MICROCHIP MCP6021R, MCP6022, MCP6023, MCP6024 Technical data

MCP6021/1R/2/3/4
Rail-to-Rail Input/Output, 10 MHz Op Amps
Features
• Rail-to-Rail Input/Output
• Wide Bandwidth: 10 MHz (typ.)
• Low Noise: 8.7 nV/Hz, at 10 kHz (typ.)
• Low Offset Voltage:
- Industrial Temperature: ±500 μV (max.)
• Mid-Supply V
: MCP6021 and MCP6023
REF
• Low Supply Current: 1 mA (typ.)
• Total Harmonic Distortion: 0.00053% (typ., G = 1)
• Unity Gain Stable
• Power Supply Range: 2.5V to 5.5V
• Temperature Range:
- Industrial: -40°C to +85°C
- Extended: -40°C to +125°C
Typical Applications
• Automotive
• Driving A/D Converters
• Multi-Pole Active Filters
• Barcode Scanners
• Audio Processing
• Communications
• DAC Buffer
• Test Equipment
• Medical Instrumentation
Available Tools
• SPICE Macro Model (at www.microchip.com)
•FilterLab
®
software (at www.microchip.com)
Typical Application
Photo
Detector
100 pF
Transimpedance Amplifier
5.6 pF
100 kΩ
MCP6021
VDD/2
Description
The MCP6021, MCP6021R, MCP6022, MCP6023 and MCP6024 from Microchip Technology Inc. are rail-to­rail input and output op amps with high performance. Key specifications include: wide bandwidth (10 MHz), low noise (8.7 nV/Hz), low input offset voltage and low distortion (0.00053% THD+N). The MCP6023 also offers a Chip Select pin (CS
) that gives power savings
when the part is not in use. The single MCP6021 and MCP6021R are available in
SOT-23-5. The single MCP6021, single MCP6023 and dual MCP6022 are available in 8-lead PDIP, SOIC and TSSOP. The Extended Temperature single MCP6021 is available in 8-lead MSOP. The quad MCP6024 is offered in 14-lead PDIP, SOIC and TSSOP packages.
The MCP6021/1R/2/3/4 family is available in Industrial and Extended temperature ranges. It has a power supply range of 2.5V to 5.5V.
Package Types
MCP6021
SOT-23-5
V
1
OUT
V
2
SS
VIN+
3
MCP6021R
SOT-23-5
V
1
OUT
V
2
DD
VIN+
3
MCP6021
PDIP SOIC,
MSOP, TSSOP
NC
1
V
2
IN
VIN+
3
V
4
SS
5
4
5
4
8 7 6 5
V
DD
VIN–
V
SS
VIN–
NC V
DD
V
OUT
V
REF
V
V V
V
V V
V V
V
MCP6022
PDIP SOIC, TSSOP
1
OUTA
2
INA
+
3
INA
V
4
SS
MCP6023
PDIP SOIC, TSSOP
NC
1
VIN–
2
+
V
3
IN
V
4
SS
MCP6024
PDIP SOIC, TSSOP
1
OUTA
2
INA
+
3
INA
V
4
DD
+
5
INB
6
INB
7
OUTB
14 13 12 11 10
V
8
DD
V
7
OUTB
V
6
INB
+
V
5
INB
CS
8
V
7
DD
V
6
OUT
V
5
REF
V
OUTD
V
IND
+
V
IND
V
SS
V
+
INC
V
9
INC
V
8
OUTC
© 2006 Microchip Technology Inc. DS21685C-page 1
MCP6021/1R/2/3/4

