This manual describes the REB212BSMA radio extender board, demonstrating
the high performance at ultra-low power consumption of the Atmel
radio transceiver.
®
AT86RF212B
Features
•High-performance 700/800/900MHz, RF-CMOS AT86RF212B radio transceiver
targeted for ZigBee
– 121dB link budget
– Ultra-low current consumption
– Ultra-low supply voltage (1.8V to 3.6V)
• RF reference design and high-performance evaluation platform
• Interfaces to several of the Atmel microcontroller development platforms
• Board information EEPROM
– MAC address
– Board identification, features, and serial number
– Crystal calibration values
®
, IEEE® 802.15.4, 6LoWPAN, and ISM Applications
2
1 Introduction
This manual describes the REB212BSMA radio extender board, demonstrating the high performance at ultra-low
power consumption of the Atmel AT86RF212B radio transceiver. Detailed information is given in the individual
sections about the board functionality, the board interfaces, and the board design.
The REB212BSMA connects directly to the REB controller base board (REB-CBB) [2], or can be used as an RF
interface in combination with one of the Atmel microcontroller development platforms. The REB212BSMA
together with a microcontroller forms a fully functional wireless node.
Figure 1-1. REB212BSMA Radio Extender Board
2 Disclaimer
Typical values contained in this application note are based on simulations and testing of individual examples.
Any information about third-party materials or parts was included in this document for convenience. The vendor
may have changed the information that has been published. Check the individual vendor information for the
latest changes.
3 Overview
The radio extender board is assembled with an Atmel AT86RF212B radio transceiver [1] and equipped with an
SMA connector for an external whip antenna. External antennas can be connected to the SMA ports as well as
RF measurement equipment for performance evaluation of the radio transceiver.
The radio extender board was designed to interface to the Atmel microcontroller development or evaluation
platforms (for example, Atmel STK
ideal way to:
•Evaluate the outstanding radio transceiver performance, such as the excellent receiver sensitivity
achieved at ultra-low current consumption
• Test the radio transceiver’s comprehensive hardware support of the IEEE 802.15.4-2011 standard
• Test the radio transceiver’s enhanced feature set, which includes MAC hardware acceleration, AES
encryption and high data rate modes
®
500). The microcontroller platform in combination with the REB provides an
AT02876: Atmel REB212BSMA Hardware User Manual [APPLICATION NOTE]
Figure 3-1 shows a development and evaluation setup using the REB controller base board (REB-CBB) in
combination with the REB212BSMA radio extender board; via SMA connector which is assembled with quarter
wave whip antenna.
Figure 3-1. The REB212BSMA Connected to a REB-CBB
4 Functional Description
The block diagram of the REB212BSMA radio extender board is shown in Figure 4-1. The power supply pins and
all digital I/Os of the radio transceiver are routed to the 2 × 20-pin expansion connector to interface to a power
supply and a microcontroller.
Board-specific information such as board identifier, MAC address and production calibration values are stored in
an ID EEPROM. The SPI bus of the EEPROM is shared with the radio transceiver interface.
AT02876: Atmel REB212BSMA Hardware User Manual [APPLICATION NOTE]
The REB212BSMA is equipped with a 2 × 20-pin, 100mil, expansion connector, X1. The pin assignment enables
a direct interface to the REB-CBB [2]. Further, the interface connects to the Atmel STK500/501 microcontroller
development platform to enable support for various Atmel 8-bit AVR
The REB212BSMA is preconfigured to interface to an STK501 with an Atmel ATmega1281 or a REB-CBB with
an Atmel ATxmega 256A3 respectively.
To operate the REB212BSMA with an Atmel ATmega644 on STK500, the 0Ω resistors R10 through R18 must be
removed and re-installed on the board manually as resistors R20 through R28 (see Appendix A).
Other microcontroller development platforms need to be interfaced using a special adapter board.
4.1.1 Atmel ATmega1281 Configuration
Table 4-1lists the pin assignment of the ATmega1281 configuration (shipping default).
To identify the board type by software, an identification (ID) EEPROM (U5) is populated. Information about the
board, the node MAC address and production calibration values are stored here. A serial EEPROM AT25010B
[3] with 128 × 8-bit organization and SPI bus is used because of its small package and low-voltage and
low-power operation.
The SPI bus is shared between the EEPROM and the transceiver. The select signal for each SPI slave
(EEPROM, radio transceiver) is decoded with the reset line of the transceiver, RSTN. Therefore, the EEPROM is
addressed when the radio transceiver is held in reset (RSTN = 0; see Figure 4-2).
The EEPROM data is written during board production testing. A unique serial number, the MAC address, and
calibration values are stored. These can be used to optimize system performance. Table 4-3shows a detailed
description of the EEPROM data structure.
Table 4-3. ID EEPROM Mapping
Address Name Type Description
0x00 MAC address uint64 MAC address for the 802.15.4 node, little endian byte order
0x08 Serial number uint64 Board serial number, little endian byte order
0x10 Board family uint8 Internal board family identifier
0x11 Revision uint8[3] Board revision number ##.##.##
AT02876: Atmel REB212BSMA Hardware User Manual [APPLICATION NOTE]
A jumper, JP1, is placed in the supply voltage trace to offer an easy way for current sensing. The current
consumption of all circuitry connected to the supply domains DEVDD/EVDD such as AT86RF212B and
AT25010B can be measured by connecting an ampere meter instead of the jumper cap JP1, see Figure 4-3.
The power supply pins of the radio transceiver are protected against overvoltage and reverse polarity at the X1
connector pins (net CVTG, net DGND) using a Zener diode, D1, and a thermal fuse, F1, (see Appendix A). This
is required because the Atmel STK500 will provide 5V as default voltage, and the board can also be mounted
with reverse polarity.
Depending on the actual supply voltage, the diode D1 can consume several milliamperes. This has to be
considered when the current consumption of the whole system is measured. In such a case, D1 should be
removed from the board.
To achieve the best RF performance, the analog (EVDD) and digital (DEVDD) supply are separated from each
other by a CLC PI-filter.
AT02876: Atmel REB212BSMA Hardware User Manual [APPLICATION NOTE]