MESA MSD4 Hardware Manual

Product Date September 2008
MSD4 Hardware Manual
MESANOR
RECEIVING AND HANDLING
Upon delivery of the equipment, inspect the shipping containers and contents for indications of damages incurred in transit. If any of the items specified in the bill of lading are damaged, or the quantity is incorrect, do not accept them until the freight or express agent makes an appropriate notation on your freight bill or express receipt.
Claims for loss or damage in shipment must not be deducted from your invoice, nor should payment be withheld pending adjustment of any such claims.
Store the equipment in a clean, dry area. It is advisable to leave the equipment in its shipping container until ready fore use. Each amplifier is checked carefully before shipment. However, upon receipt, the user should make sure that the amplifier corresponds to or is properly rated in terms of rated voltage and current for the type of motor which is to be driven. The descriptive label affixed to the amplifier specifies electrical ratings.
Safety and application information
According to the enclosure the Amplifiers Motors and Power supplies may have live, uninsulated or rotating parts or hot surfaces during operation. The inadmissible removing of the required cover, in proper application, wrong installation or operation may lead to personal or material damages. For further information please refer to the manual. Only qualified personal are permitted to install or operate the equipment. IEC 364, CENELEC HD 384, DIN VDE 0100,0105,0110 and national regulations must be observed According to these general safety information a qualified person is someone who is familiar with installation, assembly, commissioning and operation of the equipment. These person must have the appropriate qualifications.
Never plug in or unplug any connectors on the amplifier or open the amplifier when power is applied. A time of discharge of 3 minutes must be considered
Key Features Application YOUR ADVANTAGE
Compact design Easy installation DC-Supply 24-48 V DC DC-Bus coupling Analogous input Encoder sensor Direct brake control with smart
switch (via Fieldbus)
Waste Disposal: According to the EC-Directive 2002/06 all drive are provided with the opposite icon. That means that the drives cannot be put to the general rubbish or garbage.
All pick and place equipmentsSingle and multi axis machinery Test equipmentsFeeding systemsWrapping machineryRobotics Textile machinerySpotlight-trace control systemsFood machineryMedical equipments
Wide range of applicationsEasy matching and setupHigh reliability Firmware update via RS 232
Manual Article Code: 74.02495
MSD4 V1.02
Table of Contents
1. Basic types of the MSD4 series – Power ranges..................................................6
1.1. Type code..................................................................................................................6
2. Common facts..........................................................................................................7
3. Technical data of the MSD4 series.........................................................................8
3.1. Technical data...........................................................................................................8
4. Functional principle and basic functions............................................................10
4.1. Block diagram..........................................................................................................10
4.1.1. State machine.........................................................................................................11
4.1.2. Operation modes.....................................................................................................11
4.1.3. Set value demand for speed, current and position..................................................13
4.1.3.1. Speed settings.........................................................................................................13
4.1.4. Control priority.........................................................................................................13
4.1.5. Error-RESET...........................................................................................................13
4.1.6. Power-On RESET...................................................................................................13
4.2. In- and Outputs........................................................................................................13
4.2.1. Digital In- and Outputs.............................................................................................13
4.2.2. Analog inputs...........................................................................................................13
4.2.3. Actual value acquisition...........................................................................................14
4.2.3.1. Encoder...................................................................................................................14
4.2.3.2. Hall feedback...........................................................................................................14
4.2.3.3. DC-Tacho................................................................................................................14
4.2.3.4. Armature voltage control with IxR compensation (opt. Var. 016 / 018)....................15
4.2.3.5. Current measurement.............................................................................................15
4.2.4. “Ready”-Output........................................................................................................16
4.2.5. Hardware-Enable.....................................................................................................16
4.2.6. Machine Switches....................................................................................................16
4.2.6.1. Stop-Input................................................................................................................16
4.2.6.2. Hardware-Limit Switch.............................................................................................17
4.2.6.3. Homing Switch .......................................................................................................17
4.3. Temperature sensors..............................................................................................17
4.3.1. Motor temperature sensor.......................................................................................17
4.4. General digital in- and outputs.................................................................................17
4.5. Control- and Diagnosis Interface.............................................................................18
4.5.1. Parameters..............................................................................................................18
4.5.2. Monitor Outputs.......................................................................................................18
