Compact size (38.5 x 20.0 mm)
High RX sensitivity (-103 dBm)
Outperforming link budget (up to +112 dB)
Up to +9.0 dBm output power
Very low power consumption:
8.7 mA in RX mode
34.8 mA in TX mode
0.6 µA in sleep mode
Preassigned Atmel
Capability to use MAC address into the internal EEPROM
IEEE
®
802.15.4 compliant Transceiver
900MHz ISM band
Serial bootloader
High Performance Low power AVR XMEGA 8/16-bit Microcontroller
Rapid design-in with built-in Chip Antenna
RF Test point using MS-147 RF connector
Small physical footprint and low profile for optimum fit in very small application
boards
Mesh networking capability
Easy-to-use low cost development kit
Single source of support for HW and SW
Worldwide license-free operation
(1)
(1)
(2)
®
MAC address that can be used on end product
2
Note: 1. MCU is in active state with 3V Supply, CPU clock @ 16MHz, RX RPC enabled (for RX current),
PHY_TX_PWR=0x0 (for TX current), All digital outputs pulled high.
ATZB-X0-256-4-0-CN ZigBit® is an ultra-compact and low-power 900 MHz IEEE 802.15.4/ZigBee® OEM module from
Atmel®. Based on the innovative mixed-signal hardware platform from Atmel, this module uses the ATXMEGA256A3U
[1] Microcontroller and AT86RF212B [5] 700/800/900 MHz ISM band Transceiver. The radio transceiver provides high
data rates from 20 kb/s up to 1 Mb/s, frame handling, outstanding receiver sensitivity and high transmit output power
enabling a very robust wireless communication. The module is designed for wireless sensing, monitoring, control, data
acquisition applications, to name a few. This ZigBit module eliminates the need for costly and time-consuming RF
development, and shortens time-to-market for wireless applications.
The module has an MS-147 RF connector that can be used as an RF test port. The built-in chip antenna is designed
and tuned for the ZigBit design to enable quick integration of the ZigBit into any application.
1.2 Applications
The ZigBit module is compatible with robust IEEE 802.15.4/ZigBee stack that supports a self-healing, self-organizing
mesh network, while optimizing network traffic and minimizing power consumption.
For detailed Software support information, please visit www.atmel.com/wireless
The applications include, but are not limited to:
Building automation & monitoring
o Lighting controls
o Wireless smoke- and CO-detectors
o Structural integrity monitoring
HVAC monitoring & control
Inventory management
Environmental monitoring
Security
Water metering
Industrial monitoring
o Machinery condition and performance monitoring
o Monitoring of plant system parameters such as temperature, pressure, flow, tank level, humidity, vibration, etc.
Automated meter reading (AMR)
1.3 Abbreviations and acronyms
ADC Analog-to-Digital Converter
API Application Programming Interface
DC Direct Current
DTR Data Terminal Ready
EEPROM Electrically Erasable Programmable Read-Only Memory
ESD Electrostatic Discharge
GPIO General Purpose Input/Output
HAF High Frequency
HVAC Heating, Ventilating, and Air Conditioning
HW Hardware
I2C Inter-Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IRQ Interrupt Request
ISM Industrial, Scientific and Medical radio band
JTAG Digital interface for debugging of embedded device, also known as IEEE 1149.1 standard
interface
MAC Medium Access Control layer
MCU Microcontroller Unit. In this document it also means the processor, which is the core of a ZigBit
module
NRE Network layer
OEM Original Equipment Manufacturer
OTA Over-The-Air upgrade
PA Power Amplifier
PCB Printed Circuit Board
PER Package Error Ratio
RAM Random Access Memory
RF Radio Frequency
RPC Reduced Power Consumption
RTS/CTS Request to Send/ Clear to Send
RX Receiver
SMA Surface Mount Assembly
SoC System on Chip
SPI Serial Peripheral Interface
SW Software
TTM Time-To-Market
TX Transmitter
UART Universal Asynchronous Receiver/Transmitter
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
ZigBee, ZigBee PRO Wireless networking standards targeted at low-power applications
802.15.4 The IEEE 802.15.4-2003 standard applicable to low-rate wireless Personal Area Network
1.4 Related documents
[1] ATXMEGA256A3U Datasheet in http://www.atmel.com/devices/ATXMEGA256A3U.aspx?tab=documents
[2] MS-147 Series Interface RF Connector with Switch, 3.9mm High, DC to 6GHz
[3] IEEE Std 802.15.4-2003 IEEE Standard for Information technology - Part 15.4 Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)
[4] ZigBee Specification. ZigBee Document 053474r17, October 19, 2007
[5] AT86RF212B Datasheet in http://www.atmel.com/devices/AT86RF212B.aspx?tab=documents
The ATZB-X0-256-4-0-CN ZigBit is a compact, low-power, high sensitivity IEEE 802.15.4/ZigBee OEM module. Based
on a solid combination of the latest Atmel MCU Wireless hardware platform, 900 MHz ISM band transceiver and Atmel
Studio Wireless Composer - the ZigBit offers an unmatched combination of superior radio performance, ultra-low power
consumption and exceptional ease of integration.
