Microchip Technology ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A User Manual

...
ATmega48A/PA/88A/PA/168A/PA/328/P

megaAVR® Data Sheet

Introduction

The ATmega48A/PA/88A/PA/168A/PA/328/P is a low power, CMOS 8-bit microcontrollers based on the
®
AVR
enhanced RISC architecture. By executing instructions in a single clock cycle, the devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the sys­tem designer to optimize power consumption versus processing speed.

Features

High Performance, Low Power AVR
Advanced RISC Architecture
®
8-Bit Microcontroller Family
131 Powerful Instructions – Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers
Up to 20 MIPS Throughput at 20MHz
On-chip 2-cycle Multiplier
High Endurance Non-volatile Memory Segments
4/8/16/32KBytes of In-System Self-Programmable Flash program memory
256/512/512/1KBytes EEPROM
512/1K/1K/2KBytes Internal SRAM
Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
Data retention: 20 years at 85°C/100 years at 25°C
(1)
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
Programming Lock for Software Security
QTouch
®
library support
Capacitive touch buttons, sliders and wheels
QTouch and QMatrix™ acquisition
Up to 64 sense channels
Peripheral Features
Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 1
ATmega48A/PA/88A/PA/168A/PA/328/P
Real Time Counter with Separate Oscillator
Six PWM Channels
8-channel 10-bit ADC in TQFP and VQFN package
Temperature Measurement
6-channel 10-bit ADC in SPDIP Package
Temperature Measurement
Programmable Serial USART
Master/Slave SPI Serial Interface
Byte-oriented 2-wire Serial Interface (Philips I
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
Interrupt and Wake-up on Pin Change
Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
2
C compatible)
Internal Calibrated Oscillator
External and Internal Interrupt Sources
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
I/O and Packages
23 Programmable I/O Lines
28-pin SPDIP, 32-lead TQFP, 28-pad VQFN and 32-pad VQFN
Operating Voltage:
1.8 - 5.5V
Temperature Range:
-40°C to 85°C
Speed Grade:
0 - 4MHz@1.8 - 5.5V, 0 - 10MHz@2.7 - 5.5.V, 0 - 20MHz @ 4.5 - 5.5V
Power Consumption at 1MHz, 1.8V, 25°C
Active Mode: 0.2mA
Power-down Mode: 0.1µA
• Power-save Mode: 0.75µA (Including 32kHz RTC)
Note: 1. See “Data Retention” on page 17 for details.
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 2
ATmega48A/PA/88A/PA/168A/PA/328/P

