MICROCHIP MCP6S21, MCP6S22, MCP6S26, MCP6S28 Technical data

M
Single-Ended, Rail-to-Rail I/O, Low Gain PGA
MCP6S21/2/6/8
Features
• Multiplexed Inputs: 1, 2, 6 or 8 channels
• 8 Gain Selections:
- +1, +2, +4, +5, +8, +10, +16 or +32 V/V
• Serial Peripheral Interface (SPI™)
• Low Gain Error: ±1% (max)
• Low Offset: ±275 µV (max)
• High Bandwidth: 2 to 12 MHz (typ)
• Low Noise: 10 nV/Hz @ 10 kHz (typ)
• Low Supply Current: 1.0 mA (typ)
• Single Supply: 2.5V to 5.5V
Typical Applications
• A/D Converter Driver
• Multiplexed Analog Applications
• Data Acquisition
• Industrial Instrumentation
• Test Equipment
• Medical Instrumentation
Package Types
MCP6S21
PDIP, SOIC, MSOP
V
1
OUT
CH0
2
V
3
REF
V
4
SS
V
8
DD
SCK
7
SI
6
5
CS
MCP6S22
PDIP, SOIC, MSOP
V
1
OUT
CH0
2
3
CH1
V
4
SS
Description
The Microchip Technology Inc. MCP6S21/2/6/8 are analog Programmable Gain Amplifiers (PGA). They can be configured for gains from +1 V/V to +32 V/V and the input multiplexer can select one of up to eight chan­nels through an SPI port. The serial interface can also put the PGA into shutdown to conserve power. These PGAs are optimized for high speed, low offset voltage and single-supply operation with rail-to-rail input and output capability. These specifications support single supply applications needing flexible performance or multiple inputs.
The one channel MCP6S21 and the two channel MCP6S22 are available in 8-pin PDIP, SOIC and MSOP packages. The six channel MCP6S26 is avail­able in 14-pin PDIP, SOIC and TSSOP packages. The eight channel MCP6S28 is available in 16-pin PDIP and SOIC packages. All parts are fully specified from
-40°C to +85°C.
Block Diagram
V
DD
CH0 CH1 CH2 CH3 CH4
V
8
DD
SCK
7
SI
6
5
CS
CH5 CH6
CH7
CS
SO
SCK
MUX
SI
SPI™
Logic
+
-
Gain
Switches
V
OUT
Resistor Ladder (R
R
8
F
R
G
LAD
)
MCP6S26
PDIP, SOIC, TSSOP
V
1
OUT
CH0
2
CH1
3
CH2
4
5
CH3
CH4
6
7
CH5
2003 Microchip Technology Inc. DS21117A-page 1
14
13
12
11
10
V
DD
SCK
SO
SI
CS
V
9
SS
V
8
REF
V
OUT
CH0
CH1
CH2
CH3
CH4
CH5
CH6
MCP6S28
PDIP, SOIC
1
2
3
4
5
6
7
8
16
15
14
13 SI
12
11
10
9
V
DD
SCK
SO
CS
V
SS
V
REF
CH7
POR
V
SS
V
REF
MCP6S21/2/6/8