Figure 2-1. ATZB-X0-256-4-0-CN user interface diagram
.
This ZigBit module contains Atmel’s ATXMEGA256A3U Microcontroller and AT86RF212B 900 MHz ISM band
Transceiver for ZigBee and IEEE 802.15.4 [1]. The module features 256KB In-System Self-Programmable flash
memory, 16KB SRAM and 4KB EEPROM.
The compact all-in-one board design of MCU and Radio Transceiver with very minimal components on the RF path to
Antenna dramatically improves the ZigBit’s compact size, range performance on signal transmission and increases its
sensitivity. This ensures stable connectivity within a larger coverage area, and helps develop applications on smaller
footprint. The MS-147 connector [2] can be used as an RF Test port.
ZigBit Module contains a complete RF/MCU design with all the necessary passive components included. The module
can be easily mounted on a simple 2-layer PCB with a minimum of required external connection. The ZigBit Module
Evaluation kit containing the ZigBit Extension board for the Atmel Xplained PRO HW Evaluation platform can be used to
develop FW using the Atmel Studio and evaluate using the Wireless Composer. Compared to a custom RF/MCU
solution, a module-based solution offers considerable savings in development time and NRE cost per unit during the
HW/FW design, prototyping, and mass production phases of product development.
All ZigBits are preloaded with a Bootloader when they are sold as Modules, either in Single units or T&R.
Depending on end-user design requirements, the ZigBit can operate as a self-contained sensor node, where it would
function as a single MCU, or it can be paired with a host processor driving the module over a serial interface.
The MAC stack running on the host processor can then control data transmission and manages module peripherals.
Thus very minimal firmware customization is required for successful module design-in. Third-party sensors can then be
connected directly to the module, thus expanding the existing set of peripheral interfaces.
Every ZigBit Module come pre loaded with Atmel assigned 64-bit MAC address stored in the signature bytes of the
device. This unique IEEE MAC address can be used as the MAC address of the end product, so there is no need to buy
a MAC address separately for the product using the ZigBit.
Voltage on any pin, except RESET with respect to ground
-0.3V
3.6V (VDD
max
)
Input RF level
+10 dBm
Current into Vcc pins
200 mA
Parameter
Range
Unit
Supply voltage, VDD
1.8 to 3.6
V
Active Current consumption: RX mode + Max sensitivity
14.5
mA
Active Current consumption: RX mode + Least sensitivity
13.9
mA
Active Current consumption: RX mode + Max sensitivity, MCU Sleep
9.3
mA
Active Current consumption: RX mode + Least sensitivity, MCU Sleep
8.7
mA
Active Current consumption: TX mode
(1)
– BUSY_TX – Transmit state with max output power
34.8
mA
Current consumption: TRX_OFF, MCU Active
6.1
mA
Current consumption: TRX_OFF, MCU Sleep
740
µA
Sleep Current consumption: TRX Sleep, MCU Sleep
0.6
µA
3. Specification
3.1 Electrical Characteristics
3.1.1 Absolute Maximum Ratings
Table 3-1. Absolute Maximum Ratings
(1)(2)
Notes: 1. Absolute Maximum Ratings are the values beyond which damage to the device may occur. Under no
circumstances must the absolute maximum ratings given in this table be violated. Stresses beyond those listed
under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only. Functional operation of the device at these or other conditions, beyond those indicated
in the operational sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
2. Attention! ZigBit is an ESD-sensitive device. Precaution should be taken when handling the device in order to
prevent permanent damage.