1.0 ELECTRICAL CHARACTERISTICS

† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those
Absolute Maximum Ratings †
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
VDD–VSS........................................................................7.0V
All Inputs and Outputs.................... V
Difference Input Voltage ...................................... |V
– 0.3V to VDD+0.3V
SS
DD–VSS
|
periods may affect device reliability.
Output Short Circuit Current ..................................continuous
Current at Input Pins ....................................................±2 mA
Current at Output and Supply Pins ............................±30 mA
Storage Temperature.....................................-65°C to +150°C
Junction Temperature..................................................+150°C
ESD Protection on all pins (HBM; MM)................ ≥ 2 kV; 200V
DC ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, V
=10kΩ to VDD/2.
and R
L
Parameters Sym Min Typ Max Units Conditions
Input Offset
Input Offset Voltage:
Industrial Temperature Parts V Extended Temperature Parts V Extended Temperature Parts V
Input Offset Voltage Temperature Drift ΔV
OS
OS
OS
OS
/ΔT
Power Supply Rejection Ratio PSRR 74 90 dB V
Input Current and Impedance
Input Bias Current I
Industrial Temperature Parts I
Extended Temperature Parts I Input Offset Current I Common-Mode Input Impedance Z Differential Input Impedance Z
B
B
B
OS
CM
DIFF
Common-Mode
Common-Mode Input Range V
CMR
Common-Mode Rejection Ratio CMRR 74 90 dB V
CMRR 70 85 dB V CMRR 74 90 dB V
Voltage Reference (MCP6021 and MCP6023 only)
Accuracy (V
V
REF
V
Temperature Drift ΔV
REF
REF–VDD
/2) V
REF_ACC
/ΔT
REF
Open-Loop Gain
DC Open-Loop Gain (Large Signal) A
OL
Output
Maximum Output Voltage Swing V Output Short Circuit Current I
OL
, V
SC
I
SC
Power Supply
Supply Voltage V Quiescent Current per Amplifier I
S
Q
-500 +500 μVVCM = 0V
-250 +250 μVVCM = 0V, VDD = 5.0V
-2.5 +2.5 mV VCM = 0V, VDD = 5.0V = -40°C to +125°C
T
A
—±3.5—μV/°C TA = -40°C to +125°C
A
CM
—1—pA — 30 150 pA TA = +85°C — 640 5,000 pA TA = +125°C —±1—pA —1013||6 Ω||pF —1013||3 Ω||pF
VSS-0.3 VDD+0.3 V
DD
DD
DD
-50 +50 mV — ±100 μV/°C TA = -40°C to +125°C
A
90 110 dB VCM = 0V,
V
OUT
OHVSS
+15 VDD-20 mV 0.5V output overdrive —±30—mAVDD = 2.5V —±22—mAVDD = 5.5V
2.5 5.5 V
0.5 1.0 1.35 mA IO = 0
= 0V
= 5V, VCM = -0.3V to 5.3V = 5V, VCM = 3.0V to 5.3V = 5V, VCM = -0.3V to 3.0V
= VSS+0.3V to VDD-0.3V
OUT
VDD/2
DS21685C-page 2 © 2006 Microchip Technology Inc.
MCP6021/1R/2/3/4
AC ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,
VDD/2, RL =10kΩ to VDD/2 and CL = 60 pF.
V
OUT
Parameters Sym Min Typ Max Units Conditions
AC Response
Gain Bandwidth Product GBWP 10 MHz Phase Margin at Unity-Gain PM 65 ° G = +1 Settling Time, 0.2% t