5. Configuration of the Servo Amplifier...................................................................19
5.1. Basic configuration – First Steps.............................................................................19
6. Power supply.........................................................................................................20
6.1. Mains transformer...................................................................................................20
6.2. Ballast circuit...........................................................................................................20
6.3. +24 V DC Auxiliary Voltage (Electronic supply).......................................................21
6.4. Control of the motor brake.......................................................................................21
6.5. Fuses......................................................................................................................21
7. Standard settings..................................................................................................23
8. Bring-in-to-use.......................................................................................................24
MSD4 V1.0
3
9. Description of the Connectors.............................................................................25
9.1. MSD4 Connectors...................................................................................................25
9.2. X1 Motor Sensor.....................................................................................................26
9.3. X2 Control signals...................................................................................................27
9.4. X3 RS232................................................................................................................29
9.5. X4 Digital In and Outputs........................................................................................29
9.6. X5 Digital In and Outputs (optional).........................................................................29
9.7. X6 / X7 CAN Bus.....................................................................................................31
9.8. X21 Power Supply...................................................................................................31
9.9. X22 Ballast..............................................................................................................31
9.10. X23 Motor Connector..............................................................................................31
9.11. X24 Auxiliary Voltage +24 V....................................................................................31
10. Earthing and Installation according to EMC Norms...........................................33
10.1. General Indications.................................................................................................33
10.2. General Rules.........................................................................................................33
10.3. Control Cabinet.......................................................................................................33
10.4. D-SUB Cable shielding............................................................................................34
11. Wiring.....................................................................................................................35
11.1. Cable cross sectional areas....................................................................................35
11.2. Motor cable..............................................................................................................35
11.3. Control cables.........................................................................................................35
11.4. MSD4 CAN Bus Wiring...........................................................................................35
11.4.1. General...................................................................................................................35
11.4.2. Standard Version.....................................................................................................36
11.4.3. Simplified Version....................................................................................................36
12. Connecting.............................................................................................................37
12.1. Connection to Mains Power.....................................................................................37
12.2. DC Bus Coupling.....................................................................................................37
12.3. Wiring Scheme for BLDC-Motor..............................................................................39
12.4. Wiring Scheme for DC Motor..................................................................................40
13. Mechanical Dimensions........................................................................................41
13.1. Standard Housing....................................................................................................41
13.2. Short Housing (optional)..........................................................................................42
14. Known problems and limitations.........................................................................43
15. Troubleshooting....................................................................................................43
15.1. LED Display.............................................................................................................43
15.2. Error Finding............................................................................................................44
15.3. Errors......................................................................................................................45
16. Variants and Modifications...................................................................................47
16.1. Variant 016 (MSD4 for DC Motor)...........................................................................47
16.2. Variant 018 (MSD4 for DC Motor and battery operation).........................................47
17. Additional information..........................................................................................47
17.1. Optional connector sets...........................................................................................47
18. Other products.......................................................................................................48
18.1. BME: Basic Motion Element....................................................................................48
MSD4 V1.04
18.2. BDE: Basic Drive Element.......................................................................................48
18.3. BDE: High Current Device.......................................................................................48
19. Place for your notices:..........................................................................................49
MSD4 V1.0
5

