The EMC1403 and EMC1404 are high accuracy, low
cost, System Management Bus (SMBus) temperature
sensors. Advanced features such as Resistance Error
Correction (REC), Beta Compensation (to support CPU
diodes requiring the BJT/transistor model including
45nm, 65nm and 90nm processors) and automatic
diode type detection combine to provide a robust
solution for complex environmental monitoring
applications.
Each device provides ±1° accuracy for external diode
temperatures and ±2°C accuracy for the internal diode
temperature. The EMC1403 monitors three temperature
channels (two external and one internal). The EMC1404
monitors four temperature channels (three external and
one internal).
Resistance Error Correction automatically eliminates the
temperature error caused by series resistance allowing
greater flexibility in routing thermal diodes. Beta
Compensation eliminates temperature errors caused by
low, variable beta transistors common in today's fine
geometry processors. The automatic beta detection
feature monitors each external diode/transistor and
determines the optimum sensor settings for accurate
temperature measurements regardless of processor
technology. This frees the user from providing unique
sensor configurations for each temperature monitoring
application. These advanced features plus ±1°C
measurement accuracy provide a low-cost, highly
flexible and accurate solution for critical temperature
monitoring applications.
EMC1403-1-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1403-2-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1403-3-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1403-4-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1403-1-AIA-TR for 10-pin, DFN RoHS Compliant Package
EMC1403-2-AIA-TR for 10-pin, DFN RoHS Compliant Package
EMC1403-3-AIA-TR for 10-pin, DFN RoHS Compliant Package
EMC1403-4-AIA-TR for 10-pin, DFN RoHS Compliant Package
EMC1403-1-YZT-TR for 14-pin, SOIC RoHS Compliant Package
EMC1403-2-YZt-TR for 14-pin, SOIC RoHS Compliant Package
EMC1403-3-YZt-TR for 14-pin, SOIC RoHS Compliant Package
EMC1403-4-YZt-TR for 14-pin, SOIC RoHS Compliant Package
EMC1404-1-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1404-2-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1404-3-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
EMC1404-4-AIZL-TR for 10-pin, MSOP RoHS Compliant Package
Note: See Table 1.1, "Part Selection" for SMBus addressing options.
REEL SIZE IS 4,000 PIECES.
This product meets the halogen maximum concentration values per IEC61249-2-21
Data Sheet
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
DS20005272A-page 2 2014 Microchip Technology Inc.
APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and
ALERT), the voltage difference between VDD and the pull-up voltage must never exceed
3.6V.
The pin types are described below:
Power - these pins are used to supply either VDD or GND to the device.
AIO - Analog Input / Output.
DI - Digital Input.
OD - Open Drain Digital Output.
DIOD - Digital Input / Open Drain Output.
DS20005272A-page 10 2014 Microchip Technology Inc.
1°C Temperature Sensor with Beta Compensation
Data Sheet
Chapter 3 Electrical Specifications
3.1 Absolute Maximum Ratings
Table 3.1 Absolute Maximum Ratings
DESCRIPTIONRATINGUNIT
Supply Voltage (V
Voltage on 5V tolerant pins (V
Voltage on 5V tolerant pins (|V
Voltage on any other pin to Ground-0.3 to V
)-0.3 to 4.0V
DD
)-0.3 to 5.5V
5VT_pin
- VDD|) (see Note 3.1)-0.3 to 3.6V
5VT_pin
+0.3V
DD
Operating Temperature Range -40 to +125°C
Storage Temperature Range-55 to +150°C
Lead Temperature RangeRefer to JEDEC Spec. J-STD-020
Package Thermal Characteristics for MSOP-10
Thermal Resistance (
)132.2°C/W
j-a
Package Thermal Characteristics for SOIC-14
Thermal Resistance (
)77.7°C/W
j-a
Package Thermal Characteristics for DFN-10
Thermal Resistance (
)77.1°C/W
j-a
ESD Rating, All pins HBM2000V
Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress
rating only and functional operation of the device at any other condition above those indicated
in the operation sections of this specification is not implied. When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result. Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off. In addition, voltage transients on the AC
power line may appear on the DC output. If this possibility exists, it is suggested that a clamp
circuit be used.
Note 3.1For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA,
THERM, and
ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.
Chapter 4 System Management Bus Interface Protocol
4.1 System Management Bus Interface Protocol
The EMC1403 and EMC1404 communicate with a host controller, such as an SIO, through the SMBus.
The SMBus is a two-wire serial communication protocol between a computer host and its peripheral
devices. A detailed timing diagram is shown in
For the first 15ms after power-up the device may not respond to SMBus communications.
.
Figure 4.1.
