Microchip Technology ATWINC15x0 Application Notes

Page 1
ATWINC15x0
ATWINC15x0 Throughput Measurement using iPerf

Introduction

This application note demonstrates execution of the demo iPerf application available for the SAM4S Xplained Pro evaluation kit and ATWINC15x0. The iPerf application is a tool which is used for measuring Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) bandwidth performance. This iPerf tool is built on a client/server model and can be used to measure maximum UDP and TCP throughput between the client and the server station.
The following are the hardware and software prerequisites to test the TCP and UDP throughput using the iPerf application for the ATWINC15x0.
Hardware Prerequisites
ATSAM4S XPRO Board
ATWINC15x0
Access Point (AP)
PC/Laptop
Software Prerequisites
iPerf application 2.0.5 for iPerf client running on PC/Laptop
Serial console software (Tera Term)
ATWINC1500 iPerf Example
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 1
Page 2
ATWINC15x0

Table of Contents

Introduction......................................................................................................................1
Prerequisites....................................................................................................................1
1. ATWINC15x0 iPerf Setup ......................................................................................... 3
1.1. SAM4S Xplained Pro....................................................................................................................3
1.2. Hardware Setup........................................................................................................................... 4
2. Creating ATWINC15x0 iPerf Project in Atmel Studio.................................................5
3. Configuring and Loading the iPerf Application.......................................................... 7
4. Installing iPerf Application ........................................................................................ 9
4.1. iPerf Commands...........................................................................................................................9
5. Executing iPerf Application .....................................................................................10
6. Test Setup................................................................................................................12
6.1. Throughput Test Result Dependency Parameters .................................................................... 13
7. Test Results............................................................................................................. 15
8. Appendix - Updating Firmware................................................................................ 17
9. Document Revision History..................................................................................... 18
The Microchip Web Site................................................................................................ 19
Customer Change Notification Service..........................................................................19
Customer Support......................................................................................................... 19
Microchip Devices Code Protection Feature................................................................. 19
Legal Notice...................................................................................................................20
Trademarks................................................................................................................... 20
Quality Management System Certified by DNV.............................................................21
Worldwide Sales and Service........................................................................................22
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 2
Page 3

1. ATWINC15x0 iPerf Setup

The user can run the iPerf application using the command prompt on a computer and the customized iPerf implementation on the wireless board to measure the throughput performance. The iPerf application contains both client and server functionality. Typically, one acts as server and the other as client, where the iPerf application in the client side launches the test session.
The iPerf application running in the ATSAM4S XPRO board operates in the Server mode and waits to accept the client’s connection before it initiates the bandwidth test.

1.1 SAM4S Xplained Pro

The SAM4S Xplained Pro evaluation kit is a hardware platform to evaluate the ATSAM4SD32C microcontroller, supported by the Atmel Studio integrated development platform. The SAM4S Xplained Pro evaluation kit is ideal for evaluation and prototyping with the SAM4S Cortex®-M4 processor-based microcontroller. The Xplained Pro MCU series evaluation kits include an on-board Embedded Debugger, and no external tools are necessary to program or debug the SAM4SD32C. The Xplained Pro extension series evaluation kit offers additional peripherals to extend the features of the board and ease the development of custom designs.
ATWINC15x0
ATWINC15x0 iPerf Setup
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 3
Page 4
Figure 1-1. SAM4S Xplained Pro Evaluation Kit
ATWINC15x0
ATWINC15x0 iPerf Setup

1.2 Hardware Setup

Perform the following steps to create the iPerf setup.
1. Plug the ATWINC15x0 module to the EXT1 of the SAM4S Xplained Pro evaluation kit.
2. Power-up the SAM4S Xplained Pro evaluation kit by connecting the USB cable to the DEBUG USB port.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 4
Page 5
Creating ATWINC15x0 iPerf Project in Atmel Studio

2. Creating ATWINC15x0 iPerf Project in Atmel Studio

The demo iPerf application for the SAM4S Xplained Pro with the ATWINC15x0 is available in ASF Version 3.42 and all upcoming versions. Before creating a new iPerf project, verify the version of both the ATWINC1500 driver and firmware being used. The ATWINC1500 firmware version needs to be equal or higher to its driver version. The firmware upgrade details are detailed in the Appendix.
This section explains the steps for demonstrating ATWINC15x0 projects using Atmel Studio ASF example applications. Note:  The iPerf application for SAM4S, SAMG55, SAMG53, and SAMD21 is available in ASF. In this Application Note, iPerf application for the SAM4S is used as a reference.
1. Open Atmel Studio 7.
2. Navigate to File>New>Example Projects.
3. Search for iperf sample application for other MCU's.
4. Select the WINC1500 Iperf Example – SAM4S Xplained Pro.
Figure 2-1. Atmel Studio ATWINC1500 Project Creation
ATWINC15x0
The directory structure for iPerf application is illustrated in following figure.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 5
Page 6
Creating ATWINC15x0 iPerf Project in Atmel Studio
Figure 2-2. iPerf Application Directory Structure
ATWINC15x0
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 6
Page 7
Configuring and Loading the iPerf Applicat...

