MIC5250 Micrel
MIC5250
Dual 150mA µCap CMOS LDO Regulator
Preliminary Information
General Description
The MIC5250 is an efficient, precise dual CMOS voltage
regulator optimized for ultra-low-noise applications. The
MIC5250 offers better than 1% initial accuracy, extremely low
dropout voltage (typically 150mV at 150mA) and constant
ground current over load (typically 100µA). The MIC5250
provides a very-low-noise output, ideal for RF applications
where quiet voltage sources are required. A noise bypass pin
is also available for further reduction of output noise.
Designed specifically for hand-held and battery-powered
devices, the MIC5250 provides TTL logic compatible enable
pins. When disabled, power consumption drops nearly to
zero.
The MIC5250 also works with low-ESR ceramic capacitors,
reducing the amount of board space necessary for power
applications, critical in hand-held wireless devices.
Key features include current limit, thermal shutdown, pushpull outputs for faster transient response, and active clamps
to speed up device turnoff. Available in the 10-lead MSOP
(micro-shrink-outline package), the MIC5250 also offers a
range of fixed output voltages.
Features
• Ultralow dropout—100mV @ 100mA
• Ultralow noise—30µV(rms)
• Stability with ceramic, tantalum, or aluminum electrolytic
capacitors
• Load independent, ultralow ground current
• 150mA output current
• Current limiting
• Thermal Shutdown
• Tight load and line regulation
• “Zero” off-mode current
• Fast transient response
• TTL-Logic-controlled enable input
Applications
• Cellular phones and pagers
• Cellular accessories
• Battery-powered equipment
• Laptop, notebook, and palmtop computers
• PCMCIA VCC and VPP regulation/switching
• Consumer/personal electronics
• SMPS post-regulator/dc-to-dc modules
• High-efficiency linear power supplies
Typical Application
Ordering Information
Part Number Voltage Junction Temp. Range Package
MIC5250-2.7BMM 2.7V –40°C to +125°C 10-lead MSOP
MIC5250-2.8BMM 2.8V –40°C to +125°C 10-lead MSOP
MIC5250-3.0BMM 3.0V –40°C to +125°C 10-lead MSOP
MIC5250-3.3BMM 3.3V –40°C to +125°C 10-lead MSOP
Other voltages available. Contact Micrel for details.
MIC5250-3.3BMM
9
V
ENABLE
SHUTDOWN
ENABLE
SHUTDOWN
ENA may be connected directly to INA.
ENB may be connected directly to INB.
GNDA and GND B may be connected to
isolated grounds or the same ground.
INA
V
INB
INA
2
ENA
7
INB
5
ENB
OUTA
BYPA
GNDA
OUTB
BYPB
GNDB
10
1
C
3
8
4
6
BYPA
(optional)
C
BYPB
(optional)
C
C
3.3V
OUTA
3.3V
OUTB
Dual Ultra-Low-Noise Regulator Circuit
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
March 2000 1 MIC5250
MIC5250 Micrel
Pin Configuration
ENA
GNDA
BYPB
ENB
Pin Description
Pin Number Pin Name Pin Function
9 / 7 INA / B Supply Input*
3 / 6 GNDA / B Ground*
2 / 4 ENA / B Enable/Shutdown (Input): CMOS compatible input. Logic high = enable;
1 / 4 BYPA / B Reference Bypass: Connect external 0.01µF capacitor to GND to reduce
10 / 8 OUTA / B Regulator Output
* Supply inputs and grounds are fully isolated.
1BYPA
2
3
4
5
10 OUTA
INA
9
OUTB
8
INB
7
GNDB
6
MIC5250-x.xBMM
logic low = shutdown. Do not leave open.
output noise. May be left open.
Absolute Maximum Ratings (Note 1)
Supply Input Voltage (VIN) .................................. 0V to +7V
Enable Input Voltage (VEN) ................................. 0V to +7V
Junction Temperature (TJ) ...................................... +150°C
Storage Temperature ............................... –65°C to +150°C
Operating Ratings (Note 2)
Input Voltage (VIN) ......................................... +2.7V to +6V
Enable Input Voltage (VEN) .................................. 0V to V
Junction Temperature (TJ) ....................... –40°C to +125°C
Thermal Resistance (θJA)......................................200°C/W
IN
Lead Temperature (soldering, 5 sec.) ....................... 260°C
ESD, Note 3
MIC5250 2 March 2000
MIC5250 Micrel
Electrical Characteristics
Each regulator: VIN = V
Symbol Parameter Conditions Min Typical Max Units
V
O
∆V
LNR
∆V
LDR
VIN – V
I
Q
I
GND
OUT
Output Voltage Accuracy I
Line Regulation VIN = V
Load Regulation I
Dropout Voltage, Note 5 I
Quiescent Current VEN ≤ 0.4V (shutdown) 0.2 1 µA
Ground Pin Current, Note 6 I
PSRR Power Supply Rejection f = 120Hz, C
I
e
LIM
n
Current Limit V
Output Voltage Noise C
Enable Input
V
IL
V
IH
I
EN
Enable Input Logic-Low Voltage VIN = 2.7V to 5.5V, regulator shutdown 0.8 0.4 V
Enable Input Logic-High Voltage VIN = 2.7V to 5.5V, regulator enabled 2.0 1V
Enable Input Current VIL ≤ 0.4V 0.17 µA
Shutdown Resistance Discharge 500 Ω
Thermal Protection
Thermal Shutdown Temperature 150 °C
Thermal Shutdown Hysteresis 10 °C
+ 1V, VEN = V
OUT
= 100µA; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C; unless noted.