Table of Contents

1 Pin Configurations .............................................................................................................. 12
1.1 Pin Descriptions............................................................................................... 13
2Overview .................................................................................................................................... 15
2.1 Block Diagram ................................................................................................. 15
2.2 Comparison Between Processors ................................................................... 16
3 Resources ................................................................................................................................ 17
4 Data Retention ....................................................................................................................... 17
5 About Code Examples ...................................................................................................... 17
6 Capacitive Touch Sensing ............................................................................................. 17
7 AVR CPU Core ....................................................................................................................... 18
7.1 Overview.......................................................................................................... 18
7.2 ALU – Arithmetic Logic Unit............................................................................. 19
7.3 Status Register ................................................................................................ 19
7.4 General Purpose Register File ........................................................................ 20
7.5 Stack Pointer ................................................................................................... 22
7.6 Instruction Execution Timing ........................................................................... 23
7.7 Reset and Interrupt Handling........................................................................... 23
8 AVR Memories ....................................................................................................................... 26
8.1 Overview.......................................................................................................... 26
8.2 In-System Reprogrammable Flash Program Memory ..................................... 26
8.3 SRAM Data Memory........................................................................................ 28
8.4 EEPROM Data Memory .................................................................................. 29
8.5 I/O Memory...................................................................................................... 30
8.6 Register Description ........................................................................................ 31
9 System Clock and Clock Options .............................................................................. 36
9.1 Clock Systems and their Distribution............................................................... 36
9.2 Clock Sources ................................................................................................. 37
9.3 Low Power Crystal Oscillator........................................................................... 38
9.4 Full Swing Crystal Oscillator ............................................................................ 39
9.5 Low Frequency Crystal Oscillator .................................................................... 42
9.6 Calibrated Internal RC Oscillator ..................................................................... 43
9.7 128kHz Internal Oscillator ............................................................................... 43
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 3
ATmega48A/PA/88A/PA/168A/PA/328/P
9.8 External Clock ................................................................................................. 44
9.9 Clock Output Buffer ......................................................................................... 45
9.10 Timer/Counter Oscillator.................................................................................. 45
9.11 System Clock Prescaler .................................................................................. 45
9.12 Register Description ........................................................................................ 46
10 Power Management and Sleep Modes ................................................................... 48
10.1 Sleep Modes.................................................................................................... 48
10.2 BOD Disable
10.3 Idle Mode......................................................................................................... 49
10.4 ADC Noise Reduction Mode............................................................................ 49
10.5 Power-down Mode........................................................................................... 49
10.6 Power-save Mode............................................................................................ 50
10.7 Standby Mode ................................................................................................. 50
10.8 Extended Standby Mode ................................................................................. 51
(1)
................................................................................................ 49
10.9 Power Reduction Register ............................................................................... 51
10.10 Minimizing Power Consumption ...................................................................... 51
10.11 Register Description ........................................................................................ 53
11 System Control and Reset ............................................................................................. 56
11.1 Resetting the AVR ........................................................................................... 56
11.2 Reset Sources ................................................................................................. 56
11.3 Power-on Reset............................................................................................... 57
11.4 External Reset ................................................................................................. 58
11.5 Brown-out Detection ........................................................................................ 58
11.6 Watchdog System Reset ................................................................................. 59
11.7 Internal Voltage Reference .............................................................................. 59
11.8 Watchdog Timer .............................................................................................. 60
11.9 Register Description ........................................................................................ 63
12 Interrupts ................................................................................................................................... 66
12.1 Interrupt Vectors in ATmega48A and ATmega48PA ....................................... 66
12.2 Interrupt Vectors in ATmega88A and ATmega88PA ....................................... 68
12.3 Interrupt Vectors in ATmega168A and ATmega168PA ................................... 71
12.4 Interrupt Vectors in ATmega328 and ATmega328P........................................ 74
12.5 Register Description ........................................................................................ 77
13 External Interrupts .............................................................................................................. 79
13.1 Pin Change Interrupt Timing............................................................................ 79
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 4
ATmega48A/PA/88A/PA/168A/PA/328/P
13.2 Register Description ........................................................................................ 80
14 I/O-Ports ..................................................................................................................................... 84
14.1 Overview.......................................................................................................... 84
14.2 Ports as General Digital I/O ............................................................................. 85
14.3 Alternate Port Functions .................................................................................. 89
14.4 Register Description ...................................................................................... 100