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †
VDD - VSS.........................................................................7.0V
All inputs and outputs....................... V
Difference Input voltage ........................................ |V
Output Short Circuit Current...................................continuous
Current at Input Pin .............................................................±2mA
Current at Output and Supply Pins ................................ ±30 mA
Storage temperature .....................................-65°C to +150°C
Junction temperature .................................................. +150°C
ESD protection on all pins (HBM;MM).................. ≥ 2 kV; 200V
- 0.3V to VDD +0.3V
SS
DD
- VSS|
PIN FUNCTION TABLE
Name Function
V
OUT
CH0-CH7 Analog Inputs
V
SS
V
DD
SCK SPI Clock Input
SI SPI Serial Data Input
SO SPI Serial Data Output
CS
V
REF
Analog Output
Negative Power Supply
Positive Power Supply
SPI Chip Select
External Reference Pin
Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
DC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, TA=+25°C, VDD= +2.5V to +5.5V, VSS= GND, V
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
=10kΩ to VDD/2, SI and SCK are tied low and CS is tied high.
L
Parameters Sym Min Typ Max Units Conditions
Amplifier Input
Input Offset Voltage V Input Offset Voltage Drift ∆V
OS
OS
/T
-275 +275 µV G = +1, VDD = 4.0V
—±4 —µV/°CT
A
= -40 to +85°C
A
Power Supply Rejection Ratio PSRR 70 85 dB G = +1 (Note 1)
Input Bias Current I
Input Bias Current over Temperature
Input Impedance Z
Input Voltage Range V
B
I
B
IN
IVR
±1 pA CHx = VDD/2
250 pA TA = -40 to +85°C,
CHx = V
—1013||15 ||pF
VSS−0.3 VDD+0.3 V
Amplifier Gain
Nominal Gains G — 1 to 32 — V/V +1, +2, +4, +5, +8, +10, +16 or +32
DC Gain Error G = +1 g
G +2 g
E
E
DC Gain Drift G = +1 ∆G/∆T
G +2 G/∆T
Internal Resistance R
Internal Resistance over
R
LAD
LAD
Temperature
-0.1 +0.1 % V
-1.0 +1.0 % V
±0.0002 %/°C TA = -40 to +85°C
A
±0.0004 %/°C TA = -40 to +85°C
A
3.4 4.9 6.4 k (Note 1)
/T
—+0.028 — %/°C(Note 1)
A
0.3V to V
OUT
0.3V to V
OUT
T
= -40 to +85°C
A
Amplifier Output
DC Output Non-linearity G = +1 V
G +2 V
Maximum Output Voltage Swing V
Short-Circuit Current I
Note 1: R
(RF + RG in Figure 4-1) connects V
LAD
V
tied internally to VSS, so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We
REF
recommend the MCP6S22’s V
2: I
includes current in R
Q
3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”.
ONL
ONL
, VOLVSS+20 VDD-100 mV G +2; 0.5V output overdrive
OH
O(SC)
SS
(typically 60 µA at V
LAD
±0.003 % of FSR V
±0.001 % of FSR V
+60 VDD-60 G +2; 0.5V output overdrive,
V
SS
—±30 — mA
, V
REF
and the inverting input of the internal amplifier. The MCP6S22 has
OUT
pin be tied directly to ground to avoid noise problems.
= 0.3V). Both IQ and I
OUT
Q_SHDN
= 0.3V to V
OUT
= 0.3V to V
OUT
V
= VDD/2
REF
exclude digital switching currents.
= VSS, G = +1 V/V,
REF
/2
DD
DD
DD
DD
DD
0.3V
0.3V
0.3V, V
0.3V, V
DD
DD
= 5.0V
= 5.0V
