The coolingmeans keeping theroom temperaturelower than outsidetemperature.AS
shown Fig.1-1,operate tocarry the heat from the room with a lower temperature(28”C,
82”F)to the open air with a higher temperatureis required.
heat cannotmove from alowtemperaturesidetoahightemperatureside.So, to
transmittheheatasoppposed tothislaw(principle),some way(apparatus)is
necessary.
That is, a heat pump(chiller) isused topumpout thehear fromlow
temperature one asifawater pump isused todraw upthewater from adeep well.
But, in the nature,the
IUl~CAI I-IUGU-I-U
COOLING LOAD
(82 “F)(90 ‘F)
AIR CONDITIONER
FIG .1-1 HEAT FLOW
+
HEAT FLOW
–2–
Page 6
The typicalc+illerusing an electricas a operation
curry the heatin Fig.1-2is an electricturbo chiller
heatenergyis an absorptionchiller.
power source as a conveyerto
and the typicalchillerusing a
Chilled wateris made by using the latent hear released byaliquid asitevaporates.
We can find this principlethrough our experiencein a daily life.
having aninjection,afterapplyingas alcoholfor disinfectionon the arm, we feel
thepartofarmcool..
heat from thearmwhen itevaporates.
we sweatin a hot dayorbytaking exercise.
automaticallycontrolledby theevaporationof sweat which takes theheat fromthe
absorbingthe vaporized solution.To recover
concentratingProcess of theabsorbentis required.
naturalgas, steam or hot water.
A chilleralso uses an latentheat of evaporation
chiller.
absorbent decrease
Because. the alcoholis heated by body's temperature.took the
And another sampleis that we feel cool when
Because, thebody temperature
But in a chiller,itis
theabsorption power whenitbecomes dilutedsolutionby
the absorptionpower, the heatingand
Asheat sourceitisused by
For example, when
For thispurpose,the
n
:&KOWEIJ:PERATIRESIDE
I
A GRAINOF HEAT
FIG .1-2HEAT FLOW AT CJ30UNG
iv
HIGHERTEt4PERATuRE
ENERGY
SIDE
–3–
Page 7
(2) TI-E PRlNCIPLEOF ABSORPTION
Installheattransfertubesin a closedvessel and put a dry silicagel(Silicagelis
high qualityabsorbent material)initas shown Fig.l -3.
vessel tomakeavacuum
with the pressure
of approx. 6.5mmHg (1/4inchHg).Drops of
water are allowed to fall on the heat transfertubes (Evaporator).
vacuum vessel evaporatesat5-C (41 ‘F) .
refrigerantvapor,itisdilutedand decreases
chilled water can not be obtained.
in continuously.
At thisstage,thedilutedsolutionisheated bydrivingheat
to fall(Absorber)insidethe vessel.The LiBr
But, when the absorbent once absorbs the
abilitytoabsorb.Resultinginthe
This means that concentratedsolutionmust befed
source (natural gas, steam orhot water:Generator). The heat causes thesolution to
releasetheabsorbedrefrigerantand also
reconcentratesthesolution.
The refrigerantvapor which is relasedfrom the solutionwhen heatedis cooledin a
seperate vessel (Condenser) tobecome
liquid refrigemnt.
Drops of thiswaterare
again introducedinto the vacuum vessel and recyled.This is shown Fig.l -5.
COOLIN
WATER
e~R;ING
FIG.1-5
Put@
C=
SOUCE
Page 10
(3]SINGLE EFFECT TYPE(BASICCYCLE)
AS *Fig.l -6.
absorption chiller.
shows an evaporator
Cooling water flows
condenser—cools the
cooling waterin the absorber absorbs the heat when the refrigerantvaporis absorbed
by theabsorbent.
The generator0heatsthedilutedsolutionby drivingheatsource.
solutionreleasesthe refrigerantvapor and becomes theconcentratedsolution.
Atthe condenser (2),the refrierant vapor which came from thegenerator condensed by
coolingwater.
The condensed refrigerant drops onthe heat transfer tubes ofevaporator(3).Drops
of the refrigerantevaporate on the tubes.
of evaporatoris cooled by thelatentheatof vaporized refrigerant.
f--=--n
,—. .