1. Basic types of the MSD4 series – Power ranges

Name of the Series Characteristics
- Mesanor
M
- Servoamplifier
S
- Digital
D 4
Fieldbus: CANopen PC interface Analog input High dynamic and great bandwidth Efficient power stage Fast current loop Extensive protection measurements Limit switches and stop-input Integrated motor brake control
Type I
[A]
max
I
Rated
[A]
U
Rated
[VDC]
U
min
[VDC]
U
max
[VDC]
Fan Inductance
L
[mH] *
min
Ballast
system
MSD4 3004 8 4 230 90 260 internal 3,9 / 2,0 internal MSD4 3006 12 6 230 90 260 internal 2,6 / 1,3 internal MSD4 3008 16 8 230 90 260 internal 2,0 / 1,0 internal MSD4 3010 20 10 230 90 260 internal 1,6 / 0,8 internal MSD4 3012 24 12 230 90 260 internal 1,3 / 0,7 internal MSD4 3015 30 15 230 90 260 internal 1,0 / 0,5 internal MSD4 3020 40 20 230 90 260 internal 0,8 / 0,4 internal MSD4 5004 8 4 400 180 440 internal 6,5 / 3,3 internal MSD4 5006 12 6 400 180 440 internal 4,4 / 2,2 internal MSD4 5008 16 8 400 180 440 internal 3,3 / 1,6 internal MSD4 5010 20 10 400 180 440 internal 2,6 / 1,3 internal
* Minimal motor inductance on nominal voltage: first value valid for 8 kHz PWM, second value for 16 kHz PWM

1.1. Type code

MSD4 MC 3010 E xxx
MESANOR Option / Motor type CANopen (C) Encoder (E)
PROFIBUS (P) Resolver (R) Indexer ( I ) DC-Tacho (T) Analog (A) BEMF (U)
DC Bus voltage 320 V (30)
560 V (50) Nominal current in A (10) 680 V (70)
Battery devices 24..65 V (06)
36..125 V (12)
Other power ranges and options on request.
MSD4 V1.06

2. Common facts

The devices of the MSD4 series are digital servo amplifiers for using with brushed and brushless direct current motors (BLDC-Motors). Brushed motors with BEMF can be used with the variants 016 or 018. Servo amplifiers named 30xx und 50xx are capable to be connected directly to mains power. They contain all necessary components – Rectifiers, braking circuits, inrush current limitation and line filters.
The following operation modes are available:
Torque control: This operation mode allows a dynamic and precise torque control
between the +/- maximum torque.
Speed control: This operation mode allows a dynamic and precise speed control between
the +/- maximum speed.
Position control: This operation mode allows a dynamic and precise position control
between the +/- maximum position. The control device delivers only the target position in this operation mode.
Interpolated position control: This operation mode allows a dynamic and precise
position control. The control equipment controls the entire motor movement by giving synchronous position set values. This operation mode is only available in the CAN version of the MSD4 series.
Position control via stored sequences: Servo amplifiers of the MSD4 series are able to
store 32 Positioning- and Homing sequences. The sequences can be started by their sequence numbers.
Speed and torque control via analog input (Stand alone): These operation modes allow
the using of the internal analog input for set value generation. There are speed and torque set values available.
RS 232 Mode: The PC interface is mainly for diagnosis, parametrising and test purposes.
Special features of the user interface like the “control panel”, the oscilloscope and “XY­writer” supporting the user during the bring-in-to-use and optimization procedure.
MSD4 V1.0
7

