MICREL LMC7101BIM5, LMC7101AIM5 Datasheet

LMC7101 Micrel
LMC7101
Low-Power Operational Amplifier
General Description
The LMC7101 is a high-performance, low-power, operational amplifier which is pin-for-pin compatible with the National Semiconductor LMC7101. It features rail-to-rail input and output performance in Micrel’s IttyBitty™ SOT-23-5 package.
The LMC7101 is a 500kHz gain bandwidth amplifier de­signed to operate from 2.7V to 12V single-ended power supplies with guaranteed performance at supply voltages of
2.7V, 3V, 5V, and 12V. This op amp’s input common-mode range includes ground
and extends 300mV beyond the supply rails. For example, the common-mode range is –0.3V to +5.3V with a 5V supply.
Ordering Information
Part Number Marking Grade Temperature Range Package
LMC7101AIM5 A12A Prime –40°C to +85°C SOT-23-5 LMC7101BIM5 A12 Standard –40°C to +85°C SOT-23-5
Features
• Small footprint SOT-23-5 package
• Guaranteed 2.7V, 3V, 5V, and 12V performance
• 500kHz gain-bandwidth
• 0.01% total harmonic distortion at 10kHz (5V, 2kΩ)
• 0.5mA typical supply current at 5V
Applications
• Mobile communications, cellular phones, pagers
• Battery-powered instrumentation
• PCMCIA, USB
• Portable computers and PDAs
Pin Configuration
IN+
OUTV+
13
2
Part Identification
A12A
45
IN–
V–
Pin Description
Pin Number Pin Name Pin Function
1 OUT Amplifier Output 2 V+ Positive Supply 3 IN+ Noninverting Input 4 IN– Inverting Input 5 V– Negative Supply: Negative supply for split supply application or ground for
Functional Configuration
single supply application.
IN+
45
IN–
OUTV+
13
2
V–
SOT-23-5 (M5)
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
September 1999 1 LMC7101
LMC7101 Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ – VV–)...........................................15V
Differential Input Voltage (V I/O Pin Voltage (VIN, V
OUT
.............................................V
Junction Temperature (TJ) ...................................... +150°C
Storage Temperature ...............................–65°C to +150°C
– V
IN+
), Note 2
) ...........±(VV+ – VV–)
IN–
+ 0.3V to V
V+
V–
– 0.3V
Operating Ratings (Note 1)
Supply Voltage (VV+ – VV–).............................. 2.7V to 12V
Ambient Temperature (TA)......................... –40°C to +85°C
Junction Temperature (TJ) ....................... –40°C to +125°C
Max. Junction Temperature (T
Package Thermal Resistance (θJA), Note 4..........325°C/W
Max. Power Dissipation............................................ Note 3
), Note 3 .........+125°C
J(max)
Lead Temperature (soldering, 10 sec.) .....................260°C
ESD, Note 5.................................................................. 2kV
Electrical Characteristics (2.7V)
V+ = +2.7V, V– = 0V, VCM = V
Symbol Parameter Condition Typ Min Max Min Max Units
V
OS
TCV
OS
I
B
I
OS
R
IN
CMRR Common-Mode Rejection Ratio 0V ≤ VCM 2.7V, Note 6 70 50 50 dB V
CM
PSRR Power Supply Rejection Ratio V+ = 1.35V to 1.65V, V– = 60 50 45 dB
C
IN
V
O
I
S
SR Slew Rate 0.4 V/µs GBW Gain-Bandwidth Product 0.5 MHz
Input Offset Voltage 0.11 6 9 mV Input Offset Voltage Average Drift 1.0 µV/°C Input Bias Current 1.0 64 64 pA Input Offset Current 0.5 32 32 pA Input Resistance >1 T