The waterThrough the heat transfertubes
The diluted
/?h@
COWING1-,-
c=-&-=s/.””-w
WATE
~.\
I*-=
d
‘----’’--”=44 ~
CHILLED
WATER
WATER
(“~>”‘“‘WATER
COOLING
FIG.1-6
—7–
Page 11
(4) DOU8LEEFFECT TYPE
In case of the singleeffecttype absorptionchillermentioned above
heat when the refrigerantvapor coming from generatoris cooled and
allcondensation
condensed at the
condenser,is releasedin the coolingwater.
The double effecttypeabsorptionchillerisused
The generatorsectionisdividedintoahigh
temperaturegenerator.
The refrigerantvapor
generatoris used to heat the LiBr solutionin the
temperaturegeneratorandalow
producedbythehightemperature
low temperaturegeneratorin which
heateffectively.
the pressure(hence the boilingpoint)islower.
As mentionedin thesingleeffecttype,the refrigerantvaporproduced by thelow
temperature generator issent tothe condenser
to become liquidrefrigerant.On the
otherhand, the refrigerantvapor produced by the high temperature generatorturnsto
water as itreleasedheat to theintermediateLiBr solutitn.
heat transfertubes in the low temperaturegenerator.
The refrigerantvapor produced
This occursinsidethe
by both low and high temperaturegeneratorsturnstoliquidrefrigerantand mixes in
thecondenser beforereturningtotheevaporator.
In thisstep,the dilutedsolutionis heated by drivingheat sourceby thelatent
heatintherefrigerantvaporwhich otherwisewould be releasedintothecooling
water.
This combinatiom means a lower energy consumption of drivingheatsource.
Moreover, lessheatbeingdiscardedintothecedingwatertranslatesintoa small
cooling tower.As shown Fig.1-7.
‘~‘-\aGENERATCR
LDW TEMPERATL8?E
@-x~‘-
DRIVING
HEAT
–8–
Page 12
(5) COOLIKWATER
Cooling water flows through an absorber and a condenser.
The cooling water takes the heat which the LiBr solutionabsobsthe refrigerantvapor
at absorber.
This means the aborbentis cooled by cooling water.
The refrigerantvapor from the generatoris cooled by cooling water.
The lower temperateof cooling water
a)
The absorptionpower ofLiBr solutionisstrongatthelowertemperature
coolingwater.
condensed temperatureofrefrigerantdowns.
low.
AS the boilingtemperature(generatortemperature)of the LiBr solutiondowns
temperature lower then 42C (108F) with concentration of60%
lower than 17C (63°F).
Chiller has some problems when cooling watertemperaturebecomes too high
c)
When the temperatureof the coolingwaterbecomes high,the absorptionpower ofthe
LiBrsolutiondecreases.
temperatureand wastesmuch fuel.
The chillercannotgetthenormalchilledwater
Therefore.topreventthis,themaintenancefor
cooling water system (equipmentand control)and water treatmentarerequired.
ofthe
islow.
becomes
lhatis,the
atthetemperature
d)
Water treatmentof
cooling water
The water treatmentof the cooling wateris an important factorfor the chiller.If
the water qualityis no good, scale adheres to theinside of the heattransfertubes,
resultingin the decreasestransferheat effectand waste fuel.
Astheheattransfer
tubes may become corroded,itisrequiredto fully take careof the watertreatment.
ltis experiencedin a daiily lifethatthe wateris boiled(evaporated)at100C
(212”F)in theatmosphericpressure.
pressure
between the pressure
Ihe
Therefore,theinsidethe chillershould be always keptin high vacuum.
refrigerantis evaporated at 5C (41 oF) to get the chilledwater of 7C (45F)by an
absorptionchiller,
6.54mmHg(1/4inchHg) in the evaporator.
(
wateris evaporated atlower temperature,when the pressure
When explainingthe vacuum
vacuum), the water boiled below 100C (210”F).Table 1-1 shows the relation
and the evaporationtemperature.
itisrequiredto keep a high-vacuum conditionwith
Table 1-1
Gauge
pressurepressure
kgh’e
(psig)
Absolute
mldk
(inchM)
for the absorptionchiller.itis requiredto
and the
When the pressure
Thispressure
less than atmospheric pressure
evaporationt.emperature o thewater.
is lower than the atmospheric
iscalledatmospheric
is called
islower and lower.