SETTLE
Slew Rate SR 7.0 V/μs
Total Harmonic Distortion Plus Noise
f = 1 kHz, G = +1 V/V THD+N 0.00053 % V
f = 1 kHz, G = +1 V/V, R
= 600Ω THD+N 0.00064 % V
L
f = 1 kHz, G = +1 V/V THD+N 0.0014 % V f = 1 kHz, G = +10 V/V THD+N 0.0009 % V f = 1 kHz, G = +100 V/V THD+N 0.005 % V
Noise
Input Noise Voltage E Input Noise Voltage Density e Input Noise Current Density i
ni
ni
ni
250 ns G = +1, V
OUT
= 5.0V, BW = 22 kHz
V
DD
OUT
= 5.0V, BW = 22 kHz
V
DD
OUT
OUT
OUT
= 100 mV
OUT
= 0.25V to 3.25V (1.75V ± 1.50VPK),
= 0.25V to 3.25V (1.75V ± 1.50VPK),
= 4V
, VDD = 5.0V, BW = 22 kHz
P-P
= 4V
, VDD = 5.0V, BW = 22 kHz
P-P
= 4V
, VDD = 5.0V, BW = 22 kHz
P-P
—2.9—μVp-p f = 0.1 Hz to 10 Hz —8.7—nV/√Hz f = 10 kHz —3—fA/√Hz f = 1 kHz
p-p
MCP6023 CHIP SELECT (CS
) ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, T
VDD/2, RL =10kΩ to VDD/2 and CL = 60 pF.
V
OUT
Parameters Sym Min Typ Max Units Conditions
CS
Low Specifications
CS
Logic Threshold, Low V
CS
Input Current, Low I
IL
CSL
CS High Specifications
CS
Logic Threshold, High V
CS
Input Current, High I
GND Current I
Amplifier Output Leakage I
IH
CSH
SS
O(LEAK)
CS Dynamic Specifications
CS
Low to Amplifier Output Turn-on Time t
CS
High to Amplifier Output High-Z Time t
Hysteresis V
ON
OFF
HYST
= +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,
A
V
-1.0 0.01 μACS = V
0.8 V
—0.012.0 μACS = V
-2 -0.05 μACS = V
—0.01— μACS = V
—0.2VDDV
SS
—VDDV
DD
SS
DD
DD
DD
—210μs G = +1, VIN = VSS,
= 0.2VDD to V
CS
OUT
—0.01— μs G = +1, VIN = VSS,
CS
= 0.8VDD to V
OUT
—0.6— VVDD = 5.0V, Internal Switch
= 0.45VDD time
= 0.05VDD time
© 2006 Microchip Technology Inc. DS21685C-page 3
MCP6021/1R/2/3/4
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V and VSS = GND.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Industrial Temperature Range T Extended Temperature Range T Operating Temperature Range T Storage Temperature Range T
Thermal Package Resistances
Thermal Resistance, 5L-SOT-23 θ Thermal Resistance, 8L-PDIP θ Thermal Resistance, 8L-SOIC θ Thermal Resistance, 8L-MSOP θ Thermal Resistance, 8L-TSSOP θ Thermal Resistance, 14L-PDIP θ Thermal Resistance, 14L-SOIC θ Thermal Resistance, 14L-TSSOP θ Note 1: The industrial temperature devices operate over this extended temperature range, but with reduced performance. In any
case, the internal junction temperature (T
A
A
A
A
JA
JA
JA
JA
JA
JA
JA
JA
) must not exceed the absolute maximum specification of 150°C.
J
-40 +85 °C
-40 +125 °C
-40 +125 °C Note 1
-65 +150 °C
—256— °C/W —85—°C/W —163— °C/W —206— °C/W —124— °C/W —70—°C/W —120— °C/W —100— °C/W
CS
V
OUT
I
SS
I
CS
t
ON
High-Z
-50 nA (typ.)
10 nA (typ.)
Amplifier On
-1 mA (typ.)
10 nA (typ.) 10 nA (typ.)
t
OFF
High-Z
-50 nA (typ.)