3. Configuring and Loading the iPerf Application

To connect to the access point, the Station mode requires the Wi-Fi credentials, such as SSID and Security type. For this demo, WPA-PSK is used as an example. The following are the steps to configure and load the iPerf application.
1. Open the WINC1500_IPERF_SERVER_EXAMPLE1 project.
2. Configure the AP credentials; SSID and password in the iperf.h file. Configure the AP based on the supported security methods.
To set a security type, in the iperf.h file configure IPERF_WIFI_M2M_WLAN_AUTH macro as mentioned. The corresponding AP's SSID must be filled with IPERF_WIFI_M2M_WLAN_SSID macro as given.
/* AP configuration parameters*/ #define IPERF_WIFI_M2M_WLAN_SSID "DEMO_APP"/**< Destination SSID */ #define IPERF_WIFI_M2M_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK /**< Security manner */ #define IPERF_WIFI_M2M_WLAN_PSK "12345678"/**< Password for Destination SSID */
3. Save the project.
4. Compile and download the image into the SAM4S board.
5. Open the serial port terminal application, and set the COM port configuration as follows:
Set Baudrate as 115200
Set Data Bits as 8 bit
Set Parity as none
Set Stop Bits as 1 bit
Set Flow control as none
6. Run the application. The serial port terminal displays the following log output.
ATWINC15x0
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 7
Page 8
Configuring and Loading the iPerf Applicat...
Figure 3-1. iPerf Serial Console Initial Log Output
ATWINC15x0
Note:  iPerf initializes as UDP/TCP iPerf server.
The IP address assigned to the ATWINC15x0 is available in the serial terminal.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 8
Page 9

4. Installing iPerf Application

The iPerf application is available as an open source or executable binaries for many operating systems.
The following are the steps to install the iPerf application.
1. Download the iPerf 2.0.5 application from https://iperf.fr/ and save in the desired location.
2. Unzip the downloaded file to get the executable file.
3. Open command prompt in the folder path where this executable file is located.

4.1 iPerf Commands

By default, iPerf clients open a connection with the iPerf server which is typically listening at port 5001 at specified destination. The commonly used iPerf commands are listed in the following table. For additional commands, see https://iperf.fr/iperf-doc.php.
Table 4-1. iPerf Commands
Command Description
ATWINC15x0
Installing iPerf Application
-f
-i
-s
-u
-b
-c
-r
-t
Format to report; Kbits, Mbits, KBytes, and MBytes.
Interval between periodic bandwidth reports in seconds.
Runs in the Server mode.
Runs in the single threaded UDP mode and specific to client.
Bandwidth to send in bits/sec.
-u indicates the default value as 1 Mbit/sec.
Runs in the client mode, connecting to host.
Individual bidirectional test.
Time in seconds to transmit. The default value is 10 secs.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 9
Page 10

5. Executing iPerf Application

The iPerf application can be executed by configuring one system as client and the other as server. The iPerf application in ASF can work both as server and client. The demo application running in the SAM4S Xplained Pro evaluation kit works in the Server mode and waits to accept the client’s connection before initiating the bandwidth test. The client needs to know the IP address of the target server and communicates with the iPerf server located at the specified IP address.
For example, the server with IP address 192.168.1.100 can be run with the TCP test, using the following command:
iperf -c 192.168.1.100 -t 20 -i 1 -r
-t is time in seconds to transmit (default 10 secs)
-i is the interval between periodic bandwidth reports in seconds
-r on the client’s command line instructs iPerf to measure bi-directional throughput sequentially, that is, upstream and downstream
Figure 5-1. Log Output
ATWINC15x0
Executing iPerf Application
To run the UDP test, add two additional arguments as shown in the following:
iperf -c 192.168.1.100 -t 20 -i 1 -u -b 1G
u indicates single_udp run in single threaded UDP mode
b indicates bandwidth to send in bits/sec
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 10
Page 11
Figure 5-2. Log Output
ATWINC15x0
Executing iPerf Application
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 11
Page 12