Input Common-Mode Voltage input low, CMRR 50dB –0.3 0.0 0.0 V
Common-Mode Input Capacitance 3 pF Output Swing output high, RL = 10k 2.699 2.64 2.64 V
Supply Current V
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
input high, CMRR 50dB 3.0 2.7 2.7 V
–1.35V to –1.65V, VCM = 0
output low, RL = 10k 0.001 0.06 0.06 V output high, RL = 2k 2.692 2.6 2.6 V output low, RL = 2k 0.008 0.1 0.1 V
= V+/2 0.5 0.81 0.81 mA
OUT
0.95 0.95 mA
Electrical Characteristics (3.0V)
V+ = +3.0V, V– = 0V, VCM = V
Symbol Parameter Condition Typ Min Max Min Max Units
V
OS
TCV I
B
I
OS
R
IN
OS
Input Offset Voltage 0.11 4 7 mV
Input Offset Voltage Average Drift 1.0 µV/°C Input Bias Current 1.0 64 64 pA Input Offset Current 0.5 32 32 pA Input Resistance >1 T
LMC7101 2 September 1999
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
69mV
LMC7101 Micrel
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
CMRR Common-Mode Rejection Ratio 0V ≤ VCM 3.0V, Note 6 74 60 60 dB V
CM
Input Common-Mode Voltage input low, CMRR 50dB –0.3 0 0 V
input high, CMRR 50dB 3.3 3.0 3.0 V
PSRR Power Supply Rejection Ratio V+ = 1.5V to 6.0V, V– = 80 68 60 dB
–1.5V to –6.0V, VCM = 0 C V
IN OUT
Common-Mode Input Capacitance 3 pF Output Swing output high, RL = 2k 2.992 2.9 2.9 V
output low, RL = 2k 0.008 0.1 0.1 V
output high, RL = 600 2.973 2.85 2.85 V
output low, RL = 600 0.027 0.15 0.15 V I
S
Supply Current 0.5 0.81 0.81 mA
0.95 0.95 mA
Electrical Characteristics—DC (5V)
V+ = +5.0V, V– = 0V, VCM = 1.5V, V
Symbol Parameter Condition Typ Min Max Min Max Units
V
OS
TCV I
B
I
OS
R
IN
OS
Input Offset Voltage 0.11 3 7 mV
Input Offset Voltage Average Drift 1.0 µV/°C Input Bias Current 1.0 64 64 pA Input Offset Current 0.5 32 32 pA Input Resistance >1 T
CMRR Common-Mode Rejection Ratio 0V ≤ V
V
CM
Input Common-Mode Voltage input low, CMRR 50dB –0.3 –0.20 –0.20 V
+PSRR Positive Power Supply V+ = 5V to 12V, 82 70 65 dB
Rejection Ratio V– = 0V, V
–PSRR Negative Power Supply V+ = 0V, V– = –5V to –12V, 82 70 65 dB
Rejection Ratio V C V
I
IN OUT
SC
Common-Mode Input Capacitance 3 pF
Output Swing output high, RL = 2k 4.989 4.9 4.9 V
Output Short Circuit Current sourcing (V
Note 7 sinking (V I
S
Supply Current V
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
59mV
5V, Note 6 82 60 60 dB
CM
55 55 dB
0.00 0.00 V
input high, CMRR 50dB 5.3 5.20 5.20 V
5.00 5.00 V
= 1.5V 65 62 dB
OUT
= –1.5V 65 62 dB
OUT
4.85 4.85 V
output low, R
output high, R
output low, R
= 2k 0.011 0.1 0.1 V
L
= 600 4.963 4.9 4.9 V
L
= 600 0.037 0.1 0.1 V
L
4.8 4.8 V
0.15 0.15 V
0.2 0.2 V
= 0V) or 200 120 120 mA
OUT
= 5V) 80 80 mA
OUT
= V+/2 0.5 0.85 0.85 mA
OUT
1.0 1.0 mA
September 1999 3 LMC7101
LMC7101 Micrel
Electrical Characteristics—DC (12V)
V+ = +12V, V– = 0V, VCM = 1.5V, V
Symbol Parameter Condition Typ Min Max Min Max Units
V
OS
TCV I
B
I
OS
R
IN
OS
Input Offset Voltage 0.11 6 9 mV Input Offset Voltage Average Drift 1.0 µV/°C Input Bias Current 1.0 64 64 pA Input Offset Current 0.5 32 32 pA Input Resistance >1 T
CMRR Common-Mode Rejection Ratio 0V ≤ V
V
CM
Input Common-Mode Voltage input low, V+ = 12V, –0.3 –0.20 –0.20 V
+PSRR Positive Power Supply V+ = 5V to 12V, 82 70 65 dB
Rejection Ratio V– = 0V, V