Sinesthe
Pressure
of
10(142)
8(114)
Atmospheric
pressure1(14.2)
u
1 ata.
n
Yacmm
5( 71)
0.5 ( 7.2)
o(o)760(29. 9)
Driving pressurefor double effecttype
Driving pressurefor singleeffecttype
Atwpheric pressure
525.9 (2&3/4)
61.0 ( 2-3/8)Pressurein the condenser
9.2 (3/8)
6.54(1/4)Pressurein the waporator
I
I
–lo–
Page 14
(7)LITYIUMBROMIDE (LiBr: ABSORBENT)
Lithium bromide (LiBr)is a medicine made from lithium obtained from lithiumore and
bromide obtained from the sea water.
with sodiumchloride(NaCl) .
Because lithium(Li)and sodium (Na) are alkaliwhile
brumide (Br) and chlorine(Cl)are halcgen.
The lithium bromide has the same characteristic
the sodium chloride(Ml)is salt.It
is well known that when saltis leftin a high-humidityatmosphere. it becomes sticky.
This means it absorbs moisturein the atmosphere.
Thelithium bromide has the same
characteristicsand itsabsorptionpower is Stronger than thatof salt.
itsconcentrationand the lower itstemperatureof liquid. thestrongerthe absorption
power.
Fig.1-8shows the lithium bromide equilibrium diagram.
Fig.1-9shows the lithiumbromide concentration diagram.
Fig.1-l0shows the lithium bromide DUhring diagram.
This chartis convenient to show
theconditionof the coolingcycleof lithiumbromide solution.
Fig.1-l1shows the lithiumbromide enthalpy diagram.
Ihe higher
Lithium bromide has corrosiveactionto a metal under existingoxygen.
absorption chilleris a vacuum vessel, almost no oxygen is in a vessel.
But, as the
However, to
make more complete,corrosioninhibitorisaddedintheabsorbentandfurther
alkalinityis adjusted.
So, attention shouldbe taken to handle the absorbentand it
isnecessaryto keep the amount of inhibitorby performingthe chemicalanalysisfor
theabsorbent.
Chemical formula : Li13r
Molecular weight : 86.856
Component
: Li= 7.99%
Br=92.01%
Specific gravity: 3.464 at25C(77”F)
Melting
Boilingpoint : 1,265C
point :
549C( 1,020.2”F)
(2,309Φ)
–11–
Page 15
(“F)
2!2
200
(“c)
I 00
17!5
150
125
10C
5(
x
80
60
40 ‘
20
0
-20
-lo
-2!
-4(
-5’
-7
-40
-60
-80
10
20
CONCENTRATION(X)
FIG.1-8LIBR
30
EOILIBRI~DIAGRAM
40
50
60
–12–
Page 16
TEMPERATURE
1.90°
1.85
1.80
1.75
1.70
3250
10
-
75
I
I
100
I
125
I
150
I
2030405060708090
II
175
I
1
200212(”FI
I
1OO(”C)
I
67
66
65
64
63
62
61
60
I
1.65
1.60
1.55
1.50
1.45
1.401
59
58
m
57
56
l=+
1
I
55
54
53
52
-1
51
50
49
48
47
46
45
0
102030405060708090
100[”CI
325075
FIG.
100125150
TEt@ERATURE
1-9CDNCENTRATICNDIAGRAM
–13–
175
200212(”F)
Page 17
;::
500
400
300
200
160
!cm
f30
50
40
30
‘z
J21
20
10
8
5
0
32 40
102030405060708090
60
80
100
120140160
TEMPERATURE
FIG.1-10
180200
DUHRINGDIAGRAM
100110120
220
240
260
130
280
140
150
160
300320
170(”C)
338(°F)
Page 18
150
140
130
120
110
—160
100
90
k-.
80
70
60
170
50
40
40
4550
FIG.1-11ENTHALPY DIAGRAM
55
CONCENTRATION(%)
–15–
60
65
70
Page 19
r
(8) COOLING CYCLE
An example for the actualdrivingcycleof double effecttype is explainedusingthe
Duhringdiagram.
ABshows theabsorption processin theabsorber.
a)
The absorbent withconcen-
trationof 63.6% at point A absorbs the refrigerantvapor from the evaporatoras itis
cooleduntil36.3-C (97.3”F)by coolingwater,thenbecomes dilutedsolutionwith
concentrationof 58.1% atpointB.
The pressure of thispointis 6.31mmHg(torr) which is equalto the saturationvapor
pressure of water at 4.3C(39.7°F)(crosspointon
the chilledwater at 7C (44.6°F)can be produced in
Therefore,thehigherthetemperatureof the cooling
internalpressure(equaltotheevaporatorinternal
evaporationtemperatureofrefrigerantbecomes high
the saturationliquidline) , so,
the evaporator.
water,the highertheabsorber
pressure) .