FIGURE 1-1: Timing diagram for the CS pin on the MCP6023.

DS21685C-page 4 © 2006 Microchip Technology Inc.
MCP6021/1R/2/3/4
2.0 TYPICAL PERFORMANCE CURVES
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
16% 14% 12% 10%
Percentage of Occurances
8% 6% 4% 2% 0%
I-Temp
Parts
-500
-400
-300
-200
-100
Input Offset Voltage (μV)
0
1192 Samples V
CM
T
= +25°C
A
100
200
= 0V
300

FIGURE 2-1: Input Offset Voltage, (Industrial Temperature Parts).

24% 22% 20% 18% 16% 14% 12% 10%
Percentage of Occurances
8% 6% 4% 2% 0%
E-Temp
Parts
-240
-200
0
-80
-160
-40
-120
Input Offset Voltage (μV)
40
80
438 Samples V
= 5.0V
DD
= 0V
V
CM
T
= +25°C
A
120
160
400
200
500
240
24% 22% 20% 18% 16% 14% 12% 10%
8% 6% 4%
Percentage of Occurances
2% 0%
I-Temp
Parts
-20
-16
-8
-12
Input Offset Voltage Drift (μV/°C)
-4
1192 Samples
= 0V
V
CM
T
= -40°C to +85°C
A
0
4
8

FIGURE 2-4: Input Offset Voltage Drift, (Industrial Temperature Parts).

24% 22% 20% 18% 16% 14% 12% 10%
Percentage of Occurances
8% 6% 4% 2% 0%
E-Temp
Parts
-20
-16
-8
-12
Input Offset Voltage Drift (μV/°C)
-4
438 Samples V
= 0V
CM
T
= -40°C to +125°C
A
0
4
8
OUT
12
12
VDD/2,
16
20
16
20

FIGURE 2-2: Input Offset Voltage, (Extended Temperature Parts).

500
VDD = 2.5V
400 300 200 100
0
-100
-200
-300
Input Offset Voltage (μV)
-400
-500
-0.50.00.51.01.52.02.53.0 Common Mode Input Voltage (V)
-40°C +25°C +85°C +125°C
FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage with V
= 2.5V.
DD

FIGURE 2-5: Input Offset Voltage Drift, (Extended Temperature Parts).

Input Offset Voltage (μV)
500 400 300 200 100
-100
-200
-300
-400
-500
VDD = 5.5V
0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
Common Mode Input Voltage (V)
3.0
3.5
-40°C +25°C +85°C +125°C
4.0
4.5
5.0
5.5

FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 5.5V.

6.0
© 2006 Microchip Technology Inc. DS21685C-page 5
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
100
50
0
-50
-100
-150
-200 VDD = 5.0V
-250
Input Offset Voltage (μV)
V
= 0V
CM
-300
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)

FIGURE 2-7: Input Offset Voltage vs. Temperature.

1,000
100
Hz)
(nV/
10
Input Noise Voltage Density
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
1
0.1 1 10 100 1k 10k 1M100k
Frequency (Hz)
200
VCM = VDD/2
150
Input Offset Voltage (μV)
100
50
0
-50
-100
-150
-200
VDD = 5.5V
VDD = 2.5V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V)

FIGURE 2-10: Input Offset Voltage vs. Output Voltage.

24
VDD = 5.0V
22 20 18 16 14
Hz)
12 10
(nV/
8 6 4 2
Input Noise Voltage Density
0
-0.5
f = 1 kHz
f = 10 kHz
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Common Mode Input Voltage (V)
3.5
OUT
4.0
VDD/2,
4.5
5.0
5.5

FIGURE 2-8: Input Noise Voltage Density vs. Frequency.

100
90
80
70
60
50
40
CMRR, PSRR (dB)
30
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
20
100 1k 10k 100k 1M
PSRR+
PSRR-
CMRR
Frequency (Hz)

FIGURE 2-9: CMRR, PSRR vs. Frequency.

FIGURE 2-11: Input Noise Voltage Density vs. Common Mode Input Voltage.

110
105
100
95
90
85
80
PSRR, CMRR (dB)
75
70
-50 -25 0 25 50 75 100 125
CMRR
PSRR (VCM = 0V)
Ambient Temperature (°C)

FIGURE 2-12: CMRR, PSRR vs. Temperature.

DS21685C-page 6 © 2006 Microchip Technology Inc.
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
10,000
Input Bias, Offset Currents (pA)
VDD = 5.5V
1,000
100
10
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Common Mode Input Voltage (V)
IB, TA = +125°C
IOS, TA = +125°C
IB, TA = +85°C
IOS, TA = +85°C

FIGURE 2-13: Input Bias, Offset Currents vs. Common Mode Input Voltage.

