MICROCHIP MCP1701 Technical data

查询MCP1701T-1802I/CB供应商
2 µA Low Dropout Positive Voltage Regulator
MCP1701
Features
• 2.0 µA Typical Quiescent Current
• Input Operating Voltage Range up to 10.0V
• Low Dropout Voltage:
- 250 mV (typ) @ 100 mA
- 500 mV (typ) @ 200 mA
• High Output Current: 250 mA (V
• High-Accuracy Output Voltage: ±2% (max)
• Low Temperature Drift: ±100 ppm/°C (typ.)
• Excellent Line Regulation: 0.2%/V (typ.)
• Package Options: 3-Pin SOT-23A and 3-Pin SOT-8 9
• Short Circuit Protection
• Standard Output Voltage Options:
- 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
= 5.0V)
Applications
• Battery-Powered Devi ce s
• Battery-Powered Alarm Circu it s
• Smoke Detectors
2
•CO
Detectors
• Smart Battery Packs
•PDAs
• Low Quiescent Current Voltage Reference
• Cameras and Portable Video Equipment
• Pagers and Cellular Phones
• Solar-Powered Instruments
• Consumer Products
• Microcontroller Power
Related Literature
• AN765, “Using Microchip’s Micropower LDOs”, DS00765, Microchip Technology Inc., 2002
• AN766, “Pin-Compatible CMOS Upgrades to Bipolar LDOs”, DS00766, Microchip Technology Inc., 2002
General Description
The MCP1701 is a f amily o f CM OS low d rop out (LDO ), positive voltage regulators that can deliver up to 250 mA of current while consuming only 2.0 µA of quiescent current (typ.). The input operating range is specified up to 10V, making it ideal for lithium-ion (one or two cells), 9V alkaline and other two and three primary cell battery-power ed app lic ati on s.
The MCP1701 is capable of delivering 250 mA with an input-to-output voltage differential (dropout voltage) of 650 mV. The low dropout voltage extends the battery operating lifetime. It als o perm its high currents in small packages when operated with minimum V differentials.
The MCP1701 has a tight tolerance output voltage regulation of ± 0.5% (typ.) and very good line regula tion at ±0.2%. The LDO output is stable when using only 1 µF of output capacitance of either tantalum or aluminum-electrolytic style capacitors. The MCP1701 LDO also incorporates short circuit protec tion to ensure maximum reliability.
Package options include the 3-pin SOT-23A and 3-pin SOT-89.
IN
– V
OUT
Package Types
3-Pin SOT-23A
V
IN
3
MCP1701
12
GND V
Note: 3-Pin SOT-23A is equivalent to the EIAJ
SC-59.
3-Pin SOT-89
V
IN
MCP1701
123
GND V
INVOUT
© 2005 Microchip Technology Inc. DS21874B-page 1
MCP1701
Functional Block Diagram
MCP1701
V
IN
Typical Application Circuits
V
3.3V
I
50 mA
Short-Circuit
Protection
Voltage
Reference
GND
MCP1701
GND
V
C
1 µF Tantal um
+ –
V
IN
9V Alkaline Battery
V
IN
V
C
IN
1 µF Tantalum
DS21874B-page 2 © 2005 Microchip Technology Inc.
MCP1701
1.0 ELECTRICAL
CHARACTERISTICS
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those
Absolute Maximum Ratings †
indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for
Input Vo ltage ........................................................+12V
Output Current (Continuous)..........PD/(VIN – V
)mA
Output Current (peak)..................................... 500 mA
Output Voltage ............... (GND – 0.3V) to (V
+ 0.3V)
IN
extended periods may affect device reliability.
PIN FUNCTION TABLE
Symbol Description
Continuous Power Dissipation:
3-Pin SOT-23A ............................................150 mW
3-Pin SOT-89...............................................500 mW
GND Ground Terminal V
V
IN
Regulated Voltage Output Unregulated Supply Input
ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits are established for an ambient temperature of TA = +25°C.