15 8-bit Timer/Counter0 with PWM ................................................................................ 102
15.1 Features ........................................................................................................ 102
15.2 Overview........................................................................................................ 102
15.3 Timer/Counter Clock Sources ....................................................................... 103
15.4 Counter Unit .................................................................................................. 103
15.5 Output Compare Unit..................................................................................... 104
15.6 Compare Match Output Unit .......................................................................... 106
15.7 Modes of Operation ....................................................................................... 107
15.8 Timer/Counter Timing Diagrams ................................................................... 111
15.9 Register Description ...................................................................................... 113
16 16-bit Timer/Counter1 with PWM ............................................................................. 120
16.1 Features ........................................................................................................ 120
16.2 Overview........................................................................................................ 120
16.3 Accessing 16-bit Registers ............................................................................ 122
16.4 Timer/Counter Clock Sources ....................................................................... 125
16.5 Counter Unit .................................................................................................. 125
16.6 Input Capture Unit ......................................................................................... 126
16.7 Output Compare Units ................................................................................... 128
16.8 Compare Match Output Unit .......................................................................... 130
16.9 Modes of Operation ....................................................................................... 131
16.10 Timer/Counter Timing Diagrams ................................................................... 138
16.11 Register Description ...................................................................................... 140
17 Timer/Counter0 and Timer/Counter1 Prescalers ........................................... 147
17.1 Internal Clock Source .................................................................................... 147
17.2 Prescaler Reset ............................................................................................. 147
17.3 External Clock Source ................................................................................... 147
17.4 Register Description ...................................................................................... 149
18 8-bit Timer/Counter2 with PWM and Asynchronous Operation ........... 150
18.1 Features ........................................................................................................ 150
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 5
ATmega48A/PA/88A/PA/168A/PA/328/P
18.2 Overview........................................................................................................ 150
18.3 Timer/Counter Clock Sources ....................................................................... 151
18.4 Counter Unit .................................................................................................. 151
18.5 Output Compare Unit..................................................................................... 152
18.6 Compare Match Output Unit .......................................................................... 154
18.7 Modes of Operation ....................................................................................... 155
18.8 Timer/Counter Timing Diagrams ................................................................... 159
18.9 Asynchronous Operation of Timer/Counter2 ................................................. 160
18.10 Timer/Counter Prescaler ............................................................................... 161
18.11 Register Description ...................................................................................... 162
19 SPI – Serial Peripheral Interface ............................................................................... 169
19.1 Features ........................................................................................................ 169
19.2 Overview........................................................................................................ 169
19.3 SS Pin Functionality ...................................................................................... 174
19.4 Data Modes ................................................................................................... 174
19.5 Register Description ...................................................................................... 176
20 USART0 .................................................................................................................................... 179
20.1 Features ........................................................................................................ 179
20.2 Overview........................................................................................................ 179
20.3 Clock Generation........................................................................................... 180
20.4 Frame Formats .............................................................................................. 183
20.5 USART Initialization....................................................................................... 184
20.6 Data Transmission – The USART Transmitter .............................................. 185
20.7 Data Reception – The USART Receiver ....................................................... 188
20.8 Asynchronous Data Reception ...................................................................... 192
20.9 Multi-processor Communication Mode .......................................................... 195
20.10 Examples of Baud Rate Setting..................................................................... 196
20.11 Register Description ...................................................................................... 200
21 USART in SPI Mode .......................................................................................................... 205
21.1 Features ........................................................................................................ 205
21.2 Overview........................................................................................................ 205
21.3 Clock Generation........................................................................................... 205
21.4 SPI Data Modes and Timing.......................................................................... 206
21.5 Frame Formats .............................................................................................. 206
21.6 Data Transfer................................................................................................. 209
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 6
ATmega48A/PA/88A/PA/168A/PA/328/P
21.7 AVR USART MSPIM vs. AVR SPI ................................................................ 211
21.8 Register Description ...................................................................................... 212
22 2-wire Serial Interface ..................................................................................................... 215
22.1 Features ........................................................................................................ 215
22.2 2-wire Serial Interface Bus Definition ............................................................ 215
22.3 Data Transfer and Frame Format .................................................................. 216
22.4 Multi-master Bus Systems, Arbitration and Synchronization ......................... 219
22.5 Overview of the TWI Module ......................................................................... 221
22.6 Using the TWI................................................................................................ 223
22.7 Transmission Modes ..................................................................................... 225
22.8 Multi-master Systems and Arbitration............................................................ 238
22.9 Register Description ...................................................................................... 239