3. Technical data of the MSD4 series

3.1. Technical data

Power supply 06xx 12xx 30xx 50xx
AC supply voltage 48 V AC * 90 V AC * 230 V AC 400 V AC DC supply voltage / Internal bus voltage 65 V DC 125 V DC 320 V DC 560 V DC Output voltage U Ballast voltage 80V / - * 148 V / - * 392...400 V 658...670 V Over voltage 86 V 160 V 420 V 700 V Under voltage 17 V 36 V 90 V DC 180 V DC
* Rectifiers and ballast circuits are optional in battery (Variant 018) devices
A
60 V 120 V 290 V 520 V
Power stage
IGBT-Technology in mains supply devices
MOSFET-Technology in battery devices PWM frequency 8 or 16 kHz The power stage is protected against Over current, Winding-leakage,
Over voltage, Earth-leakage,
Over temperature
Digital current loop
Controller type PI Set value via Field bus (16 bit)
±10 V Analog input (12 bit)
PC interface Current limitation 1 I Current limitation 2 I
, Maximum current
max.
, Rated current
rms
Parametrizing via Field bus or PC interface Sample time
62,5 s
Digital speed loop
Controller type PIDFF Set value via Field bus (16 bit)
±10 V Analog input (12 bit)
PC interface Feedback via Encoder 250 ... 5000 ppr
Tacho, BEMF (only for DC motors) Parametrizing via Field bus or PC interface Sample time
250 s
Digital position control
Controller type PFF Set value via Field bus (32 bit)
PC interface Feedback via Encoder 250 ... 5000 ppr Parametrizing via Field bus or PC interface Sample time
250 s
MSD4 V1.08
CAN - Interface
Protocol CANopen / DSP 402 Service channel SDO, Asynchronous data transfer
(Parametrizing)
Process channel PDO, Synchronous data transfer
(Process data in real time) Baud rate max. 1 MBit/s Parametrizing via Field bus or PC interface
Parameter storage
Common protection measurements
I²t current limitation Deactivation of the power stage / limitation of
Motor over temperature Deactivation of the power stage Feedback error Deactivation of the power stage EEPROM-error Deactivation of the power stage Field bus error Deactivation of the power stage Processor error Deactivation of the power stage
Specifications
Operation temperature 0 ... 45 °C (Derating 2%/K 45-55 °C) Storage temperature -10 ... 60 °C Protection class IP 20 Cooling Convection with integrated temperature
Humidity max. 65 % relative humidity Isolation C conform with EN50178
Mounting orientation Vertical “Ready” Signal Relais contact 50 V / 10 mA Control of the motor brake Smart-Switch 24 V DC / 1,5 A
EEPROM (non volatile)
the output current
controlled fan
Digital In- and Outputs (+24 V DC)
Analog input
Motor types
Operation modes
Parametrizing and diagnosis via Field bus or PC interface
Set values and Feedback via Field bus
MSD4 V1.0
1 fast input
2 limit switch inputs (+/-)
1 homing switch input
1 stop input
2 programmable In- / Outputs
8 programmable In- / Outputs (optional)
2 differential analog inputs max. ±10 V
(correlated to the housing / PE)
brushless DC Motors
brushed DC Motors
Position-, Speed- and Torque control
9

4. Functional principle and basic functions

4.1. Block diagram

MSD4 V1.010

4.1.1. State machine

The internal control of a MSD4 servo amplifier takes place in precisely defined states. Also the transitions between the states are precisely defined. This functionality is implemented as a state-machine. After power-up the servo amplifiers is situated in a defined state. Every appearing event switches the state-machine in a defined way into a defined state. A detailed functional description of the state-machine can be found in the communication profile manual of the particular field bus type. The section “Device Control” is entirely concerned with this theme. The main states of the servo amplifier are “Operation Enabled” and “Switched On”. The switching between these both states will be controlled by the “Software-Enable” signal.

4.1.2. Operation modes

Depending on the function, the servo amplifier should provide, the correct operation mode has to be chosen. Changes of the operation mode are generally possible in every operation mode, if the state-machine is not in the “Operation Enabled” state.
The following steps are necessary to change the current operation modes:
1. Switch off the “Software-Enable” signal (State-machine leaves “Operation Enabled” state)
2. Change to the desired operation mode – check the right setting
3. Switch on the “Software-Enable” signal (State-machine goes into “Operation Enabled” state)
The following operation modes are selectable:
Simple speed control
The servo amplifier operates as speed controller and the speed actual value follows the speed set value, given by the communication interface.
Start conditions Start Stop
Amplifier in speed control
Speed set value “0”
Speed set value “0”
mode
Enable Amplifier
Disable Amplifier
Amplifier disabled
Give a speed set value
Simple current control
The servo amplifier operates as current controller and the current actual value follows the current set value, given by the communication interface.
Start conditions Start Stop
Amplifier in current control
Current set value “0”
Current set value “0”
mode
Enable Amplifier
Disable Amplifier
Amplifier disabled
Give a current set value
MSD4 V1.0
11
Homing mode
Start conditions Start Stop
Amplifier in position control mode
Set the start-bit in control word
Stops automatically after sequence
Sequence chosen
Reset the start-bit in control word after sequence start
Amplifier enabled
Sequential position control
The servo amplifier operates as position controller and the position actual value follows the position set value, given by the communication interface. The position control normally takes place as sequence. That means there will be given only the target position as set value. The movement itself will be calculated by the servo amplifier and can be additionally influenced by the parameters speed, acceleration and deceleration. Servo amplifiers with CAN interface are able to proceed movement profiles, which calculated by an external control devices. In this case the control device sends interpolated trajectory data to the servo amplifier in close succession.
Start conditions Start Stop
Amplifier in position control mode
Toggle the start-bit in control word
Stops automatically after sequence
Sequence chosen
Amplifier enabled
Speed control via analog input
The servo amplifier operates as speed controller and the speed actual value follows the speed set value, given by the analog interface.
Start conditions Start Stop
Amplifier disabled („Hardware-Enable“ off)
Current control via analog input
Hardware-Enable on Give a speed set value
Disable Amplifier
The servo amplifier operates as current controller and the current actual value follows the current set value, given by the analog interface.
Start conditions Start Stop
Amplifier disabled („Hardware-Enable“ off)
Hardware-Enable on Give a current set value
Disable Amplifier
MSD4 V1.012