–PSRR Negative Power Supply V+ = 0V, V– = –5V to 82 70 65 dB
Rejection Ratio –12V, V
A
C V
I
I
V
IN OUT
SC
S
Large Signal Voltage Gain sourcing or sinking, 340 80 80 V/mV
Common-Mode Input Capacitance 3 pF Output Swing output high, V+ = 12V, 11.98 11.9 11.9 V
Output Short Circuit Current sourcing (V
Supply Current V
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
12V, Note 6 82 65 65 dB
CM
60 60 dB
CMRR 50dB 0.00 0.00 V input high, V+ = 12V, 12.3 12.2 12.2 V
CMRR 50dB 12.0 12.0 V
= 1.5V 65 62 dB
OUT
= –1.5V 65 62 dB
OUT
RL = 2k, Note 9 40 40 V/mV sourcing or sinking, 300 15 15 V/mV
RL = 600Ω, Note 9 10 10 V/mV
RL = 2k 11.87 11.87 V output low, V+ = 12V, 0.02 0.10 0.10 V
RL = 2k, 0.13 0.13 V output high, V+ = 12V, 11.93 11.73 11.73 V
RL = 600 11.65 11.65 V output low, V+ = 12V, 0.07 0.27 0.27 V
RL = 600 0.35 0.35 V
= 0V) or 300 200 200 mA
OUT
sinking (V
Notes 7, 8
= V+/2 0.8 1.5 1.5 mA
OUT
= 12V), 120 120 mA
OUT
1.71 1.71 mA
LMC7101 4 September 1999
LMC7101 Micrel
Electrical Characteristics—AC (5V)
V+ = 5V, V– = 0V, VCM = 1.5V, V
Symbol Parameter Condition Typ Min Max Min Max Units
THD Total Harmonic Distortion f = 10kHz, A
SR Slew Rate 0.3 V/µs GBW Gain-Bandwidth Product 0.5 MHz
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
= –2, 0.01 %
RL = 2kΩ, V
V
OUT
= 4.0 V
PP
Electrical Characteristics—AC (12V)
V+ = 12V, V– = 0V, VCM = 1.5V, V
Symbol Parameter Condition Typ Min Max Min Max Units
THD Total Harmonic Distortion f = 10kHz, A
SR Slew Rate V+ = 12V, Note 10 0.3 0.19 0.19 V/µs
GBW Gain-Bandwidth Product 0.5 MHz
φ
m
G
m
e
n
Phase Margin 45 °
Gain Margin 10 dB
Input-Referred Voltage Noise f = 1kHz, VCM = 1V 37
= V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ +85°C; unless noted
OUT
LMC7101A LMC7101B
= –2, 0.01 %
RL = 2k, V
V
OUT
= 8.5 V
PP
0.15 0.15 V/µs
nV/ Hz
i
n
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis. Note 1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when
Note 2. I/O Pin Voltage is any external voltage to which an input or output is referenced. Note 3. The maximum allowable power dissipation is a function of the maximum junction temperature, T
Note 4. Thermal resistance, θJA, applies to a part soldered on a printed-circuit board. Note 5. Human body model, 1.5k in series with 100pF. Note 6. Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. Note 7. Continuous short circuit may exceed absolute maximum TJ under some conditions. Note 8. Shorting OUT to V+ when V+ > 12V may damage the device. Note 9. RL connected to 5.0V. Sourcing: 5V V Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.
Input-Referred Current Noise f = 1kHz 1.5
operating the device outside its recommended operating ratings.
; the junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: PD = (T
– TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
J(max)
12V. Sinking: 2.5V V
OUT
OUT
5V.
J(max)
fA/ Hz
September 1999 5 LMC7101
LMC7101 Micrel
Typical Characteristics
Supply Current
1000
SUPPLY CURRENT (µA)
vs. Supply Voltage
800
600
400
200
0
024681012
–40°C
SUPPLY VOLTAGE (V)
+PSRR
120
100
80
60
40
+PSRR (dB)
20
1x10
vs. Frequency
5V
12V
2.7V
TA = 25°C
0
1
1x1021x1031x1041x10
FREQUENCY (Hz)
25°C
85°C
Input Current vs.