23 Analog Comparator .......................................................................................................... 243
23.1 Overview........................................................................................................ 243
23.2 Analog Comparator Multiplexed Input ........................................................... 243
23.3 Register Description ...................................................................................... 244
24 Analog-to-Digital Converter ........................................................................................246
24.1 Features ........................................................................................................ 246
24.2 Overview........................................................................................................ 246
24.3 Starting a Conversion .................................................................................... 248
24.4 Prescaling and Conversion Timing................................................................ 249
24.5 Changing Channel or Reference Selection ................................................... 251
24.6 ADC Noise Canceler ..................................................................................... 252
24.7 ADC Conversion Result................................................................................. 256
24.8 Temperature Measurement ........................................................................... 256
24.9 Register Description ...................................................................................... 257
25 debugWIRE On-chip Debug System ...................................................................... 262
25.1 Features ........................................................................................................ 262
25.2 Overview........................................................................................................ 262
25.3 Physical Interface .......................................................................................... 262
25.4 Software Break Points ................................................................................... 263
25.5 Limitations of debugWIRE ............................................................................. 263
25.6 Register Description ...................................................................................... 263
26 Self-Programming the Flash, ATmega 48A/48PA .......................................... 264
26.1 Overview........................................................................................................ 264
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 7
ATmega48A/PA/88A/PA/168A/PA/328/P
26.2 Addressing the Flash During Self-Programming ........................................... 265
26.3 Register Description ...................................................................................... 270
27 Boot Loader Support – Read-While-Write Self-Programming ............... 272
27.1 Features ........................................................................................................ 272
27.2 Overview........................................................................................................ 272
27.3 Application and Boot Loader Flash Sections ................................................. 272
27.4 Read-While-Write and No Read-While-Write Flash Sections........................ 273
27.5 Boot Loader Lock Bits ................................................................................... 275
27.6 Entering the Boot Loader Program................................................................ 276
27.7 Addressing the Flash During Self-Programming ........................................... 277
27.8 Self-Programming the Flash.......................................................................... 278
27.9 Register Description ...................................................................................... 287
28 Memory Programming .................................................................................................... 289
28.1 Program And Data Memory Lock Bits ........................................................... 289
28.2 Fuse Bits........................................................................................................ 290
28.3 Signature Bytes ............................................................................................. 293
28.4 Calibration Byte ............................................................................................. 293
28.5 Page Size ...................................................................................................... 294
28.6 Parallel Programming Parameters, Pin Mapping, and Commands ............... 294
28.7 Parallel Programming .................................................................................... 296
28.8 Serial Downloading........................................................................................ 303
29 Electrical Characteristics – (TA = -40°C to 85°C) ........................................... 308
29.1 Absolute Maximum Ratings* ......................................................................... 308
29.2 DC Characteristics......................................................................................... 308
29.3 Speed Grades ............................................................................................... 312
29.4 Clock Characteristics ..................................................................................... 313
29.5 System and Reset Characteristics ................................................................ 314
29.6 SPI Timing Characteristics ............................................................................ 315
29.7 Two-wire Serial Interface Characteristics ...................................................... 317
29.8 ADC Characteristics ...................................................................................... 319
29.9 Parallel Programming Characteristics ........................................................... 320
30 Electrical Characteristics (TA = -40°C to 105°C) ............................................ 322
30.1 Absolute Maximum Ratings* ......................................................................... 322
30.2 DC Characteristics......................................................................................... 322
31 Typical Characteristics – (TA = -40°C to 85°C) ................................................ 326
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 8
ATmega48A/PA/88A/PA/168A/PA/328/P
31.1 ATmega48A Typical Characteristics ............................................................. 327
31.2 ATmega48PA Typical Characteristics ........................................................... 352
31.3 ATmega88A Typical Characteristics ............................................................. 377
31.4 ATmega88PA Typical Characteristics ........................................................... 401
31.5 ATmega168A Typical Characteristics ........................................................... 427
31.6 ATmega168PA Typical Characteristics ......................................................... 451
31.7 ATmega328 Typical Characteristics .............................................................. 477
31.8 ATmega328P Typical Characteristics ........................................................... 501
32 ATmega48PA Typical Characteristics – (TA = -40°C to 105°C) ............. 526
32.1 Active Supply Current .................................................................................... 526
32.2 Idle Supply Current........................................................................................ 529
32.3 Power-down Supply Current.......................................................................... 531
32.4 Standby Supply Current ................................................................................ 532
32.5 Pin Pull-Up..................................................................................................... 533
32.6 Pin Driver Strength ........................................................................................ 536
32.7 Pin Threshold and Hysteresis........................................................................ 538
32.8 BOD Threshold.............................................................................................. 541
32.9 Internal Oscillator Speed ............................................................................... 542
32.10 Current Consumption of Peripheral Units ...................................................... 545
32.11 Current Consumption in Reset and Reset Pulsewidth .................................. 547