DS21117A-page 2 2003 Microchip Technology Inc.
DC CHARACTERISTICS (CONTINUED)
MCP6S21/2/6/8
Electrical Specifications: Unless otherwise indicated, TA=+25°C, VDD= +2.5V to +5.5V, VSS= GND, V
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
=10kΩ to VDD/2, SI and SCK are tied low and CS is tied high.
L
Parameters Sym Min Typ Max Units Conditions
Power Supply
Supply Voltage V
Quiescent Current I
Quiescent Current, Shutdown
I
Q_SHDN
DD
Q
2.5 5.5 V
0.5 1.0 1.35 mA IO = 0 (Note 2)
—0.51.0 µAI
= 0 (Note 2)
O
mode
Power-On Reset
POR Trip Voltage V POR Trip Voltage Drift ∆V
Note 1: R
2: I 3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”.
(RF + RG in Figure 4-1) connects V
LAD
V
tied internally to VSS, so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We
REF
recommend the MCP6S22’s V
includes current in R
Q
POR
POR
(typically 60 µA at V
LAD
1.2 1.7 2.2 V (Note 3)
/T— -3.0 — mV/°CTA = -40°C to+85°C
, V
REF
pin be tied directly to ground to avoid noise problems.
SS
and the inverting input of the internal amplifier. The MCP6S22 has
OUT
= 0.3V). Both IQ and I
OUT
exclude digital switching currents.
Q_SHDN
AC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, TA=+25°C, VDD= +2.5V to +5.5V, VSS= GND, V
Input = CH0 =(0.3V)/G, CH1 to CH7=0.3V, R
Parameters Sym Min Typ Max Units Conditions
Frequency Response
-3 dB Bandwidth BW 2 to 12 MHz All gains; V
Gain Peaking GPK 0 dB All gains; V
Total Harmonic Distortion plus Noise
f = 1 kHz, G = +1 V/V THD+N 0.0015 %
f = 1 kHz, G = +4 V/V THD+N 0.0058 %
f = 1 kHz, G = +16 V/V THD+N 0.023 %
f = 20 kHz, G = +1 V/V THD+N 0.0035 %
f = 20 kHz, G = +4 V/V THD+N 0.0093 %
f = 20 kHz, G = +16 V/V THD+N 0.036 %
Step Response
Slew Rate SR 4.0 V/µs G = 1, 2
Noise
Input Noise Voltage E
Input Noise Voltage Density e
Input Noise Current Density i
Note 1: See Table 4-1 for a list of typical numbers.
and eni include ladder resistance noise. See Figure 2-33 for eni vs. G data.
2: E
ni
=10kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high.
L
= 1.5V ± 1.0VPK, VDD = 5.0V,
V
OUT
BW = 22 kHz
V
= 1.5V ± 1.0VPK, VDD = 5.0V,
OUT
BW = 22 kHz
V
= 1.5V ± 1.0VPK, VDD = 5.0V,
OUT
BW = 22 kHz
V
= 1.5V ± 1.0VPK, VDD = 5.0V,
OUT
BW = 80 kHz
V
= 1.5V ± 1.0VPK, VDD = 5.0V,
OUT
BW = 80 kHz
V
= 1.5V ± 1.0VPK, VDD = 5.0V,
OUT
BW = 80 kHz
11 V/µs G = 4, 5, 8, 10
—22—V/µsG = 16, 32
ni
—3.2—µV
f = 0.1 Hz to 10 kHz (Note 2)
P-P
26 f = 0.1 Hz to 200 kHz (Note 2)
ni
ni
—10—nV/√Hz f = 10 kHz (Note 2) —4—fA/√Hz f = 10 kHz
= VSS, G = +1 V/V,
REF
= VSS, G = +1 V/V,
REF
< 100 mV
OUT
< 100 mV
OUT
(Note 1)
P-P
P-P
2003 Microchip Technology Inc. DS21117A-page 3
MCP6S21/2/6/8
DIGITAL CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, TA=+25°C, VDD= +2.5V to +5.5V, VSS= GND, V
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
Parameters Sym Min Typ Max Units Conditions
=10kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high.
L
= VSS, G = +1 V/V,
REF
SPI Inputs (CS
Logic Threshold, Low V
Input Leakage Current I
Logic Threshold, High V
, SI, SCK)
IL
IL
IH
0 0.3V