3.1.2 Power Supply
Table 3-2. Test Conditions (unless otherwise stated), Vcc = 3V, T
= 25°C.
amb
Note 1: Output TX power (when measuring consumption in TX mode) is +9 dBm.
Note 2:
a) All interfaces are set to the default state (see Pin Assignment Table).
b) JTAG is not connected.
c) CPU Clock configured when doing this measurement – 16MHz for all modes except Power save and Power down
modes
Current consumption depends on multiple factors, including but not limited to, the board design and materials, Protocol settings,
network activity, EEPROM read/write operations. It also depends on MCU load and/or peripherals used by an application.
Output power [dBm] (typical values at RF
connector)
C0
11
8.59
C1
10
8.14
80 9 7.43
82 8 5.85
83 7 4.97
84 6 4.1
40 5 3.58
86 4 2.12
00 3 1.4
01 2 0.42
02 1 -0.93
03 0 -2.09
04
-1
-3.16
27
-2
-4.29
91
-6
-7.86
0D
-10
-12.27
15
-18
-19.51
1D
-25
-26.82
3.1.3 RF Characteristics
Table 3-3. RF Characteristics
Note# Range measured is Line of Sight at 10ft elevation from Ground at different combinations of orientation of transmitter
and receiver, with special conditions were there is minimal or no RF interference from other sources. For best case
orientation of the ZigBits to achieve maximum range, refer to sectionError! Reference source not found..
(1)
.
Note *Appropriate FW (Register selection) must be used for operating this ZigBit in North America.
Table 3-4. TX power settings
Note 1: For detailed characteristics, please refer [2]
NOTE: TXD, RXD of UART are crossed inside ZigBit Module. External UART devices connecting to ZigBit Module
should follow straight connection for UART.
UART_TXD_external_device <-> UART_TXD
UART_RXD_external_device <-> UART_RXD
3.4 Antenna Orientation Recommendation
TBA
3.5 Mounting information
The Figure below shows the PCB layout recommended for a ZigBit module. Neither via-holes nor wires are allowed on
the PCB upper layer in the area occupied by the module. As a critical requirement, RF_GND pins should be grounded
via several via-holes to be located right next to the pins thus minimizing inductance and preventing both mismatch and
losses.
Figure 3-1. ATZB-X0-256-4-0-CN Dimensions, Mounting Information & Pinout
TBA
The ZigBit’s location and orientation on the carrier board is illustrated in the above PCB Land pattern and Mounting
information drawing. The Recommended placement of ZigBit on Carrier Board needs to be accurately followed to
ensure performance on the end application
3.6 Soldering profile
The J-STD-020C-compliant soldering profile is recommended according to Table 3-8.
Table 3-8. Soldering profile
(1)
.
Note: 1. The package is backward compatible with PB/Sn soldering profile.
Multiple factors affect proper antenna match, hence, affecting the antenna pattern. The particular factors are the board
material and thickness, shields, the material used for enclosure, the board neighborhood, and other components
adjacent to antenna. Following guidelines need to be followed when designing the base board for the ZigBit.
General Recommendations:
Metal enclosure should not be used. Using low profile enclosure might also affect antenna tuning.
Placing high profile components next to antenna should be avoided.
Having holes/vias punched around the periphery of the board eliminates parasitic radiation from the board
edges also distorting antenna pattern.
ZigBit module should not be placed next to consumer electronics which might interfere with ZigBit’s RF band
frequency.
The board design should prevent propagation of microwave field inside the board material. Electromagnetic waves of
high frequency may penetrate the board thus making the edges of the board radiate, which may distort the antenna
pattern. To eliminate this effect, metalized and grounded holes/vias must be placed around the board's edges.
4. Section 4
Figure 4-1. Internal schematics.
Handling Instructions
The ZigBit Modules are fixed with an EMI Shield to ensure compliance to Emission and Immunity rules. This shield is
galvanic and NOT air tight. So cleaning of the module with IPA / other similar agents is not advised. Humidity protection
coating (conformal) will cause deviated RF behavior and coating material being trapped inside EMI Shield. So this
should be avoided. For products requiring conformal coating, it is advised to suitably mask the ZigBit before applying
the coating to rest of the ZigBit carrier board. To protect ZigBit from humidity, the housing of the product should ensure
suitable Ingress Protection standards are complied with.