33 ATmega88PA Typical Characteristics – (TA = -40°C to 105°C) ............. 549
33.1 Active Supply Current .................................................................................... 549
33.2 Idle Supply Current........................................................................................ 552
33.3 Power-down Supply Current.......................................................................... 554
33.4 Power-save Supply Current........................................................................... 555
33.5 Pin Pull-Up..................................................................................................... 556
33.6 Pin Driver Strength ........................................................................................ 559
33.7 Pin Threshold and Hysteresis........................................................................ 561
33.8 BOD Threshold.............................................................................................. 564
33.9 Internal Oscillator Speed ............................................................................... 565
33.10 Current Consumption of Peripheral Units ...................................................... 568
33.11 Current Consumption in Reset and Reset Pulsewidth .................................. 570
34 ATmega168PA Typical Characteristics – (TA = -40°C to 105°C) .......... 572
34.1 Active Supply Current .................................................................................... 572
34.2 Idle Supply Current........................................................................................ 575
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 9
ATmega48A/PA/88A/PA/168A/PA/328/P
34.3 Power-down Supply Current.......................................................................... 577
34.4 Power-save Supply Current........................................................................... 578
34.5 Standby Supply Current ................................................................................ 579
34.6 Pin Pull-Up..................................................................................................... 579
34.7 Pin Driver Strength ........................................................................................ 582
34.8 Pin Threshold and Hysteresis........................................................................ 584
34.9 BOD Threshold.............................................................................................. 587
34.10 Internal Oscillator Speed ............................................................................... 590
34.11 Current Consumption of Peripheral Units ...................................................... 592
34.12 Current Consumption in Reset and Reset Pulsewidth .................................. 595
35 ATmega328P Typical Characteristics – (TA = -40°C to 105°C) .............. 597
35.1 ATmega328P Active Supply Current............................................................. 597
35.2 Idle Supply Current........................................................................................ 600
35.3 Power-down Supply Current.......................................................................... 602
35.4 Power-save Supply Current........................................................................... 603
35.5 Standby Supply Current ................................................................................ 604
35.6 Pin Pull-Up..................................................................................................... 604
35.7 Pin Driver Strength ........................................................................................ 607
35.8 Pin Threshold and Hysteresis........................................................................ 609
35.9 BOD Threshold.............................................................................................. 612
35.10 Internal Oscillator Speed ............................................................................... 614
35.11 Current Consumption of Peripheral Units ...................................................... 617
35.12 Current Consumption in Reset and Reset Pulsewidth .................................. 619
36 Register Summary ............................................................................................................. 621
37 Instruction Set Summary .............................................................................................. 625
38 Ordering Information ....................................................................................................... 628
38.1 ATmega48A .................................................................................................. 628
38.2 ATmega48PA ................................................................................................ 629
38.3 ATmega88A................................................................................................... 630
38.4 ATmega88PA ................................................................................................ 631
38.5 ATmega168A................................................................................................. 632
38.6 ATmega168PA ............................................................................................. 633
38.7 ATmega328 .................................................................................................. 634
38.8 ATmega328P ................................................................................................ 635
39 Packaging Information ................................................................................................... 636
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 10
ATmega48A/PA/88A/PA/168A/PA/328/P
39.1 32A ................................................................................................................ 636
39.2 28M1.............................................................................................................. 638
39.3 32M1-A .......................................................................................................... 641
39.4 28P3 .............................................................................................................. 644
40 Errata ......................................................................................................................................... 645
41 Datasheet Revision History ......................................................................................... 646
41.1 Rev. B – 08/2020 ........................................................................................... 646
41.2 Rev. A – 10/2018 ........................................................................................... 646
41.3 Rev. 8271J – 11/2015 ................................................................................... 646
41.4 Rev. 8271I – 10/2014 .................................................................................... 646
41.5 Rev. 8271H – 08/2014................................................................................... 647
41.6 Rev. 8271G – 02/2013 .................................................................................. 647
41.7 Rev. 8271F – 08/2012 ................................................................................... 647
41.8 Rev. 8271E – 07/2012................................................................................... 647
41.9 Rev. 8271D – 05/11....................................................................................... 648
41.10 Rev. 8271C – 08/10....................................................................................... 648
41.11 Rev. 8271B – 04/10....................................................................................... 648
41.12 Rev. 8271A – 12/09....................................................................................... 649
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 11
ATmega48A/PA/88A/PA/168A/PA/328/P
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5)
32313029282726
25
9101112131415
16
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
32 TQFP Top View
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
(PCINT14/RESET) PC6
(PCINT16/RXD) PD0 (PCINT17/TXD) PD1 (PCINT18/INT0) PD2
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/OC2A/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1)
28 6PDIP
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
32313029282726
25
9101112131415
16
32 94)1 Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
NOTE: Bottom pad should be soldered to ground.
1 2 3 4 5 6 7
21 20 19 18 17 16 15
28272625242322
891011121314
28 94)1 Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5)
NOTE: Bottom pad should be soldered to ground.