Junction Temperature
10000
1000
100
10
INPUT CURRENT (pA)
1
-40 0 40 80 120 160
JUNCTION TEMPERATURE (°C)
100
80
60
40
-PSRR (dB)
20
0
-20
1
1x10
CMRR
140 120 100
80 60
CMRR (dB)
40 20
5
0
1x10
vs. Frequency
12V
2.7V
5V
TA = 25°C
1
1x1021x1031x1041x10
FREQUENCY (Hz)
1000
TA = 25°C
100
10
1
0.1
CURRENT SINK / SOURCE (mA)
5
0.01
0.001 0.01 0.1 1 10
PSRR
vs. Frequency
12V
5V
TA = 25°C
1x1021x1031x1041x10
FREQUENCY (Hz)
2.7V
Sink / Source Currents
vs. Output Voltage
OUTPUT VOLTAGE (V)
5
Falling Slew Rate vs.
vs. Supply Voltage
0.8
0.7
0.6
0.5
0.4
0.3
0.2
SLEW RATE (V/µs)
0.1 0
024681012
-40°C +25°C
+85°C
SUPPLY VOLTAGE (V)
Rising Slew Rate vs.
vs. Supply Voltage
0.8
0.7
0.6
0.5
0.4
0.3
0.2
SLEW RATE (V/µs)
0.1 0
024681012
-40°C
+25°C
+85°C
SUPPLY VOLTAGE (V)
Phase Margin
vs. Capacitive Load
100
80
60
3V
40
2.7V
PHASE MARGIN (°)
TA = 25°C
20
AV = 1
0 100 1000
200 300 500
LOAD CAPACITANCE (pF)
12V
5V
Offset Voltage
vs. Supply Voltage
800
600
85°C
25°C
400
-40°C
200
OFFSET VOLTAGE (µV)
0
024681012
SUPPLY VOLTAGE (V)
LMC7101 6 September 1999
LMC7101 Micrel
-20
0
20
40
60
80
100
-60
-30
0
30
60
90
120
1x10
2
1x1031x1041x1051x10
6
OFFSET VOLTAGE (µV)
PHASE (°)
COMMON-MODE VOLTAGE (V)
0
20
40
60
80
1x10
2
1x1031x1041x10
5
GAIN (dB)
FREQUENCY (Hz)
12V Open-Loop
Frequency Response
1M
600
2k
TA = 25°C
2.7V Open-Loop
Frequency Response
100
80
60
RL = 2k
40
GAIN (dB)
TA = 25°C
20
0
2
1x10
FREQUENCY (Hz)
2.7V Open-Loop Gain
100
75
50
25
TA = 25°C
GAIN (dB)
RL = 1M
0
-25
2
1x10
1x1031x1041x1051x10
FREQUENCY (Hz)
RL = 1M
1x1031x1041x10
and Phase
100pF (°)
500pF (°)
500pF
(dB)
100pF (dB)
135
90
45
0
-45
-90
5V Open-Loop
Frequency Response
80
60
40
GAIN (dB)
20
TA = 25°C
0
5
1x10
2
1x1031x1041x10
FREQUENCY (Hz)
5V Open-Loop
Gain and Phase
PHASE (°)
6
TA = 25°C R
= 1M
L
100pF (dB) 500pF (dB) 1000pF (dB)
600
100pF (°)
500pF (°)
1000pF (°)
1M
2k
5
12V Open-Loop Gain
120
TA = 25°C
100
R
80 60 40
GAIN (dB)
20
0
-20
2
1x10
and Phase
= 1M
L
100pF (dB) 500pF (dB) 1000pF (dB)
1x1031x1041x1051x10
FREQUENCY (Hz)
100pF (°)
500pF (°)
1000pF (°)
150 120 90 60 30 0
-30
-60
PHASE (°)
6
September 1999 7 LMC7101
LMC7101 Micrel
Functional Characteristics
INPUT
OUTPUT
Inverting Small-Signal
Pulse Response
Noninverting Small-Signal
Pulse Response
Inverting Large-Signal
Pulse Response
INPUT
OUTPUT
Noninverting Large-Signal
Pulse Response
OUTPUT INPUT
OUTPUT INPUT
Input Voltage Noise vs. Frequency
LMC7101 8 September 1999
LMC7101 Micrel
Application Information
Input Common-Mode Voltage
Some amplifiers exhibit undesirable or unpredictable perfor­mance when the inputs are driven beyond the common-mode voltage range, for example, phase inversion of the output signal. The LMC7101 tolerates input overdrive by at least 200mV beyond either rail without producing phase inversion.
If the absolute maximum input voltage (700mV beyond either rail) is exceeded, the input current should be limited to ±5mA maximum to prevent reducing reliability. A 10k series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50V above the supply or below ground. See Figure 1.