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
(mA/amplifier)
0.3
Quiescent Current
0.2
0.1
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V)
+125°C +85°C +25°C
-40°C
10,000
(pA)
Input Bias, Offset Currents
VCM = V
DD
VDD = 5.5V
1,000
I
100
10
1
25 35 45 55 65 75 85 95 105 115 125
Ambient Temperature (°C)
B
I
OS

FIGURE 2-16: Input Bias, Offset Currents vs. Temperature.

1.2
1.1 VDD = 5.5V
1.0
0.9
0.8
0.7
0.6
0.5
0.4
(mA/amplifier)
0.3
Quiescent Current
0.2
VCM = VDD - 0.5V
0.1
0.0
-50 -25 0 25 50 75 100 125
VDD = 2.5V
Ambient Temperature (°C)
OUT
VDD/2,

FIGURE 2-14: Quiescent Current vs. Supply Voltage.

35
30
25
20
(mA)
15
10
5
Output Short Circuit Current
0
0.00.51.01.52.02.53.03.54.04.55.05.5
+125°C
+85°C +25°C
-40°C
Supply Voltage (V)

FIGURE 2-15: Output Short-Circuit Current vs. Supply Voltage.

FIGURE 2-17: Quiescent Current vs. Temperature.

120 110 100
90 80 70 60 50 40 30 20 10
Open-Loop Gain (dB)
0
-10
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+0 5 1.E+06 1.E+07 1.E+ 08
-20 1 10010 1k 100k10k 1M 100M10M
Frequency (Hz)
Gain
Phase
0
-15
-30
-45
-60
-75
-90
-105
-120
-135
-150
-165
-180
-195
-210
Open-Loop Phase (°)

FIGURE 2-18: Open-Loop Gain, Phase vs. Frequency.

© 2006 Microchip Technology Inc. DS21685C-page 7
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
130
VDD = 5.5V
120
110
100
90
DC Open-Loop Gain (dB)
1.E+02 1.E+03 1.E+04 1.E+05
80
100 1k 10k 100k
Load Resistance (Ω)
VDD = 2.5V

FIGURE 2-19: DC Open-Loop Gain vs. Load Resistance.

120
VCM = VDD/2
110
100
90
80
DC Open-Loop Gain (dB)
70
0.00 0.05 0.10 0.15 0.20 0.25 0.30
VDD = 5.5V
VDD = 2.5V
Output Voltage Headroom (V);
- VOH or VOL - V
V
DD
SS
120
115
110
105
100
95
DC Open-Loop Gain (dB)
90
-50 -25 0 25 50 75 100 125
VDD = 2.5V
Ambient Temperature (°C)
VDD = 5.5V

FIGURE 2-22: DC Open-Loop Gain vs. Temperature.

14
Gain Bandwidth Product
12
10
8
(MHz)
6
4
2
Gain Bandwidth Product
VDD = 5.0V
0
0.00.51.01.52.02.53.03.54.04.55.0
Phase Margin, G = +1
Common Mode Input Voltage (V)
OUT
VDD/2,
105
90
75
60
45
30
15
Phase Margin, G = +1 (°)
0

FIGURE 2-20: Small Signal DC Open-Loop Gain vs. Output Voltage Headroom.

10
9 8 7 6 5
GBWP, VDD = 5.5V
(MHz)
4
GBWP, V PM, V
3
PM, V
2
Gain Bandwidth Product
1 0
-50 -25 0 25 50 75 100 125
= 2.5V
DD
= 2.5V
DD
= 5.5V
DD
Ambient Temperature (°C)
100 90 80 70 60 50 40 30 20 10 0
Phase Margin, G = +1 (°)

FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Temperature.

FIGURE 2-23: Gain Bandwidth Product, Phase Margin vs. Common Mode Input Voltage.