4.1.3. Set value demand for speed, current and position

Set values can be given via field bus, via PC interface (RS 232) and via analog input. There can be given only set values for speed and torque on using the analog interface.
4.1.3.1. Speed settings
The parameter “Mechanical speed limit” will be normally delivered from the motor database. This setting is a limit for all given speed set values. The compliance with this parameter will be observed by the servo amplifier automatically in all operation modes.
The speed actual value will be detected by the chosen feedback device.

4.1.4. Control priority

The control priority determines the behaviour of the servo amplifier after activation of the “Hardware-Enable” signal. If the parameter is set to “Stand-Alone” the state-machine will be switched automatically into the “Operation Enabled” state. If the parameter is set to “Feldbus Master PLC” the state-machine can be switched by the control device or by the user interface.

4.1.5. Error-RESET

If the servo amplifier is situated in an error state, a RESET can be proceeded via field bus or PC interface. There is also a hidden button at the front plate, which also provides the reset function. This button is only active if the servo amplifier works in stand-alone mode. The RESET procedure will only be successful, if the error cause is not still active.

4.1.6. Power-On RESET

A switch “off” and “on” of the supply voltage will also reset all servo amplifier errors. On using a separate +24 V auxiliary voltage, both power supplies (main power and auxiliary power) have to be switched “off” and “on”. The RESET procedure will only be successful, if the error cause is not still active.

4.2. In- and Outputs

4.2.1. Digital In- and Outputs

The servo amplifiers of the MSD4 series containing a couple of digital in- and outputs. There are two kinds of in- and outputs. The first type is the determined type, because it has a determined function (like Limit switch, Homing switch or Stop). The other type is the general type. The function of the general digital in- and outputs is user-defined and can be used mainly for the extension of the machine functionality.

4.2.2. Analog inputs

There are two symmetric +/-10 V analog inputs. The analog input ANIN1 is normally configured as set value input for speed or torque. The analog input ANIN2 is user-defined and can be used for measurement data logging for the control device.
MSD4 V1.0
13