-1.0 +1.0 µA
0.7V
—VDDV
DD
DD
V
Amplifier Output Leakage Current -1.0 +1.0 µA In Shutdown mode
SPI Output (SO, for MCP6S26 and MCP6S28)
Logic Threshold, Low V
Logic Threshold, High V
OL
OH
V
SS
VDD-0.5 V
—VSS+0.4 V IOL = 2.1 mA, VDD = 5V
DD
VIOH = -400 µA
SPI Timing
Pin Capacitance C
Input Rise/Fall Times (CS
, SI, SCK)
Output Rise/Fall Times (SO) t
high time
CS
SCK edge to CS
CS
fall to first SCK edge setup time
fall setup time
SCK Frequency f
SCK high time t
SCK low time t
SCK last edge to CS
CS
rise to SCK edge setup time
rise setup time
SI set-up time t
SI hold time t
SCK to SO valid propagation delay t
rise to SO forced to zero
CS
PIN
t
RFI
RFO
t
CSH
t
CS0
t
CSSC
SCK
LO
t
SCCS
t
CS1
SU
HD
DO
t
SOZ
HI
10 pF All digital I/O pins
——2µsNote 1
5 ns MCP6S26 and MCP 6S28
40 ns
10 ns
SCK edge when CS is high
40 ns
——10MHzVDD = 5V (Note 2)
40 ns
40 ns
30 ns
100 ns
SCK edge when CS is high
40 ns
10 ns
80 ns MCP6S26 and MCP 6S28
80 ns MCP6S26 and MCP 6S28
Channel and Gain Select Timing
Channel Select Time t
Gain Select Time t
CH
G
1.5 µs CHx = 0.6V, CHy =0.3V, G = 1,
CHx to CHy select C
S = 0.7VDD to V
OUT
1 µs CHx = 0.3V, G = 5 to G = 1 select,
C
S = 0.7VDD to V
OUT
Shutdown Mode Timing
Out of Shutdown mode (CS
goes
high) to Amplifier Output Turn-on
t
ON
—3.51s
CS
= 0.7VDD to V
OUT
90% point
Time
Into Shutdown mode (CS
goes high)
to Amplifier Output High-Z Turn-off
t
OFF
—1.5—µs
CS
= 0.7VDD to V
OUT
90% point
Time
POR Timing
Power-On Reset power-up time t
Power-On Reset power-down time t
RPU
RPD
—30—µsVDD = V
50% V
—10—µsVDD = V
50% V
POR
to 90% V
DD
POR
to 90% V
DD
- 0.1V to V
OUT
+ 0.1V to V
OUT
Note 1: Not tested in production. Set by design and characterization.
2: When using the device in the daisy chain configuration, maximum clock frequency is determined by a combination of
propagation delay time (t fall times of 5 ns. Maximum f
80 ns), data input setup time (tSU 40 ns), SCK high time (tHI 40 ns), and SCK rise and
DO
is, therefore, 5.8 MHz.
SCK
90% point
90% point
+ 0.1V,
POR
point
- 0.1V,
POR
point
DS21117A-page 4 2003 Microchip Technology Inc.
TEMPERATURE CHARACTERISTICS
MCP6S21/2/6/8
Electrical Specifications: Unless otherwise indicated, V
= +2.5V to +5.5V, VSS= GND.
DD
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Specified Temperature Range T
Operating Temperature Range T
Storage Temperature Range T
A
A
A
-40 +85 °C
-40 +125 °C (Note Note:)
-65 +150 °C
Thermal Package Resistances
Thermal Resistance, 8L-PDIP θ Thermal Resistance, 8L-SOIC θ Thermal Resistance, 8L-MSOP θ Thermal Resistance, 14L-PDIP θ Thermal Resistance, 14L-SOIC θ Thermal Resistance, 14L-TSSOP θ Thermal Resistance, 16L-PDIP θ Thermal Resistance, 16L-SOIC θ
JA
JA
JA
JA
JA
JA
JA
JA
—85—°C/W
—163—°C/W
—206—°C/W
—70—°C/W
—120—°C/W
—100—°C/W
—70—°C/W
—90—°C/W
Note 1: The MCP6S21/2/6/8 family of PGAs operates over this extended temperature range, but with reduced
performance. Operation in this range must not cause T
to exceed the Maximum Junction Temperature
J
(150°C).
CS
CS
t
CH
V
OUT
0.6V
0.3V