Parameters Sym Min Typ Max Units Conditions
Output Voltage Regulation Maximum Output Current I
Load Regulation (Note 3) ΔV
Dropout Voltage V
Input Quiescent Current I Line Regulation ΔV
Input Voltage V Temperature Coefficient of
V
OUT
OUTMAX
OUT/ VOUT
- V
IN
Q
OUT
ΔV
IN•VOUT
IN
TCV
OUT
Output Voltage Output Rise Time T
R
1: VR is the nominal regulator output voltage. For example: VR = 1.8V, 2.5V, 3.3V, 4.0V, 5.0V.
The input voltage V
2: TCV
OUT
= (V
OUT-HIGH
= VR + 1.0V, I
IN
– V
over the temperature range. V
3: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
OUT
•100
OUT-LOW
VR - 2%
V
±0.5% VR + 2% V
R
250 mA V 200 V 150 V 150 V 125 V
110 V
-1.60 ±0.8 +1.60 % V
-2.25 ±1.1 +2.25 V
-2.72 ±1.3 +2.72 V
-3.00 ±1.5 +3.00 V
-3.60 ±1.8 +3.60 V
-1.60 ±0.8 +1.60 V — 400 630 mV I — 400 630 I — 400 700 I — 400 700 I — 400 700 I — 180 300 I —2.03.AV — 0.2 0.3 %/V I
I
= 40 mA (Note 1)
OUT
= 5.0V (VIN = VR + 1.0V)
OUT
= 4.0V
OUT
= 3.3V
OUT
= 3.0V
OUT
= 2.5V
OUT
= 1.8V
OUT
= 5.0V, 1 m A ≤ I
OUT
= 4.0V, 1 m A ≤ I
OUT
= 3.3V, 1 m A ≤ I
OUT
= 3.0V, 1 m A ≤ I
OUT
= 2.5V, 1 m A ≤ I
OUT
= 1.8V, 1 m A ≤ I
OUT
= 200 mA, VR = 5.0V
OUT
= 200 mA, VR = 4.0V
OUT
= 160 mA, VR = 3.3V
OUT
= 160 mA, VR = 3.0V
OUT
= 120 mA, VR = 2.5V
OUT
= 20 mA, VR = 1.8V
OUT
= VR + 1.0V
IN
= 40 mA, (VR +1) ≤ VIN ≤ 10.0V
OUT
OUT OUT OUT OUT OUT OUT
100 mA 100 mA 80 mA 80 mA 60 mA 30 mA
—— 10V — ±100 ppm/°CI
= 40 mA, -40°C ≤ TA ≤ +85°C
OUT
(Note 2)
200 µsec 10% VR to 90% VR, VIN = 0V to VR +1V,
R
= 25Ω resist ive
L
= 40 mA.
OUT
) *106 / (VR * ΔTemperature), V
OUT-LOW
= Lowest voltage measured over the temperature range.
OUT-HIGH
= Highest voltage measured
© 2005 Microchip Technology Inc. DS21874B-page 3
MCP1701
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, T
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Specified Temperature Range (I) T Storage Temperature Range T
Package Thermal Resistances
Thermal Resistance, 3L-SOT-23A θ
Thermal Resistance, 3L-SOT-89 θ
A A
JA
JA
-40 +85 °C
-40 +125 °C
335 °C/W Minimum trace width single
230 °C/W Typical FR4, 4-layer
52 °C/W Typical, when mounted on 1
= +25°C.
A
layer application
application
square inch of copper
DS21874B-page 4 © 2005 Microchip Technology Inc.
MCP1701
2.0 TYPICAL PERFORMANCE CURVES
Note: The graphs and tables provided following this note ar e a st a tis tic al summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Notes: Unless otherwise specified, V
2.65
2.60
2.55
2.50
A)
µ
Supply Current (
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
+25°C
0°C
-40°C
2345678910
= 1.8V, 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, C
VR = 1.8V
Input Voltage (V)
FIGURE 2-1: Supply Current vs. Input Voltage (V
Supply Current (µA)
= 1.8V).