As a result,the
and chilledwatercannotbe
obtained.
B+C+D”shows the temperaturerise
b)
process under the fixed concentrationwhen
the dilutedsolutionpass through thelow
D’+D+E showstheheatingand concentratingprocess inthehigh temperature
c)
generator..
The dilutedsolutionat pointD’ is heated untilpointD.
therefrigerantvaporand
isconcentrated.Then itbecomes theintermediate
It releases
solution of61.1% at pointE and finishesthe firststage of concentrating.
The pressure at point E becomes approx. 707.lmmHg(torr).
thepressureof55.7mmHg(torr)inthecondenser
temperatureofcoolingwater.
Thatis,thepressureinsidethelow temperature
determiningitaccordingtothe
(This pressure
depends on
generatorhas to be performed atthe temperaturehigherthan 91.1C(196”F)of the
concentratedsolutionobtainedfrom thecrosspointwiththeconcentratedsolution
of 63.6%.Whensetting to 97.9C(208.2“F) by making this as AT 6.8C(12.2”F), the
pressure of the high temperaturegeneratorbecomes 707.lmmHg(torr).
d)
--16–
Page 20
e
absorbentwith 61.1% atpointF’is heated by the refrigerantvapor from the
temperaturegenerator.
concentrationrises,and itbecomes the concentratedsolutionof 63.6%.thus
second stageof theconcentration isfinished.
As aresult.
therefrigerantvaporisgenerated.
F+F+Gshows the
The
high
the
the
conce
The pressure at point G is determinedby the temperatureof the cooling water.
the condensation temperatureof 40.2C(104.4”F).the
Asdescribedabove,itcanbeunderstoodthatthecycleof the absorptioncooling
system depends onthe temperaturecondition (partiallydertermination element from the
takingout temperatureof the chilledwater).
With
pressureis thesaturatedvapor
thecoolingwater,thenstartstoabsorbthe refrigerant
–17–
Page 21
w
-1
cl
z
-1
t-
ti
-.—
v,
m“
.,
CfJ
u
e
C6
u
—18—
.-,
m
It+
Page 22
HEATING CYCLE
(9)
The dilutedsolutionisheatedin the high temperaturegenerator.
The refrigerant
vaporisreleasedfrom absorbent.
The refrigerantvaporflowstoabsorberthroughthechangeovervalve.
refrigerantvapor
condenses on the heat transfertubes of evaporator.The condensed
!WATER ALARM
!ocHvTRm’.
:0 CH/NT W FLIX RATEO
~Ot?JWTEMp.
;O CO W FLIX RATE O BURNDi BLOWERO
\oHTwTEMP.
OPERATIONREtORD
0 C/H OPERATION
0 C/H ON-OFF
0 REF. PUMP OPERATION ,....................
0 COHINJSTION
MOTOR ALARM
0 REF. PUMP
Ail AK. PUMPO
0 112A6$. POMPO
OCHWTENP.::
OHTWTEUP.[j
.........................
v .... .. . .. . . . . . ... .
GENERATORALARM
PRESSORE
o
SOLUTIONLEVEL
TFNPXDNCENTNATIONO CM PRFMJN.E !
EXHAUSTGAS TEMP.
Cz..:@.;
SET POINT~
,,
:;
::
.. .... ....
;TOP RUN
00 CHILLER/HE4TER
O0 REF. POMP
O0
#l ABS. PUMP
o0 #z Ms.
00
00 BURNER BLOWER
SYSTEM AL4RN (1NTERLOCK)
0 CH W FUMP
o co w FunP
0 AIR FAN
PUMP
PURGE PIMP
CD -:
,.CZ3 ;-ma.:
:,
...........
~o COOLINC
;0 HEATIM
......... . .
-----.---------l––--i
OPERATION REMOTE
r––nc––~..
STOP
r-––l~–’1j
COMBUSTIONALAN ;
O AIR FLOW~
O FLAKE FAILURE ;
0 BURNER
0 ALARM
IEZER STCP
————.
——
.........
... ....
!-CD
FIG. 2-1Typical C&rationBoard
A
Page 44
(i) Monitor
This areahas some indicationlamps (Red)which indicatetemperatureof several
points,operatinghours,
temperature,anddigitaldisplay(Red)whichindicatesdataoflighteditem.
lamps (Green) and some “STOP" indication1amps
the equipment.