FIGURE 1-1: Channel Select Timing Diagram.

CS
t
OFF
V
OUT
I
SS
t
ON
Hi-Z Hi-Z
0.3V
1.0 mA (typ)
500 nA (typ)
FIGURE 1-2: PGA Shutdown timing diagram (must enter correct commands before CS
goes high).
t
G
V
OUT
1.5V
0.3V

FIGURE 1-3: Gain Select Timing Diagram.

V
+ 0.1V
t
RPU
POR
0.3V
1.0 mA (typ)
t
RPD
POR
- 0.1V
V
V
OUT
DD
V
- 0.1V V
POR
Hi-Z Hi-Z
I
SS
500 nA (typ)
FIGURE 1-4: POR power-up and power­down timing diagram.
2003 Microchip Technology Inc. DS21117A-page 5
MCP6S21/2/6/8
CS
t
CSH
t
CSSC
tLOt
HI
SCK
1/f
t
t
HD
SU
SCK
SI
t
DO
SO
(first 16 bits out are always zeros)

FIGURE 1-5: Detailed SPI Serial Interface Timing, SPI 0,0 mode.

CS
t
CSSC
tHIt
LO
SCK
t
SCCS
t
SCCS
t
CS1
t
SOZ
t
CS1
t
CSH
t
CS0
t
CS0
1/f
tSUt
HD
SCK
SI
t
DO
SO
(first 16 bits out are always zeros)

FIGURE 1-6: Detailed SPI Serial Interface Timing, SPI 1,1 mode.

t
SOZ
DS21117A-page 6 2003 Microchip Technology Inc.

1.1 DC Output Voltage Specs / Model

1.1.1 IDEAL MODEL
MCP6S21/2/6/8
V
(V)
OUT
The ideal PGA output voltage (V
OUT
) is:
EQUATION
V
O_ideal
where: G is the nominal gain
(see Figure 1-7). This equation holds when there are no gain or offset errors and when the V a low impedance source (<< 0.1) at ground potential (V
= 0V).
SS
GV
= V
IN
REFVSS
pin is tied to
REF
0V==
1.1.2 LINEAR MODEL
The PGA’s linear region of operation, including offset and gain errors, is modeled by the line V
O_linear
, shown
in Figure 1-7.
EQUATION
V
O_linear
V
The endpoints of this line are at V V
-0.3V. The gain and offset specifications referred to
DD
in the electrical specifications are related to Figure 1-7, as follows:
G1 g
REFVSS
+()V
E
0V==
IN
0.3 V V
+()0.3V+=
O_ideal
OS
=0.3V and
EQUATION
V
DD
V
DD
2
V
1
V
(V)
IN
V
-0.3
DD
T
U
O
r
V
O
V
l
a
a
e
e
n
d
i
i
l
_
_
O
V
0.3
0
0.3 V
0
- 0.3 V
DD
GGG
FIGURE 1-7: Output Voltage Model with the standard condition V
= VSS = 0V.
REF
1.1.3 OUTPUT NON-LINEARITY
Figure 1-8 shows the Integral Non-Linearity (INL) of the output voltage.
EQUATION
INL V
The output non-linearity specification in the electrical specifications is related to Figure 1-8 by:
=
OUTVO_linear
gE100%
V
OS
∆⁄
GT
A
---------- ------------- --
=
G1 g
g
----------
=
T
V
2V1
----------- ------------- --------------=
GV
DD
V
1
+()
E
E
A
0.6V()
G+1=
EQUATION
max V4V3,{}
ONL
---------- ------------- ----------
=
V
DD
0.6 V
V
INL (V)
V
4
0
0.3 V
0
DD
V
3
(V)
V
- 0.3 V
IN
DD
GGG
FIGURE 1-8: Output Voltage INL with the standard condition V
= VSS = 0V.
REF
2003 Microchip Technology Inc. DS21117A-page 7
MCP6S21/2/6/8
1.1.4 DIFFERENT V
CONDITIONS
REF
Some of the plots in Section 2.0, “Typical Performance Curves”, have the conditions V V
REF=VDD
. The equations and figures above are eas-
REF=VDD
ily modified for these conditions. The ideal V
/2 or
OUT
becomes:
EQUATION
V
O_idealVREF
V
DDVREFVSS
The complete linear model is:
GVINV
> 0V=
()+=
REF
EQUATION
V
O_linear
where the new VIN endpoints are:
G1 g
+()V
E
INVIN_LVOS
+()0.3 V+=
EQUATION
0.3V V
GV
+
REF
0.3V V
GV
+
REF
REF
REF
V
V
=
IN_L
V
---------- ------------- ------------- -----------
=
IN_R
---------- ------------- -------
DD
The equations for extracting the specifications do not change.
DS21117A-page 8 2003 Microchip Technology Inc.
MCP6S21/2/6/8

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, T Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
22%
420 Samp les
20%
G = +1
18% 16% 14% 12% 10%
8% 6% 4% 2%
Percentage of Occurrences
0%
-0.040
-0.036
-0.032
-0.028
-0.024
-0.020
= +25°C, V
A
-0.016
-0.012
-0.008
L
-0.004
DC Gain Error (%)

FIGURE 2-1: DC Gain Error, G = +1.