R
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2 345678910
+25°C
+85°C
-40°C
VR = 3.0V
Input Voltage (V)
= 1 µF Tantalum.
OUT
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
Supply Current (µA)
1.35
1.30
1.25
1.20 0 20 40 60 80 100 120 140 160
0°C
+25°C
+85°C
-40°C VIN = 4.0V
V
= 3.0V
R
Load Current (mA)
FIGURE 2-4: Supply Current vs. Load Current (V
Supply Current (µA)
= 3.0V).
R
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00 0 20 40 60 80 100 120 140 160 180 200
+25°C
+85°C
0°C
-40°C
Load Current (mA)
VIN = 6.0V V
= 5.0V
R
FIGURE 2-2: Supply Current vs. Input Voltage (V
Supply Current (µA)
= 3.0V).
R
3.00 VR = 5.0V
2.85
2.70
+25°C
2.55
2.40
2.25
2.10
1.95
1.80
1.65
1.50
+85°C
-40°C
5678910
Input Voltage (V)
FIGURE 2-3: Supply Current vs. Input Voltage (V
= 5.0V).
R
FIGURE 2-5: Supply Current vs. Load Current (V
Supply Current (µA)
= 5.0V).
R
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
-40-200 20406080100
VR = 5.0V
VR = 1.8V
VR = 3.0V
VIN = VR + 1V
= 0 µA
I
OUT
Temperature (°C)
FIGURE 2-6: Supply Current vs. Temperature.
© 2005 Microchip Technology Inc. DS21874B-page 5
MCP1701
Note: Unless otherwise indicated, V
1.85
1.84
1.83
1.82
1.81
1.80
Output Voltage (V)
1.79
1.78
+25°C
+85°C
0°C
-40°C
2345678910
= 1.8V, 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, C
I
= 0.1 mA
OUT
Input Voltage (V)
FIGURE 2-7: Output Voltage vs. Input Voltage (V
Output Voltage (V)
= 1.8V).
R
3.05
3.04
3.03
3.02
3.01
3.00
2.99
2.98
2.97
+25°C
+85°C
0°C
-40°C
4.0 5.0 6.0 7.0 8.0 9.0 10.0
I
OUT
= 0.1 mA
Input Voltage (V)
= 1 µF Tantalum.
OUT
1.83
1.82
1.81
1.80
1.79
Output Voltage (V)
1.78
1.77 0 102030405060708090
+25°C
+85°C
-40°C
VIN = 2.8V
0°C
Load Current (mA)
FIGURE 2-10: Output Voltage vs. Load Current (V
Output Voltage (V)
= 1.8V).
R
3.06
3.04
3.02
3.00
2.98
2.96
2.94 0 15 30 45 60 75 90 105 120 135 150
-40°C
+25°C
+85°C
0°C
Load Current (mA)
VIN = 4.0V
FIGURE 2-8: Output Voltage vs. Input Voltage (V
Output Voltage (V)
= 3.0V).
R
5.10
5.09
5.08
5.07
5.06
5.05
5.04
5.03
5.02
5.01
5.00
4.99
4.98
4.97
4.96
+25°C
+85°C
0°C
-40°C
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
I
OUT
= 0.1 mA
Input Voltage (V)
FIGURE 2-9: Output Voltage vs. Input Voltage (V
= 5.0V).
R
FIGURE 2-11: Output Voltage vs. Load Current (V
Output Voltage (V)
= 3.0V).
R
5.07
5.05
5.03
5.01
4.99
4.97
4.95
4.93 0 25 50 75 100 125 150 175 200 225 250
+25°C
+85°C
0°C
-40°C
Load Current (mA)
VIN = 6.0V
FIGURE 2-12: Output Voltage vs. Load Current (V
= 5.0V).
R
DS21874B-page 6 © 2005 Microchip Technology Inc.
Loading...
+ 14 hidden pages