IN; IOUT
= 0mA –11%
OUT
–2 2 %
+ 0.1V to 6V –0.3 0 0.3 %/V
OUT
= 0.1mA to 150mA, Note 4 2.0 3.0 %
OUT
= 100µA 1.5 5 mV
OUT
I
= 50mA 50 85 mV
OUT
I
= 100mA 100 150 mV
OUT
I
= 150mA 150 200 mV
OUT
= 0mA 100 150 µA
OUT
I
= 150mA 100 µA
OUT
= 10µF, C
OUT
= 0V 160 300 mA
OUT
= 10µF, C
OUT
f = 10Hz to 100kHz
= 0.01µF, 30
BYP
= 0.01µF50dB
BYP
VIH ≥ 2.0V 1.5 µA
250 mV
µV(rms)
Note 1. Exceeding the absolute maximum rating may damage the device.
Note 2. The device is not guaranteed to function outside its operating rating.
Note 3. Devices are ESD sensitive. Handling precautions recommended.
Note 4. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load
Note 5. Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V
Note 6. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground
range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
differential.
pin current.
March 2000 3 MIC5250
MIC5250 Micrel
Typical Characteristics
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
10k
VIN = 4V
V
OUT
100k
= 3V
1M
I
= 100µA
OUT
C
= 1µF tant
OUT
0
1E+11E+21E+31E+41E+5 1E+6 1E+7
10
1k
100
FREQUENCY (Hz)
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
10k
VIN = 4V
V
OUT
100k
= 3V
1M
I
= 150mA
OUT
C
= 1µF tant
OUT
0
1E+11E+21E+31E+41E+5 1E+6 1E+7
10
1k
100
FREQUENCY (Hz)
10M
10M
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
I
= 10mA
OUT
C
= 1µF tant
OUT
0
1E+11E+21E+31E+41E+5 1E+6 1E+7
10
1k
100
FREQUENCY (Hz)
10k
VIN = 4V
V
OUT
100k
= 3V
1M
Power Supply
100
PSRR (dB)
Rejection Ratio
80
60
40
I
= 100µA
20
VIN = 4V
V
OUT
0
1E+11E+21E+31E+41E+5 1E+6 1E+7
100 1k 10k 100k 1M 10M
10
OUT
C
= 10µF cer.
OUT
= 3V
C
= 0.01µF
BYP
FREQUENCY (Hz)
10M
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
I
= 100mA
OUT
C
= 1µF tant
OUT
0
1E+11E+21E+31E+41E+5 1E+61E+7
10
1k
100
FREQUENCY (Hz)
10k
VIN = 4V
V
OUT
100k
= 3V
1M
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
VIN = 4V
V
= 3V
OUT
I
= 10mA
OUT
C
= 10µF cer.
OUT
C
= 0.01µF
0
1E+11E+21E+31E+41E+5 1E+61E+7
100 1k 10k 100k 1M 10M
10
BYP
FREQUENCY (Hz)
10M
Power Supply
100
80
60
40
PSRR (dB)
20
Rejection Ratio
VIN = 4V
V
= 3V
OUT
I
= 100mA
OUT
C
= 10µF cer.
OUT
C
= 0.01µF
0
1E+11E+21E+31E+41E+5 1E+6 1E+7
100 1k 10k 100k 1M 10M
10
BYP
FREQUENCY (Hz)
Power Supply Ripple Rejection
vs. Voltage Drop
80
70
60
50
40
30
20
RIPPLE REJECTION (dB)
10
0
0 200 400 600 800 1000
I
= 100mA
OUT
100mA
10mA
C
C
VOLTAGE DROP (mV)
100µA
= 10µF cer.
OUT
= 0.01µF
BYP
Power Supply
100
80
60
40
PSRR (dB)
20
NOISE (µV/√Hz)
Rejection Ratio
VIN = 4V
V
= 3V
OUT
I
= 150mA
OUT
C
= 10µF cer.
OUT
C
= 0.01
BYP
0
1E+11E+21E+31E+41E+5 1E+61E+7
100 1k 10k 100k 1M 10M
10
FREQUENCY (Hz)
Noise Performance
10
IL = 100µA
1
VIN = 4V
0.1
V
= 3V
OUT
C
= 1µF cer.
OUT
C
= 0.01µF
BYP
0.01
10 100 1k 10k 100k 1M
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
FREQUENCY (Hz)
Power Supply Ripple Rejection
vs. Voltage Drop
80
70
60
50
40
30
20
RIPPLE REJECTION (dB)
10
0
0 200 400 600 800 1000
10
1
VIN = 4V
0.1
V
NOISE (µV/√Hz)
0.01
10
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
10mA100µA
I
= 100mA
OUT
C
VOLTAGE DROP (mV)
Noise Performance
= 3V
OUT
C
= 10µF cer.
OUT
C
= 0.01µF
BYP
1k
100
FREQUENCY (Hz)
10k
150mA
= 1µF
OUT
IL = 100µA
100k
1M
MIC5250 4 March 2000