18%
420 Samples
16%
G t +2
14%
12%
10%
8%
6%
4%
2%
Percentage of Occurrences
0%
0.0
0.1
0.2
-0.5
-0.4
-0.3
-0.2
-0.1
DC Gain Error (%)
0.3
= +5.0V, V
DD
= GND, V
SS
REF =VSS
=10kΩ to VDD/2, and CL = 60 pF.
18%
420 Samp les
16%
G = +1
14%
T
= -40 to +125°C
A
12%
10%
8%
6%
4%
2%
0%
Percentage of Occurrences
0.000
0.004
-0.0006

FIGURE 2-4: DC Gain Drift, G = +1.

24%
420 Samples
22%
G t +2
20%
= -40 to +125°C
T
A
18% 16% 14% 12% 10%
8% 6% 4% 2%
Percentage of Occurrences
0%
0.4
0.5
-0.0020
, G= +1 V/V,
-0.0005
-0.0004
-0.0003
DC Gain Drift (%/°C)
-0.0016
-0.0012
DC Gain Drift (%/°C)
-0.0002
-0.0008
-0.0001
-0.0004
0.0000
0.0000
0.0001
0.0004
0.0002
0.0008
0.0003
0.0012
0.0004
0.0005
0.0016
0.0006
0.0020
FIGURE 2-2: DC Gain Error, G +2.
22%
420 Samp les
20%
T
= -40 to +125°C
A
18% 16%
14% 12% 10%
8% 6% 4%
2%
Percentage of Occurrences
0%
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
Ladder Resistance Drift (%/°C)

FIGURE 2-3: Ladder Resistance Drift.

0.031
FIGURE 2-5: DC Gain Drift, G +2.
20%
360 Samples
18%
VDD = 4.0 V
16%
G = +1
14%
12%
10%
8%
6%
4%
2%
Percentage of Occurrences
0%
-240
-200
-160
-120
-80
-40
0
40
80
120
160
Input Offset Voltage (µV)
FIGURE 2-6: Input Offset Voltage,
= 4.0V.
V
DD
200
240
2003 Microchip Technology Inc. DS21117A-page 9
MCP6S21/2/6/8
Note: Unless otherwise indicated, T
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
200
G = +1
150
100
50
0
-50
-100
-150
Input Offset Voltage (µV)
-200
0.00.51.01.52.02.53.03.54.04.55.05.5
VDD = +2.5
VDD = +5.5
V
Voltage (V)
REF
= +25°C, V
A
L
FIGURE 2-7: Input Offset Voltage vs. V
Voltage.
REF
0.01
0.001
0.0001
DC Output Non-Linearity,
Input Referred (% of FSR)
0.00001
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
V
V
V
/G, G = +1
ONL
/G, G = +2
ONL
/G, G t +4
ONL
V
= 0.3V to VDD -0.3V
OUT
= +5.0V, V
DD
= GND, V
SS
REF =VSS
=10kΩ to VDD/2, and CL = 60 pF.
22%
420 Samples
20%
TA = -40 to +125°C
18%
G = +1
16%
14%
12%
10%
8%
6%
4%
2%
Percentage of Occurrences
0%
-16
-14

FIGURE 2-10: Input Offset Voltage Drift.

0.0100%
0.0010%
Input Referred (%)
DC Output Non-Linearity,
0.0001%
VDD = +5.5 V
110
, G= +1 V/V,
-8-6-4
-12
-10
Input Offset Voltage Drift (µV/° C)
Output Voltage Swing (V
02468
-2
V
V
ONL
ONL
/G, G = +1
/G, G t +2
P-P
101214
)
16

FIGURE 2-8: DC Output Non-Linearity vs. Supply Voltage.