1. Pin Configurations

Figure 1-1. Pinout ATmega48A/PA/88A/PA/168A/PA/328/P
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 12
ATmega48A/PA/88A/PA/168A/PA/328/P

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri­stated when a reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page 91 and ”System
Clock and Clock Options” on page 36.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri­stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-11 on page 314. Shorter pulses are not ensured to generate a Reset.
The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page 94.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri­stated when a reset condition becomes active, even if the clock is not running.
The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page 97.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 13
ATmega48A/PA/88A/PA/168A/PA/328/P
1.1.7 AV
CC
AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V
, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
CC
Note that PC6...4 use digital supply voltage, V

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and VQFN Package Only)

In the TQFP and VQFN package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.
CC
.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 14

2. Overview

The ATmega48A/PA/88A/PA/168A/PA/328/P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48A/PA/88A/PA/168A/PA/328/P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram
ATmega48A/PA/88A/PA/168A/PA/328/P
Powe r
RESET
Comp.
VCC
debugWIRE
PROGRAM
CPU
Internal
Bandgap
LOGIC
SRAMFlash
AVC C
AREF
GND
2
6
GND
Watchdog
Timer
Watchdog
Oscillator
Oscillator
Circuits /
Clock
Generation
EEPROM
8bit T/C 2
DATA B US
Supervision
POR / BOD &
16bit T/C 18bit T/C 0 A/D Conv.
Analog
USART 0
SPI TWI
PORT C (7)PORT B (8)PORT D (8)
RESET
XTAL[1..2]
ADC[6..7]PC[0..6]PB[0..7]PD[0..7]
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 15
ATmega48A/PA/88A/PA/168A/PA/328/P
The ATmega48A/PA/88A/PA/168A/PA/328/P provides the following features: 4K/8Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1Kbytes EEPROM, 512/1K/1K/2Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and VQFN packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.
Microchip offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into
®
AVR
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.
The device is manufactured using Microchip’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega48A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega48A/PA/88A/PA/168A/PA/328/P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
(AKS) technology for

2.2 Comparison Between Processors

The ATmega48A/PA/88A/PA/168A/PA/328/P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the devices.
Table 2-1. Memory Size Summary
Device Flash EEPROM RAM Interrupt Vector Size
ATmega48A 4KBytes 256Bytes 512Bytes 1 instruction word/vector
ATmega48PA 4KBytes 256Bytes 512Bytes 1 instruction word/vector
ATmega88A 8KBytes 512Bytes 1KBytes 1 instruction word/vector
ATmega88PA 8KBytes 512Bytes 1KBytes 1 instruction word/vector
ATmega168A 16KBytes 512Bytes 1KBytes 2 instruction words/vector
ATmega168PA 16KBytes 512Bytes 1KBytes 2 instruction words/vector
ATmega328 32KBytes 1KBytes 2KBytes 2 instruction words/vector
ATmega328P 32KBytes 1KBytes 2KBytes 2 instruction words/vector
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 16
ATmega48A/PA/88A/PA/168A/PA/328/P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega 48A/48PA there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash

3. Resources

A comprehensive set of development tools, application notes and data sheets are available for download on www.microchip.com
Note: 1.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details.
ATmega48A/PA/88A/PA/168A/PA/328/P
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive Touch Sensing

The QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix
Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing APIs to retrieve the channel information and determine the touch sensor states.
The QTouch Library is FREE and downloadable from the Microchip website at the following location http://www.microchip.com. For implementation details and other information, refer to the QTouch Library User Guide - also available for download from the Microchip website.
acquisition methods.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 17

7. AVR CPU Core

Flash
Program
Memory
Instruction
Register
Instruction
Decoder
Program
Counter
Control Lines
32 x 8
General
Purpose
Registrers
ALU
Status
and Control
I/O Lines
EEPROM
Data Bus 8-bit
Data
SRAM
Direct Addressing
Indirect Addressing
Interrupt
Unit
SPI
Unit
Watchdog
Timer
Analog
Comparator
I/O Module 2
I/O Module1
I/O Module n

7.1 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts.
Figure 7-1. Block Diagram of the AVR Architecture
ATmega48A/PA/88A/PA/168A/PA/328/P
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 18
ATmega48A/PA/88A/PA/168A/PA/328/P
operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z­register, described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega48A/PA/88A/PA/168A/PA/328/P has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7.2 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

7.3 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 19

7.3.1 SREG – AVR Status Register

The AVR Status Register – SREG – is defined as:
Bit 76543210
0x3F (0x5F)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
• Bit 7 – I: Global Interrupt Enable
I T H S V N Z C SREG
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction.
ATmega48A/PA/88A/PA/168A/PA/328/P
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See the “Instruction Set Description” for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic. See the “Instruction Set Description” for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information.