The MS-147 connector should never be exposed to Varnish / similar conformal coating material which will affect
electrical connection on the surfaces of connector.
The in-built chip antenna has been tuned for the particular design
4.1.1 General recommendations
Metal enclosure should not be used. Using low profile enclosure might also affect antenna tuning
Placing high profile components next to antenna should be avoided
Having holes/vias punched around the periphery of the board eliminates parasitic radiation from the board edges
also distorting antenna pattern
ZigBit module should not be placed next to consumer electronics which might interfere with ZigBit's RF frequency
A dedicated memory space is allocated to store product specific information and called the Persistence Memory. The
organization of the persistence memory is as follows:
Table 2 Persistence Memory
In ATZB-X0-256-3-0-C, the persistence memory is stored in User signature Row of Atxmega256A3U microcontroller
starting from address 0x0000. This section is not erased by chip erase and requires a dedicated erase command.
The user signature row is a separate memory section that is fully accessible (read and write) from application software
and external programmers. See section “Read User Signature Row / Production Signature Row” under section “NVM
Flash Commands” in Xmega AU manual [1] for details in reading the user signature data from application software
Note: 1 The MAC address stored inside the MCU is a uniquely assigned ID for each ZigBit and owned by Atmel. User of
the ZigBit application can use this unique MAC ID to address the ZigBit in end-applications. The MAC ID can be read
from the ZigBit using the Performance Analyzer Application that is supplied through Atmel Studio Gallery Extension.
This equipment complies with Part 15 of the FCC rules and regulations. To fulfill FCC Certification requirements, an
OEM manufacturer must comply with the following regulations:
1. The ATZB-X0 -256-4-0-CN modular transmitter must be labeled with its own FCC ID number, and, if the FCC
ID is not visible when the module is installed inside another device, then the outside of the device into which
the module is installed must also display a label referring to the enclosed module. This exterior label can use
wording such as the following:
IMPORTANT: Contains FCC ID: VW4A091745. This equipment complies with Part 15 of the FCC Rules. Operation
is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device
must accept any interference received, including interference that may cause undesired operation (FCC 15.19).
The internal antenna used for this mobile transmitter must provide a separation distance of at least 20 cm from all
persons and must not be colocated or operating in conjunction with any other antenna or transmitter.
Installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF
exposure compliance. This device is approved as a mobile device with respect to RF exposure compliance, and may
only be marketed to OEM installers. Use in portable exposure conditions (FCC 2.1093) requires separate equipment
authorization.
IMPORTANT: Modifications not expressly approved by this company could void the user's authority to operate this
equipment (FCC section 15.21).
IMPORTANT: This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense
(FCC section 15.105).
6.2 Industry Canada (IC) Compliance statements
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two
conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including
interference that may cause undesired operation of the device.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence.
L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2)
l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en
compromettre le fonctionnement.
This equipment complies with radio frequency exposure limits set forth by Industry Canada for an uncontrolled
environment. This equipment should be installed and operated with minimum distance 20 cm between the device and
the user or bystanders.
Cet équipement est conforme aux limites d'exposition aux radiofréquences définies par Industrie Canada pour un
environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre le
dispositif et l'utilisateur ou des tiers
CAUTION: Any changes or modifications not expressly approved by the party responsible for compliance could void the
user’s authority to operate the equipment.
The OEM integrator is still responsible for testing their end-product for any additional compliance requirements required
with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
This Module is labelled with its own IC ID. If the IC ID Certification Number is not visible while installed inside another
device, then the device should display the label on it referring the enclosed module. In that case, the final end product
must be labelled in a visible area with the following:
“Contains Transmitter Module IC:11019A-091745”
OR
“Contains IC: 11019A-091745”
Ce module est étiqueté avec son propre ID IC. Si le numéro de certification IC ID n'est pas visible lorsqu'il est installé à
l'intérieur d'un autre appareil, l'appareil doit afficher l'étiquette sur le module de référence ci-joint. Dans ce cas, le
produit final doit être étiqueté dans un endroit visible par le texte suivant:
“Contains Transmitter Module IC: 11019A-091745”
OR
“Contains IC: 11019A-091745”
Atmel®, Atmel logo and combinations thereof, AVR®, BitCloud®, Enabling Unlimited Possibilities®, ZigBit®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.