V
R
V
IN
IN
10k
Figure 1. Input Current-Limit Protection
Output Voltage Swing
Sink and source output resistances of the LMC7101 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. The output resistance is:
V
R
OUT
V
is the voltage dropped within the amplifier output
DROP
stage. V
DROP
=
I
and I
DROP
LOAD
LOAD
can be determined from the V (output swing) portion of the appropriate Electrical Character­istics table. I minus V+/2 and divided by R
is equal to the typical output high voltage
LOAD
. For example, using the
LOAD
Electrical Characteristics DC (5V) table, the typical output high voltage using a 2k load (connected to V+/2) is 4.989V, which produces an I
4 989 2 5
1 245
  
of
LOAD
..
V – V 2
k
mA
 
OUT
=
1 245.
.mA
.
V
0 011
R
OUT
.
==
0 001245
.
9
88
A
.
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The LMC7101 can typically drive a 100pF capacitive load connected directly to the output when configured as a unity-gain amplifier.
Using Large-Value Feedback Resistors
A large-value feedback resistor (> 500k) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the fedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance.
Figure 2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor CFB introduces sufficient phase lead to overcome the phase lag caused by feedback resistor RFB and input capacitance CIN. The value of CFB is determined by first estimating CIN and then applying the following formula:
R C R C
×≤ ×
IN IN FB FB
C
FB
R
FB
R
V
O
IN
IN
C
IN
Figure 2. Cancelling Feedback Phase Lag
Since a significant percentage of CIN may be caused by board layout, it is important to note that the correct value of CFB may change when changing from a breadboard to the final circuit layout.
V
OUT
Voltage drop in the amplifier output stage is:
V
= 5.0V – 4.989V
DROP
V
= 0.011V
DROP
Because of output stage symmetry, the corresponding typical output low voltage (0.011V) also equals V
DROP
. Then:
September 1999 9 LMC7101
LMC7101 Micrel
V
OUT
0V to V+
V+
V
IN
0V to 2V
2
5
1
3
4
LMC7101
R
S
10
1
2W
Load
V
S
0.5V to Q1 V
CEO(sus)
I
OUT
Q1 2N3904
V
CEO
= 40V
I
C(max)
= 200mA
{
Change Q1 and R
S
for higher current and/or different gain.
I
V R
100mA/V as shown
OUT
IN
S
==
C
Typical Circuits
Some single-supply, rail-to-rail applications for which the LMC7101 is well suited are shown in the circuit diagrams of Figures 3 through 7.
V+
2
0V to
V
IN
V+ A
3
4
V
LMC7101
5
1
V
OUT
0V to V+
R2
900k
R1 100k
Figure 3a. Noninverting Amplifier
Figure 5. Voltage-Controlled Current Sink
100
V+
(V)
OUT
V
0
0 100
A = 1 +
V
VIN (V)
R2
R
10
1
C1
0.001µF
R4
100k
V+
2
4
3
LMC7101
5
1
V
OUT V+ 0V
R3 100k
R2
330k
V+
R4
330k
R4
100k
2
LMC7101
5
1
C
A
=− = =−
V
OUT
V
OUT
0V
R
L
R2R1330k
33k
Figure 3b. Noninverting Amplifier Behavior
V+
V
IN
0V to V+
3
4
2
LMC7101
1
5
0V to V+
V
OUT
V
OUT
= V
Figure 4. Voltage Follower
R2
V+
100k
Figure 6. Square Wave Oscillator
IN
R1
V+
33k
4
3
R3
330k
IN
C1 1µF
Figure 7. AC-Coupled Inverting Amplifier
LMC7101 10 September 1999
10
LMC7101 Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
3.02 (0.119)
2.80 (0.110)
0.50 (0.020)
0.35 (0.014)
1.75 (0.069)
1.50 (0.059)
1.30 (0.051)
0.90 (0.035)
0.15 (0.006)
0.00 (0.000)
3.00 (0.118)
2.60 (0.102)
SOT-23-5 (M5)
10°
0°
DIMENSIONS:
MM (INCH)
0.20 (0.008)
0.09 (0.004)
0.60 (0.024)
0.10 (0.004)
September 1999 11 LMC7101
LMC7101 Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 1999 Micrel Incorporated
LMC7101 12 September 1999
Loading...