1000
100
Hz)
(nV/
10
Input Noise Voltage Density
1
0.1 1 10 100 1000 10000 100000
1k 10k 100k1 10 1000.1
Frequency (Hz)

FIGURE 2-9: Input Noise Voltage Density vs. Frequency.

FIGURE 2-11: DC Output Non-Linearity vs. Output Swing.

12
f = 10 kHz
11
10
9
8
7
Hz)
6
5
(nV/
4
3
2
1
Input Noise Voltage Density
0
12458101632
Gain (V/V)

FIGURE 2-12: Input Noise Voltage Density vs. Gain.

DS21117A-page 10 2003 Microchip Technology Inc.
MCP6S21/2/6/8
Note: Unless otherwise indicated, T
=+25°C, V
A
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
120
110
100
(dB)
90
80
Power Supply Rejection Ratio
70
-50 -25 0 25 50 75 100 125
Ambient Temperature (°C)

FIGURE 2-13: PSRR vs. Ambient Temperature.

1,000
CH0 = V
DD
VDD = 5.5 V
100
10
Input Bias Current (pA)
1
55 65 75 85 95 105 11 5 125
Ambient Temperature (°C)
= +5.0V, V
DD
=10kΩ to VDD/2, and CL = 60 pF.
L
= GND, V
SS
REF =VSS
100
VDD = 5.5 V
90
VDD = 2.5 V
80
70
(dB)
60
50
Power Supply Rejection Ratio
10 100 1000 10000 100000
40

FIGURE 2-16: PSRR vs. Frequency.

10,000
VDD = 5.5 V
1,000
100
10
Input Bias Current (pA)
1
0.0 0.5 1.0 1. 5 2. 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
, G= +1 V/V,
Input Referred
1k 10 k 100k10 100
Frequency (Hz)
TA = +125°C
TA = +85°C
Input Voltage (V)

FIGURE 2-14: Input Bias Current vs. Ambient Temperature.

100
G = +1 G = +4
10
G = +16
Bandwidth (MHz)
1
10 100 1000
Capacitive Load (pF)

FIGURE 2-15: Bandwidth vs. Capacitive Load.

FIGURE 2-17: Input Bias Current vs. Input Voltage.

7
6
5
4
3
2
Gain Peaking (dB)
1
0
10 100 1000
G = +1 G = +4
G = +16
Capacitive Load (pF)

FIGURE 2-18: Gain Peaking vs. Capacitive Load.

2003 Microchip Technology Inc. DS21117A-page 11
MCP6S21/2/6/8
Note: Unless otherwise indicated, T
=+25°C, V
A
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
40
30
20
10
Gain (dB)
0
G = +10
G = +8
-10
G = +5 G = +4
1.E+05 1.E+06 1.E+07 1.E+08
-20 1M 10M 100M100k
Frequency (Hz)
G = +2 G = +1
G = +32 G = +16

FIGURE 2-19: Gain vs. Frequency.

100%
420 Samp les
90%
V
= 5.0 V
DD
80%
70%
60%
50%
40%
30%
20%
10%
Percentage of Occurrences
0%
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Quiescent Current in Shutdown (µA)
= +5.0V, V
DD
=10kΩ to VDD/2, and CL = 60 pF.
L
= GND, V
SS
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Quiescent Current (mA)
0.1
0.0
0.0 0.5 1. 0 1.5 2. 0 2. 5 3.0 3. 5 4. 0 4.5 5. 0 5.5
REF =VSS

FIGURE 2-22: Quiescent Current vs. Supply Voltage.

1.0 In Shutdown Mode
0.9 VDD = 5.0 V
0.8
0.7
0.6
0.5
(µA)
0.4
0.3
0.2
0.1
Quiescent Current in Shutdown
0.9
1.0
0.0
-50 -25 0 25 50 75 100 125
, G= +1 V/V,
TA = +125°C TA = +85°C TA = +25°C T
= -40°C
A
Supply Voltage (V)
Ambient Temperature (°C)

FIGURE 2-20: Histogram of Quiescent Current in Shutdown Mode.

