and debug firmware on a target
board. The manual layout is as follows:
• Chapter 1. “Product Overview” – Important information about the HV7351
Ultrasound Tx Beamformer Evaluation Board.
• Chapter 2. “Installation and Operation” – This chapter includes a detailed
description of each function of the demonstration board and instructions on how to
begin using the board.
Choice of mutually exclusive
arguments; an OR selection
Represents code supplied by
user
“Save project before build”
4‘b0010, 2‘hF1
any valid filename
[options]
errorlevel {0|1}
var_name...]
void main (void)
{ ...
}
DS50002375A-page 8 2015 Microchip Technology Inc.
RECOMMENDED READING
This user’s guide describes how to utilize the HV7351 Ultrasound Tx Beamformer
Evaluation Board. Another useful document is listed below. The following Microchip
document is available and recommended as a supplemental reference resource.
• HV7351 Data Sheet – “8-Channel ±70V 3A Programmable High Voltage
Ultrasound Transmit Beamformer” (DS20005412).
THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software
• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing
• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
Preface
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at:
DS50002375A-page 10 2015 Microchip Technology Inc.
Chapter 1. Product Overview
1.1INTRODUCTION
This chapter discusses the following topics:
• HV7351 Device Overview
• Board Overview
• What the HV7351 Ultrasound Tx Beamformer Evaluation Board Kit Includes
1.2HV7351 DEVICE OVERVIEW
The Microchip Technology Inc. HV7351 is a monolithic, eight channel, high-speed,
high-voltage ultrasound transmitter Return-To-Zero (RTZ) programmable pulser. This
integrated, high-performance circuit comes in a single 11 x 11 x 0.9 mm, 80-lead DFN
package.
Each channel is capable of swinging up to ±70V with an active discharge back to 0V.
The outputs can source and sink more than 3A to achieve fast output rise and fall times.
The active discharge is also capable of sourcing and sinking 3A for a fast return to
ground. The digital beamforming topology of the HV7351 will significantly reduce the
number of I/O logic control lines to the transmitter.
Each output is controlled by a 16 or 32-bit serial shift register. An arbitrary pattern can
be generated depending on what is loaded into the shift registers, including four
independent pattern options.
Once the patterns are loaded, the user can quickly select any of the four predefined
patterns without having to clock in new data. A programmable 10-bit delay counter is
provided for each output. This allows the user to program different delay times for each
channel for beamforming.
HV7351
ULTRASOUND TX BEAMFORMER
EVALUATION BOARD USER’S GUIDE
1.3BOARD OVERVIEW
There are two built-in Complex Programmable Logic Devices (CPLDs) and one serial
EEPROM on the board to provide multiple demo waveform patterns. Other custom
experimental data can be easily downloaded to these CPLDs/PROMs via the 6-pin
Joint Test Action Group (JTAG) interface.
The HV7351 Board output waveforms can be directly displayed using an oscilloscope,
by connecting the scope probe to the test points TX1 - TX8 and GND. The soldering
jumper can select whether or not to connect the on-board dummy-load, a 330 pF
capacitor paralleling with a 2.5 k resistor. The test points can be used to connect the
user’s transducer to easily evaluate the pulser.