14
12
Gain Bandwidth Product
10
8
(MHz)
6
4
VDD = 5.0V
2
Gain Bandwidth Product
V
= VDD/2
CM
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Phase Margin, G = +1
Output Voltage (V)
105
90
75
60
45
30
15
0
Phase Margin, G = +1 (°)

FIGURE 2-24: Gain Bandwidth Product, Phase Margin vs. Output Voltage.

DS21685C-page 8 © 2006 Microchip Technology Inc.
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
11
Falling, VDD = 5.5V
10
Rising, V
9 8 7 6 5 4 3
Slew Rate (V/μs)
2 1 0
-50 -25 0 25 50 75 100 125
= 5.5V
DD
Falling, VDD = 2.5V Rising, V
Ambient Temperature (°C)
= 2.5V
DD

FIGURE 2-25: Slew Rate vs. Temperature.

FIGURE 2-28: Maximum Output Voltage
10
VDD = 5.5V
)
P-P
1
Swing (V
Maximum Output Voltage
1.E+04 1.E+05 1. E+06 1.E+07
0.1 10k 100k 1M 10M
VDD = 2.5V
Frequency (Hz)
Swing vs. Frequency.
0.1000%
0.0100%
THD+N (%)
0.0010%
0.0001%
f = 1 kHz BW
= 22 kHz
Meas
V
= 5.0V
G = +100 V/V
G = +10 V/V
G = +1 V/V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Output Voltage (V
DD
)
P-P
0.1000%
0.0100%
THD+N (%)
0.0010%
0.0001%
G = +100 V/V
G = +10 V/V
G = +1 V/V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Output Voltage (V
f = 20 kHz BW
Meas
V
= 5.0V
DD
P-P
OUT
= 80 kHz
)
VDD/2,
FIGURE 2-26: Total Harmonic Distortion plus Noise vs. Output Voltage with f = 1 kHz.
6
5
4
3
2
1
0
Input, Output Voltage (V)
-1 0 102030405060708090100
V
OUT
V
IN
Time (10 μs/div)
VDD = 5.0V G = +2 V/V

FIGURE 2-27: The MCP6021/1R/2/3/4 family shows no phase reversal under overdrive.

FIGURE 2-29: Total Harmonic Distortion plus Noise vs. Output Voltage with f = 20 kHz.
135
130
125
120
(dB)
115
110
Channel to Channel Separation
G = +1 V/V
1.E+03 1.E+04 1.E+0 5 1.E+0 6
105
1k 1M100k10k
Frequency (Hz)

FIGURE 2-30: Channel-to-Channel Separation vs. Frequency (MCP6022 and MCP6024 only).

© 2006 Microchip Technology Inc. DS21685C-page 9
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
1,000
(mV)
SS
100
-V
OL
or V
10
OH
-V
DD
V
Output Voltage Headroom;
VOL - V
SS
VDD - V
OH
1
0.01 0.1 1 10 Output Current Magnitude (mA)

FIGURE 2-31: Output Voltage Headroom vs. Output Current.

6.E-02
5.E-02
4.E-02
3.E-02
2.E-02
1.E-02
0.E+00
-1.E-02
-2.E-02
-3.E-02
-4.E-02
Output Voltage (10 mV/div)
-5.E-02
-6.E-02
0.E+00 2.E-07 4.E-07 6.E-07 8.E-07 1.E-06 1.E-06 1.E-06 2.E- 06 2.E-06 2.E-06
Time (200 ns/div)
G = +1 V/V

FIGURE 2-34: Output Voltage Headroom vs. Temperature.