100
SS
- V
OL
10
and V
OH
- V
DD
V
1
Output Voltage Headroom (mV)
0.1 1 10
Output Current Magnitude (mA)
VDD = +5.5V
VDD = +2.5V

FIGURE 2-21: Output Voltage Headroom vs. Output Current.

FIGURE 2-23: Quiescent Current in Shutdown Mode vs. Ambient Temperature.

40
35
30
25
20
(mA)
15
10
5
Output Short Circuit Current
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5
TA = +125°C T
= +85°C
A
TA = +25°C TA = -40°C
Power Supply Voltage (V)

FIGURE 2-24: Output Short Circuit Current vs. Supply Voltage.

DS21117A-page 12 2003 Microchip Technology Inc.
MCP6S21/2/6/8
Note: Unless otherwise indicated, T
=+25°C, V
A
Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, R
1
Measur ement BW = 80 kHz V
= 2 V
OUT
P-P
VDD = 5.0 V
0.1
G = +16
0.01
THD + Noise (%)
G = +4
G = +1
1.E+02 1.E+03 1.E+04 1.E+05
0.001 100 1k 100k10k
Frequency (Hz)
FIGURE 2-25: THD plus Noise vs. Frequency, V
80
70
60
50
40
30
20
10
(10 mV/div)
0
Output Voltage
-10
-20
-30
-40
0.00E+00 2.00E-07 4.00E-07 6.00E-07 8.00E-07 1.00E-06 1.20E-06 1.40E-06 1.60E-06 1.80E-06 2.00E-06
= 2 V
OUT
V
, G = +1
OUT
G = +5 G = +32
Time (200 ns/div)
P-P
.
VDD = +5.0V
GV
IN
= +5.0V, V
DD
=10kΩ to VDD/2, and CL = 60 pF.
L
= GND, V
SS
REF =VSS
1
Measur ement BW = 80 kHz V
OUT
VDD = 5.0 V
0.1
0.01
THD + Noise (%)
1.E+02 1.E+03 1.E+04 1.E+05
0.001 100 1k 100k10k
FIGURE 2-28: THD plus Noise vs. Frequency, V
250
200
150
100
50
0
-50
(50 mV/div)
-100
-150
Normalized Input Voltage
-200
-250
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
Output Voltage (V)
1.0
0.5
0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06
0.0
= 4 V
G = +16
G = +4
G = +1
OUT
P-P
= 4 V
, G= +1 V/V,
Frequency (Hz)
.
P-P
V
, G = +1
OUT
G = +5 G = +32
Time (500 ns/div)
VDD = +5.0V
GV
7.5
6.5
5.5
4.5
3.5
2.5
1.5
(1V/div)
IN
0.5
-0.5
Normalized Input Voltage
-1.5
-2.5

FIGURE 2-26: Small Signal Pulse Response.

0.65
0.60
V
0.55
0.50
0.45
0.40
0.35
Output Voltage (V)
OUT
(CH0 = 0.6V, G = +1)
CS
CS
V
OUT
(CH1 = 0.3V, G = +1)
0.30
0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06
0.25
Time (500 ns/div)

FIGURE 2-27: Channel Select Timing.

20
15
10
5
5
0
0
-5
-10
Chip Select Voltage (V)
-15
-20

FIGURE 2-29: Large Signal Pulse Response.

1.6
1.4
1.2
1.0
0.8
0.6
Output Voltage (V)
0.4
V
OUT
(CH0 = 0.3V, G = +5)
CS
CS
V
OUT
(CH0 = 0.3V, G = +1)
0.2
0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06
0.0
Time (500 ns/div)

FIGURE 2-30: Gain Select Timing.

20
15
10
5
5
0
0
-5
-10
Chip Select Voltage (V)
-15
-20
2003 Microchip Technology Inc. DS21117A-page 13
Loading...
+ 30 hidden pages