7.4 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File:
One 8-bit output operand and one 8-bit result input
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 20
ATmega48A/PA/88A/PA/168A/PA/328/P
Two 8-bit output operands and one 8-bit result input
Two 8-bit output operands and one 16-bit result input One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 7-2. AVR CPU General Purpose Working Registers
70Addr.
R0 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0x0F
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 0x1E Z-register Low Byte
R31 0x1F Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions.
As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7.4.1 The X-register, Y-register, and Z-register

The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 7-3.
Figure 7-3. The X-, Y-, and Z-registers
15 XH XL 0
X-register 7 0 7 0
R27 (0x1B) R26 (0x1A)
15 YH YL 0
Y-register 7 0 7 0
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register 7 0 7 0
R31 (0x1F) R30 (0x1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details).
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 21

7.5 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.
The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Table 8-3 on page 28.
See Table 7-1 for Stack Pointer details.
Table 7-1. Stack Pointer instructions
Instruction Stack pointer Description
PUSH Decremented by 1 Data is pushed onto the stack
CALL ICALL RCALL
POP Incremented by 1 Data is popped from the stack
RET RETI
Decremented by 2
Incremented by 2 Return address is popped from the stack with return from
ATmega48A/PA/88A/PA/168A/PA/328/P
Return address is pushed onto the stack with a subroutine call or interrupt
subroutine or return from interrupt
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

7.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

Bit 151413121110 9 8
0x3E (0x5E)
0x3D (0x5D)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL
76543210
R/W R/W R/W R/W R/W R/W R/W R/W
RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 22

7.6 Instruction Execution Timing

clk
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
T1 T2 T3 T4
CPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
T1 T2 T3 T4
clk
CPU
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clk used.
Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.
Figure 7-4. The Parallel Instruction Fetches and Instruction Executions
, directly generated from the selected clock source for the chip. No internal clock division is
CPU
ATmega48A/PA/88A/PA/168A/PA/328/P
Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.
Figure 7-5. Single Cycle ALU Operation

7.7 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section
”Memory Programming” on page 289 for details.
The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 66. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 66 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 23
ATmega48A/PA/88A/PA/168A/PA/328/P
programming the BOOTRST Fuse, see ”Boot Loader Support – Read-While-Write Self-Programming” on page
272.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.
Assembly Code Example
in r16, SREG ; store SREG value cli ; disable interrupts during timed
sequence
sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-
bit)
C Code Example
char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1<<EEMPE); /* start EEPROM write */ EECR |= (1<<EEPE); SREG = cSREG; /* restore SREG value (I-bit) */
When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts, as shown in this example.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 24
Assembly Code Example
sei ; set Global Interrupt Enable sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)
C Code Example
__enable_interrupt(); /* set Global Interrupt Enable */ __sleep(); /* enter sleep, waiting for interrupt */ /* note: will enter sleep before any pending interrupt(s) */

7.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the program vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.
A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is set.
ATmega48A/PA/88A/PA/168A/PA/328/P
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 25
ATmega48A/PA/88A/PA/168A/PA/328/P

8. AVR Memories

8.1 Overview

This section describes the different memories in the ATmega48A/PA/88A/PA/168A/PA/328/P. The AVR architecture has two main memory spaces, the Data Memory and the Program Memory space. In addition, the ATmega48A/PA/88A/PA/168A/PA/328/P features an EEPROM Memory for data storage. All three memory spaces are linear and regular.