6. Test Setup

The iPerf application testing is not limited to any specific test setup. To observe the variation in throughput results, tests are carried out in different test setups and results are captured as following.
Setup 1 – PC is connected via Ethernet to AP and ATWINC15x0 is connected via Wi-Fi to AP.
Figure 6-1. Setup 1
For test result, see 7. Test Results.
Setup 2 – Both PC and ATWINC15x0 are connected to AP via Wi-Fi.
Figure 6-2. Setup 2
ATWINC15x0
Test Setup
For test result, see 7. Test Results. Note:  The throughput results measured in setup 2 will be comparatively lower. The aim of this test setup is to show an alternate method to measure the throughput. To achieve better results, follow the setup 1.
Setup 3 – AP mode. In the AP mode, the ATWINC15x0 acts as a SoftAP and provides the provision for other device to connect to it and assigns IP address to the connected device.
Figure 6-3. Setup 3
For test result, see 7. Test Results.
The iPerf throughput varies as per the configuration. To record the maximum achievable throughput, the test is conducted in different environments. To observe the variation in throughput, tests are carried out by varying configuration and security methods. This test setup is repeated with different wireless modes b/g/n.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 12
Page 13
ATWINC15x0
Test Setup
To regulate the throughput value, configuration changes are made only with setup 1. This test results can be taken as a reference and similar changes in throughput can be expected in other modes which have different environments.
The ATWINC15x0 iPerf throughput performance is measured in the following conditions.
Table 6-1. Conditions to Measure ATWINC15x0 iPerf Throughput Performance
Condition Parameters
Firmware configuration Security: Open, WPA. WPA2, and Enterprise
DMA Enabled
DMA Disabled
SPI communication frequency 48 MHz/ 20MHz
Environment Inside shielded box
Two setups in shield box (same frequency)
Open air (Moderate, Extreme)
AP configuration b/g/n

6.1 Throughput Test Result Dependency Parameters

6.1.1 Direct Memory Access

The Direct Memory Access (DMA) can transfer data between memories and peripherals, and off-load these tasks from the CPU. Therefore, DMA enables high data transfer rates with minimum CPU intervention and frees-up CPU time.
By default, Direct Memory Access (DMA) is enabled for the demo iPerf application. The DMA is implemented in the application using CONF_WINC_SPI_DMA_ENABLE macro. This macro is implemented in the conf_winc file in the configuration folder.
To disable the DMA, comment out the CONF_WINC_SPI_DMA_ENABLE macro definition.

6.1.2 SPI Communication Frequency

Varying the SPI communication frequency also has a direct impact in the throughput values. The SPI frequency can be changed using the macro defined in the conf_winc.h.
By default, the SPI frequency is set to 48 MHz.
/** SPI clock. */ #define CONF_WINC_SPI_CLOCK (48000000)

6.1.3 Security Method

By default, the iPerf application is configured to be secured with WPA/WPA2 personal (PSK). The security method is configured in the iperf.h file.
6.1.3.1 Open
To change the security method to OPEN, perform the following.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 13
Page 14
1. In iperf.h file, assign M2M_WIFI_SEC_OPEN enum for the IPERF_WIFI_M2M_WLAN_AUTH macro instead of M2M_WIFI_SEC_WPA_PSK enum.
/** Wi-Fi Settings */ #define IPERF_WIFI_M2M_WLAN_SSID "DEMO_AP" /**< Destination SSID */ #define IPERF_WIFI_M2M_WLAN_AUTH M2M_WIFI_SEC_OPEN /**< Security manner */ #define IPERF_WIFI_M2M_WLAN_PSK "12345678" /**< Password for Destination SSID */
2. Call the m2m_wifi_connect API as follows.
/* Connect to router. */ m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID), IPERF_WIFI_M2M_WLAN_AUTH, NULL, M2M_WIFI_CH_ALL);
3. Perform similar changes in the AP settings.
6.1.3.2 WPA/WPA2
To change the security method to WPA/WPA2, perform the following.
1. In iperf.h file, assign IPERF_WIFI_M2M_WLAN_AUTH macro as M2M_WIFI_SEC_WPA_PSK enum.
/** Wi-Fi Settings */ #define IPERF_WIFI_M2M_WLAN_SSID "DEMO_AP" /**< Destination SSID */ #define IPERF_WIFI_M2M_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK /**< Security manner */ #define IPERF_WIFI_M2M_WLAN_PSK "12345678" /**< Password for Destination SSID */
ATWINC15x0
Test Setup
2. Call the m2m_wifi_connect API as follows.
/* Connect to router. */ m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID), IPERF_WIFI_M2M_WLAN_AUTH, (char *)IPERF_WIFI_M2M_WLAN_PSK, M2M_WIFI_CH_ALL);
3. Perform similar changes in the AP settings.
6.1.3.3 Enterprise
To change the security method to Enterprise, perform the following.
1. Modify MAIN_WLAN_802_1X_USR_NAME, MAIN_WLAN_802_1X_PWD to the name and password, respectively.
2. Modify MAIN_WLAN_DEVICE_NAME to wireless network name.
3. Call the m2m_wifi_connect API as follows.
/* Enterprise Network */ m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID), M2M_WIFI_SEC_802_1X,(char *)&gstrCred1x, M2M_WIFI_CH_ALL);
4. Perform similar changes in the AP settings.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 14
Page 15