4.2.3. Actual value acquisition

4.2.3.1. Encoder
Encoder devices deliver position- and speed information to the servo amplifier. The servo amplifiers of the MSD4 series support encoders which are conform with the RS485 specification (A, A/,...). The encoder resolution can be set between 250 and 5000 ppr by the user interface software. The maximum input frequency of the encoder inputs is 700 kHz (about 17000 rpm maximum speed with a 2048 ppr encoder device). Using of brushless DC motors needs additional HALL signals for the commutation information.
4.2.3.2. Hall feedback
The HALL feedback delivers the commutation information for brushless DC motors. Servo amplifiers of the MSD4 series support HALL signals with TTL level or with open collector outputs. The mounting of the HALL sensors should be 60° or 120° and can be set by the user interface software.
Attention ! The power consumption of the 5V supply for encoder device and HALL sensors must not exceed 210 mA.
4.2.3.3. DC-Tacho
On using a brushed DC motor the actual value acquisition can be implemented with an encoder or preferably with a DC tacho generator. The tacho scaling setup has to be proceed by the user interface software. An additional resistor between TJ- (X1 Pin 6) and TJ+ (X1 Pin
18) is necessary for the tacho voltage adaptation. The value of this resistor can be taken from the following table or from the MESABO software.
Tacho voltage at N
max
Resistor value
< 12,0 V open
12,0 V...17,9 V 180 kΩ 1% 0,25W
18,0 V...25,9 V 75 kΩ 1% 0,25W
26,0 V ... 37,9 V 43 kΩ 1% 0,25W
38,0 V ... 51,9 V 27 kΩ 1% 0,25W
52,0 V ... 73,9 V 18 kΩ 1% 0,25W
74,0 V ... 80,0 V 12 kΩ 1% 0,25W
Attention ! The maximum voltage at the tacho input of the MSD4 must not exceed 80V for long times. Too high tacho voltages will damage the servo amplifier. Missing resistors or wrong resistor values will cause false measurement values
MSD4 V1.014
4.2.3.4. Armature voltage control with IxR compensation (opt. Var. 016 / 018)
On using brushed DC motors the armature voltage control allows a reasonable speed control. The speed information will be derived from the back electromotive force in this case. The IxR compensation counterbalances the voltage loss in the winding and wiring of the motor.
The armature voltage control with IxR compensation is only available with the variants 016 and 018 for brushed DC motors.
4.2.3.5. Current measurement
The motor current will be measured with resistors in the motor circuit. The signals will be rehashed and transferred by opto-isolated operational amplifiers.
4.2.3.5.1. I
Maximum current setting
Amax
Servo amplifiers of the MSD4 series are able to deliver the double of their nominal current for a short time. This feature enables short acceleration and deceleration times. The current value of the type label means the nominal current (50% of the maximum current). The maximum output current can be set between 10...100 % I
4.2.3.5.2. I
(I2t)-Function
Arms
max
.
I
t1 = Start of acceleration
t2 = Start of limitation
I
Amax
= t
– t1 (without pre-load)
2
I
Aeff
t
t1
The I²t function emulates the effective value of the motor current independently on the real curve shape. The effective value limitation will be set by the user interface software between
10...50 % I current and the maximum current.
. The actual effective current depends on the pre-load, the parametrized peak
max
t2
MSD4 V1.0
15

4.2.4. “Ready”-Output

“Ready” Output (Relais contact):
Closed : Servo amplifier is ready for operation (no error)
Open : Servo amplifier is not ready for operation (If there are errors, during start-up
phase or if there is no supply voltage.)

4.2.5. Hardware-Enable

Connecting +24 V DC to the “Hardware-Enable” input activates the power stage if the servo amplifier operates in “Stand-Alone” mode. The servo amplifiers begins immediately to work in the actual operation mode.
Attention! The motor might move directly after switching on the “Hardware­Enable” signal.
Switching off the “Hardware-Enable” signal deactivates the power stage.
Attention ! The motor will be decelerated only by friction in this case. In field bus mode or on using the user interface software the “Hardware-Enable” signal has to be activated. The motor can not be moved otherwise.
The “Hardware-Enable” signal controls an eventually existing motor brake at the same time.

4.2.6. Machine Switches

4.2.6.1. Stop-Input
The Stop function will be deactivated by connecting +24 V DC to the stop input. An open input or 0V at the stop input stops the motor movement immediately with maximum current. The function works independently on the actual moving direction. The internal current set value will be set to “0” if the servo amplifier works in the current controller mode – the motor will be decelerated by friction in this case.
If the servo amplifier is currently in a homing procedure a procedure error will be generated.
The behaviour of the servo amplifier for an occurring stop event depends on the actual operation mode:
Current control mode: The parametrized current set value becomes active again.
Speed control mode : The servo amplifier starts the movement with the parametrized
speed again.
Position control mode : The interrupted sequence can be restarted by setting the start
command again (bit in control word)
Homing mode : After RESET of the procedure error the homing procedure can be
restarted.
MSD4 V1.016
Loading...
+ 36 hidden pages