10
VOL - V
VDD - V
SS
OH
Output Voltage Headroom
9 8
(mV)
7
SS
6
-V
OL
5 4
or V
OH
3
-V 2
DD
V
1 0
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)
6.E-02
5.E-02
4.E-02
3.E-02
2.E-02
1.E-02
0.E+00
-1.E-02
-2.E-02
-3.E-02
-4.E-02
Output Voltage (10 mV/div)
-5.E-02
-6.E-02
0.E+00 2.E-07 4.E-07 6.E-07 8 .E-07 1.E-06 1.E-06 1.E-06 2.E-06 2.E-06 2.E-06
G = -1 V/V
= 1 k
R
Ω
F
Time (200 ns/div)
OUT
VDD/2,

FIGURE 2-32: Small-Signal Non-inverting Pulse Response.

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
Output Voltage (V)
1.0
0.5
0.E+00 5.E-07 1.E-06 2.E-06 2 .E-06 3.E-06 3.E-06 4.E-06 4.E-06 5.E-06 5.E-06
0.0 Time (500 ns/div)
G = +1 V/V

FIGURE 2-33: Large-Signal Non-inverting Pulse Response.

FIGURE 2-35: Small-Signal Inverting Pulse Response.

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
Output Voltage (V)
1.0
0.5
0.E+00 5.E-07 1.E-06 2.E-06 2.E -06 3.E-06 3.E-06 4.E-06 4.E-06 5.E -06 5.E-06
0.0
G = -1 V/V
= 1 kΩ
R
F
Time (500 ns/div)

FIGURE 2-36: Large-Signal Inverting Pulse Response.

DS21685C-page 10 © 2006 Microchip Technology Inc.
MCP6021/1R/2/3/4
Note: Unless otherwise indicated, TA=+25°C, VDD=+2.5Vto+5.5V, VSS= GND, VCM=VDD/2, V
=10kΩ to VDD/2 and CL=60 pF.
R
L
50
/2
40
DD
30
– V
20
REF
10
0
(mV)
-10
-20
Accuracy; V
-30
REF
-40
V
-50
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
FIGURE 2-37: V
Power Supply Voltage (V)
Accuracy vs. Supply
REF
Voltage (MCP6021 and MCP6023 only).
1.6 Op Amp
1.4 turns on here
1.2
1.0
CS swept
0.8
high to low
0.6
(mA/amplifier)
VDD = 2.5V
0.4
Quiescent Current
G = +1 V/V
0.2
V
= 1.25V
IN
0.0
0.0 0.5 1.0 1.5 2.0 2.5 Chip Select Voltage (V)
Op Amp shuts off here
Hysteresis
CS swept low to high
FIGURE 2-40: V Temperature (MCP6021 and MCP6023 only).
50
/2
DD
– V
REF
Accuracy; V
REF
V
Quiescent Current
Representative Part
40 30 20 10
0
(mV)
-10
-20
-30
-40
-50
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)
REF
1.6 Op Amp
1.4 turns on here
1.2
1.0
0.8
0.6
(mA/amplifier)
0.4
0.2
0.0
CS swept high to low
VDD = 5.5V G = +1 V/V V
= 2.75V
IN
0.00.51.01.52.02.53.03.54.04.55.05.5 Chip Select Voltage (V)
VDD = 5.5V
VDD = 2.5V
Accuracy vs.
Op Amp shuts off here
Hysteresis
CS swept low to high
OUT
VDD/2,
FIGURE 2-38: Chip Select (CS (MCP6023 only) with V
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5 Output
Output Voltage (V)
1.0
Chip Select Voltage,
on
0.5
0.0
0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 3. 0E-05 3.5E-0 5
-0.5
= 2.5V.
DD
CS Voltage
V
OUT
Output High-Z
Time (5 μs/div)
FIGURE 2-39: Chip Select (CS
) Hysteresis
VDD = 5.0V G = +1 V/V V
= V
IN
SS
Output
on
) to Amplifier Output Response Time (MCP6023 only).
FIGURE 2-41: Chip Select (CS (MCP6023 only) with V
= 5.5V.
DD
) Hysteresis
© 2006 Microchip Technology Inc. DS21685C-page 11
Loading...
+ 23 hidden pages