@ Alarmindicator
The indicationlamp
flickerswhen the chiller/heaterhas abnormal condition.
@ Alarm itemindicator
The indicationlamp
@ Operation mode modekey
indicatesalarmitem.
There arekeys forchiller/heatercperation.
@ Alarm buzzer stop key
Thereisbuzzerstopkey when theabnormal conditionofthe
chiller/heater.
—41–
Page 45
( 2) INSTRUCTIONOF KEYS
“ SELECT”
I
For the use of item selectionfor display.
The item is displayedin sequence
Change the item automaticallywhen
by push the key.
Youpushthe key continuouslymore
than1second.
“A”For the use of change of settingPoint.
Settingnumber isincreasedby push the key.
Increase
the number automaticallywhen You push the key continuously
more than 1 second.
“v”
For the use of change of settingpoint.
Settingnumber is decreased
bythekey.
Decrease the number automaticallywhen YOUpush the key continuously
more than lsecond.
“ OPERATION”
Operate the
chiller/beaterby localmode.
The chiller/heaterdoes not operate when the mode is set“Remote”.
The indicationlamp on “OPERATION”key flickerswhen the male is set
“Local” .
For the chiller/heateroperation,You must push the keymore than
1 second ccntinuously.
This is protectionof the chiller/heater.
Please Push the key continuouslyuntilflickerthe indicationlamp on
thekey.
“ STOP”Stop the chiller/heaterby localmode.
“STOP” key is accepted on eithermode of “Local” and “Remote”.
The indicationlamp on “STOP” key flickerswhen the stop signalis
accepted by push thekey.
For thechiller/heaterstop,You must push thekey over1 second
continuously.
Thisisprotectionof the chiller/beater.
Please push the key continuouslyuntilflickerthe indicationlamp on
thekey.
“
LOCAL”For the use of operation
on of the chiller/heaterby “OPERATION”key on
theoperationboard.
not operate.
does
remote panel.
“ REMOTE”
When the mode isset
“Remote”,
the chiller/heater
For the use of operationof the chiller/beaterby
“OPERATION”key is not accepted on “Remote” mode.
“ BUZZER STOP” Fortheuseofstopofalarmbuzzer when the
buzzersounds by
abnormal conditionofthechiller/heater.
I
-–4 2–
Page 46
2,2TEMPERATURESETTING
(1)
DETAILOF MONITOR
I
TEMPERATURE
● GENERATOR
C) EXHAUSTGAS
0CH/HT W OUTLET
C) CO W
INLET
OPERATIONRECORD
() C/H OPERATION
() C/H ON-OFF
0REF. PUMPOPERATION
0
COMBUSTION
0BURNER
ON-OFF
SET POINT
0CHWTEMP.
0HTW
TEMP.
● ‘F
I
:z
The data is displayed on the digitaldisplayby “SELECT”key.
indicatedby indicationlamp of item.
The dataon thedigitaldisplayisreturnedto generatortemperatureafterapprox.
1minuteautomatically.
Fig. 2-2is shown generatortemperature.
The indicationlamp afterdigitaldisplaylights accordingto unitof item.
Unit of temperatureis “F ( Fahrenheit).
3.
FIG. 2-2Monitor
-0 HOURS
OSTARTS
The item is selectedby push on “SELECT”key.
C571
The selecteditem is
I
–43–
)
Page 47
(2) SEWN=(N TtE DGITAL DISPIAY
item is dimlwedin SEXWME
Sequene
K%%‘tiimtim1-
1Gek&;emPerature
Exhaust gas
2
(EXI-lAw GAS)
3Cb
4Cooling witer
5(%i 1lerkater
i 1led/hotwater
out let temeratum
(CHm w m)
inlettemperature
WINIXI’)
(CO
operatinghours:
(C/H CIPI33ATION)
temperature
Mmhka’.
Semmceikmsare as follows;
~leon the digitaldisplay
3
GG-=
(
300.0)
39
vwG
B
DGG
a
5.n
n
(
390.0)
(
44.0)
(
85.0)
( 1000)
6Nmber of Chiller/heater
ON-OFFtimes:
(cm O?wFlv
Refrigerantpmm
7
operatinghours
(R13?.FIRI!P0P13MTICN)
8
Combustion hours
(COMBUSTION)
9BAmberof burner
ON-OFFt ims
(Buwm a+Om
zD
(
3cE
(900)
9
sG
(
zDG
(200)
120)
950)
—44—
Page 48
Sequence
——.