Figure 4.1 SMBus Timing Diagram
The EMC1403 and EMC1404 are SMBus 2.0 compatible and support Send Byte, Read Byte, Write
Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below.
All of the below protocols use the convention in Table 4.1.
Table 4.1 Protocol Format
DATA SENT
TO DEVICE
# of bits sent# of bits sent
Attempting to communicate with the EMC1403 and EMC1404 SMBus interface with an invalid slave
address or invalid protocol will result in no response from the device and will not affect its register
contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control
the timing.
DATA SENT TO
THE HOST
DS20005272A-page 14 2014 Microchip Technology Inc.
1°C Temperature Sensor with Beta Compensation
Data Sheet
4.2 Write Byte
The Write Byte is used to write one byte of data to the registers as shown below Table 4.2:
Table 4.2 Write Byte Protocol
START
SLAVE
ADDRESSWR
ACK
REGISTER
ADDRESSACK
REGISTER
DATAACKSTOP
1 -> 01001_10000XXh0XXh00 -> 1
4.3 Read Byte
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3.
Table 4.3 Read Byte Protocol
STARTSLAVE
ADDRESS
WRACKREGISTER
ADDRESS
ACKSTARTSLAVE
ADDRESS
RDACKREGISTER
DATA
NACKSTOP
1 -> 01001_10001XXh01 -> 01001_10011XX10 -> 1
4.4 Send Byte
The Send Byte protocol is used to set the internal address register pointer to the correct address
START
location. No data is transferred during the Send Byte protocol as shown in
Table 4.4 Send Byte Protocol
SLAVE
ADDRESSWR
ACK
REGISTER
ADDRESSACKSTOP
Table 4.4.
1 -> 01001_10000XXh00 -> 1
4.5 Receive Byte
The Receive Byte protocol is used to read data from a register when the internal register address
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads
of the same register as shown in
The ALERT output can be used as a processor interrupt or as an SMBus Alert.
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)
to the general address of 0001_100xb. All devices with active interrupts will respond with their client
address as shown in
Table 4.6.
Table 4.6 Alert Response Address Protocol
1°C Temperature Sensor with Beta Compensation
Data Sheet
ALERT
START
1 -> 00001_100101001_100010 -> 1
APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status
RESPONSE
ADDRESSRD
The EMC1403 and EMC1404 will respond to the ARA in the following way:
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication
from the device was not prematurely stopped due to a bus contention event).
2. Set the MASK bit to clear the ALERT pin.
Register being cleared, the
ACK
ALERT pin will be reasserted.
DEVICE
ADDRESSNACKSTOP
4.7 SMBus Address
The EMC1403 and EMC1404 respond to hard-wired SMBus slave address as shown in Table 1.1.
Note: Other addresses are available. Contact Microchip for more information.
4.8 SMBus Timeout
The EMC1403 and EMC1404 support SMBus Timeout. If the clock line is held low for longer than
30ms, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT
bit in the Consecutive Alert Register (see
Section 6.12).
DS20005272A-page 16 2014 Microchip Technology Inc.
1°C Temperature Sensor with Beta Compensation
Data Sheet
Chapter 5 Product Description
The EMC1403 and EMC1404 are SMBus temperature sensors. The EMC1403 monitors one internal
diode and two externally connected temperature diodes. The EMC1404 monitors one internal diode
and three externally connected temperature diodes.
Thermal management is performed in cooperation with a host device. This consists of the host reading
the temperature data of both the external and internal temperature diodes of the EMC1403 and
EMC1404 and using that data to control the speed of one or more fans.
The EMC1403 and EMC1404 have two levels of monitoring. The first provides a maskable ALERT
signal to the host when the measured temperatures exceeds user programmable limits. This allows
the EMC1403 or EMC1404 to be used as an independent thermal watchdog to warn the host of
temperature hot spots without direct control by the host. The second level of monitoring provides a non
maskable interrupt on the
programmable limit.
Since the EMC1403 and EMC1404 automatically correct for temperature errors due to series
resistance in temperature diode lines, there is greater flexibility in where external diodes are positioned
and better measurement accuracy than previously available with non-resistance error correcting
devices. The automatic beta detection feature means that there is no need to program the device
according to which type of diode is present on the External Diode 1 channel. This also includes CPU
diodes that require the transistor or BJT model for monitoring their temperature. Therefore, the
EMC1403/EMC1404 can power up ready to operate for any system configuration.
For the EMC1404, External Diode channels 2 and 3 are only compatible with general purpose diodes
(such as a 2N3904).
Figure 5.1 shows a system level block diagram of the EMC1403. Figure 5.2 shows a system level block
diagram of the EMC1404.
THERM pin if the measured temperatures meet or exceed a second