8.2 In-System Reprogrammable Flash Program Memory

The ATmega48A/PA/88A/PA/168A/PA/328/P contains 4/8/16/32Kbytes On-chip In-System Reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 2/4/8/16K x 16. For software security, the Flash Program memory space is divided into two sections, Boot Loader Section and Application Program Section in ATmega88PA and ATmega168PA. See SPMEN description in section ”SPMCSR – Store Program Memory Control and Status Register” on page 287 for more details.
The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega48A/PA/88A/PA/168A/PA/328/P Program Counter (PC) is 11/12/13/14 bits wide, thus addressing the 2/4/8/16K program memory locations. The operation of Boot Program section and associated Boot Lock bits for software protection are described in detail in ”Self-Programming the Flash, ATmega 48A/48PA” on page 264 and ”Boot Loader Support – Read-While-Write Self-Programming” on page 272. ”Memory Programming” on
page 289 contains a detailed description on Flash Programming in SPI- or Parallel Programming mode.
Constant tables can be allocated within the entire program memory address space (see the LPM – Load Program Memory instruction description).
Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Timing” on page 23.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 26
ATmega48A/PA/88A/PA/168A/PA/328/P
Figure 8-1. Program Memory Map ATmega 48A/48PA
Program Memory
Application Flash Section
0x0000
0x7FF
Figure 8-2. Program Memory Map ATmega88A, ATmega88PA, ATmega168A, ATmega168PA, ATmega328 and
ATmega328P
Program Memory
0x0000
Application Flash Section
Boot Flash Section
0x0FFF/0x1FFF/0x3FFF
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 27

8.3 SRAM Data Memory

Figure 8-3 shows how the ATmega48A/PA/88A/PA/168A/PA/328/P SRAM Memory is organized.
The ATmega48A/PA/88A/PA/168A/PA/328/P is a complex microcontroller with more peripheral units than can be supported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
The lower 768/1280/1280/2303 data memory locations address both the Register File, the I/O memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 512/1024/1024/2048 locations address the internal data SRAM.
The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z­register.
When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y, and Z are decremented or incremented.
The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and the 512/1024/1024/2048 bytes of internal data SRAM in the ATmega48A/PA/88A/PA/168A/PA/328/P are all accessible through all these addressing modes. The Register File is described in ”General Purpose Register
File” on page 20.
ATmega48A/PA/88A/PA/168A/PA/328/P
Figure 8-3. Data Memory Map
Data Memory
32 Registers 64 I/O Registers 160 Ext I/O Reg.
Internal SRAM
(512/1024/1024/2048 x 8)
0x0000 - 0x001F 0x0020 - 0x005F 0x0060 - 0x00FF
0x0100
0x02FF/0x04FF/0x4FF/0x08FF
2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 28

8.3.1 Data Memory Access Times

clk
WR
RD
Data
Data
Address
Address valid
T1 T2 T3
Compute Address
Read
Write
CPU
Memory Access Instruction
Next Instruction
This section describes the general access timing concepts for internal memory access. The internal data SRAM access is performed in two clk
Figure 8-4. On-chip Data SRAM Access Cycles
ATmega48A/PA/88A/PA/168A/PA/328/P
cycles as described in Figure 8-4.
CPU

8.4 EEPROM Data Memory

The ATmega48A/PA/88A/PA/168A/PA/328/P contains 256/512/512/1Kbytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control Register.
”Memory Programming” on page 289 contains a detailed description on EEPROM Programming in SPI or
Parallel Programming mode.

8.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in Table 8-2. A self-timing function, however, lets the user software detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V up/down. This causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used. See ”Preventing EEPROM Corruption” on page 30 for details on how to avoid problems in these situations.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.
is likely to rise or fall slowly on power-
CC
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 29

8.4.2 Preventing EEPROM Corruption

ATmega48A/PA/88A/PA/168A/PA/328/P
During periods of low V CPU and the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an external low V operation is in progress, the write operation will be completed provided that the power supply voltage is sufficient.

8.5 I/O Memory

The I/O space definition of the ATmega48A/PA/88A/PA/168A/PA/328/P is shown in ”Register Summary” on
page 621.
All ATmega48A/PA/88A/PA/168A/PA/328/P I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O space. I/O Registers within the address range 0x00 - 0x1F are directly bit­accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48A/PA/88A/PA/168A/PA/328/P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.
the EEPROM data can be corrupted because the supply voltage is too low for the
CC,
reset Protection circuit can be used. If a reset occurs while a write
CC

8.5.1 General Purpose I/O Registers

The ATmega48A/PA/88A/PA/168A/PA/328/P contains three General Purpose I/O Registers. These registers can be used for storing any information, and they are particularly useful for storing global variables and Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
 2020 Microchip Technology Inc. Data Sheet Complete DS40002061B-page 30
Loading...
+ 623 hidden pages