7. Test Results

A reference of the iperf throughput performance based on the ATWINC15x0 for the different test setups are as follows.
Setup 1 – One side on Ethernet and ATWINC15x0 on Wi-Fi (Inside shielded room)
Setup 2 – Both PC and ATWINC15x0 are connected to AP via Wi-Fi
Setup 3 – AP mode
Note:  The values captured in the following table can vary with varying testing conditions.
Table 7-1. iPerf Throughput Performance for TCP and UDP - Setup 1
SPI
Environment
Frequenc
y (MHz)
DMA Channel Mode Security
Uplink
(Mbits/sec)
ATWINC15x0
Test Results
Protocol
TCP UDP
Downlink
(Mbits/
sec)
Uplink
(Mbits/
sec)
Downlink
(Mbits/
sec)
Shielded Room
Open Air (Moderate condition)
Open Air (Extreme condition)
20
48 Yes 6 n Open 9.71 11.8 13.0 19.5
48 No 6 n Open 1.37 6.26 5.95 6.26
48 Yes 6 n WPA2
48 Yes 6 n WPA
48 Yes 6 n Enterprise 7.18 12.4 11.7 19.2
48 Yes 6 g Open 9.54 11.7 13.3 19.6
48 Yes 6 g WPA2
48 Yes 6 b Open 4.42 5.01 6.0 6.5
48 Yes 6 b WPA2
48 Yes 6 n Open 7.75 8.28 12.6 11.0
48 Yes 6 n Open 5.73 5.60 10.8 11.2
Yes 6 n Open 3.51 11.0 9.68 12.5
AES 9.9 11.1 12.2 19.3
AES+TKIP 10 11.4 12.7 19.2
AES 9.85 11.5 12.3 19.2
TKIP 9.47 10.6 12.9 19.7
AES 10 11.3 12.3 19.3
AES+TKIP 9.5 11.3 12.8 19.2
AES 10 11.4 12.8 19.2
AES+TKIP 9.74 11.2 12.8 19.6
Table 7-2. iPerf Throughput Performance for TCP and UDP - Setup 2
Protocol
SPI
Environment
Shielded Room 48 Yes 6 n Open 5.03 6.06 7.83 8.35
© 2018 Microchip Technology Inc.
Frequency
(MHz)
DMA Channel Mode Security
Uplink
(Mbits/sec)
Application Note
TCP UDP
Downlink
(Mbits/sec)
Uplink
(Mbits/sec)
DS00002879A-page 15
Downlink
(Mbits/sec)
Page 16
ATWINC15x0
Test Results
Table 7-3. iPerf Throughput Performance for TCP and UDP - Setup 3
Protocol
SPI
Environment
Shielded Room 48 Yes 6 n Open 9.84 9.81 12.5 18.8
Frequency
(MHz)
DMA Channel Mode Security
Uplink
(Mbits/sec)
TCP UDP
Downlink
(Mbits/sec)
Uplink
(Mbits/sec)
Downlink
(Mbits/sec)
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 16
Page 17

8. Appendix - Updating Firmware

The ATWINC15x0 firmware must be updated to 19.6.1 version or latest. When a version mismatch is detected at start-up, the Wi-Fi driver initialization fails and the m2m_wifi_init() function returns the firmware version mismatch error code.
Figure 8-1. Firmware Mismatch Error
ATWINC15x0
Appendix - Updating Firmware
To update the firmware in the ATWINC15x0 module, use the firmware upgrade project available in ASF. For more details on the firmware upgrade procedure, refer the Integrated Serial Flash and Memory
Download Procedure Application Note.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 17
Page 18

9. Document Revision History

Revision Date Section Description
A 12/2018 Document Initial revision
ATWINC15x0
Document Revision History
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 18
Page 19
ATWINC15x0

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 19
Page 20
ATWINC15x0
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 20
Page 21
ATWINC15x0
©
2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-3966-0

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
®
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 21
Page 22

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
© 2018 Microchip Technology Inc.
Application Note
DS00002879A-page 22
Loading...