10
——
11
Lighted indicationlamP
——
Chilledwater
temperaturesetting
for temperature
(CHW TEMP.)
Chilledwater
temperaturesettingPz-G
for proportional
(CHW TEMP.)
12
13Chilledwater
Chilledwater
temperaturesetting
for integral
(CHU
TEMP.)
_——
temperaturesetting
for differential
(CHWTEMP.)
Sample on the digitaldisplay
——.—
:B
[
d
4
4.D
Z2a
:
(t44.0)
2.0)
(P
—
I
(1800)
E
(d10)
14
Hot water
temperaturesetting
for temperature
k:
3
:-=
(HTW TIM’.)(t131.o)
15Hot water
temperaturesetting
for proportional
(HTW TEMP.)
—
‘-1-6-”-
17Hot water
DisplaysequencerepeatsNo.1thruNo.17.
Note) l.Itwill happen to display below number between No.1O and No.11.
This temperaturewhichis controlledthechilledwateroutlettemperatureby
externalcondition.
Hot water
temperaturesetting
for integral
(HTWTEMP.)
temperaturesetting
for differential
(HTU TEMP.)
“- ‘“””
..—.. ..—-.
——
F5-Z
(P6.0)
:
d
sG
(I50)~
3~
(d30)
~
I
J
~(c
2.Itwill happen to display below number
Thistemperaturewhichiscontrolled
externalcondition.
Thiserrormessageisindicatedtoreturnthepowerafterpowerfailureduring
operation( includedilutioncycleoperation).
The power failuremeans notonly power failure( includeover100millisecondpower
interruption)but also artificalpower turnoff the breaker.
If will happen to indicatethismessage when the breakeris turned on at firstafter
fieldwiring.
This errormassage
d
Sensorerror
(The message on the digitaldisplavflickers)
This errormassage isindicatedthe temperaturesensor trouble.
Chiller/heaterstopssafetywhen hightemperaturegeneratortemperaturesensor( DT3)
and chilled/hotwater outlettemperaturesensor( DT1) are broken duringoperation.
thechiller/heateroperatescontinuously,when othersensors(DT2,DT4, DT5, DT6 and
DT7) are broken.
PleasecalltoSanyo’s servicerepresentative.
~(~~r~)
Kind of errormessage
,----------------------------------------@ Error number SER-2 (DT2: Cooling water outlet)
_;:
I
10
~..;;,,
—,.....~;..,
is clearedwhen “OPERATION”key is Pushed.
But itis Possibleto controlbad condition.
.............-.
‘------------Indicatethe kind of errormessage
:----------------------------------@ Error number SER-5 (DT5: Condenser)
~------------------------------@ Error number SER-3 (DT3: High temp. generator)
—-------------@ Error number SER-4 (DT4: Low temp. generator)
1----------@ Error
—
‘---------------------------@ Error number SER-6 (DT6: Chilled/hotw.inlet)
...
numberSER-1 (DT1: Chilled/hotw.outlet)
● ---------@ Error number SER-7 (DT7: Cooling water inlet)
Note) Itis possibleto change the displavdata and *ttingpointon the digitaldisplav
Operation data can indicateon the digitaldisplayby “SELECT”key.
Thismassage flickerscontinuouslyafterchiller/heaterstop.
J
( CLE )
when theexhaustgas temperature is
combustion chamber.
Please calI to
–63–
Page 67
c) Power failureerrormassage duringoperation
This massage is indicatedwhen itis happen to power failureabove 100 milisecond.
The massage on thedigitaldisplayflickers.
Chiller/heaterstopsimmediately,when itis happen to power failure.
Chiller/heaterhasnodilutioncycleoperation.
operationafterreturnthepower supply.
d) Sensorerrormassage
The message on thedigitaldisplayflickers.
This errormassage isindicatedthetemperaturesensortrouble.
Chiller/heaterstopssafetywhen hightemperaturegeneratortemperaturesensor (DT3)
and chilled/hotwater outlettemperaturesensor (DTl) are broken during operation.
The chiller/heateroperatescontinuously,
DT7) are broken.
PleasecalltoSanyo’s servicereprsentative.
But itis possibleto controlbad condition.
when othersensors (DT2, DT4, DT5, DT6 and
Pleaseoperatedilutioncycle
Kind of errormessage
~--------------------------------@ Error number SER-5 (DT5: Condenser)
:,:
-
I
—~...... ;.-,
I*
~.............................. @ Error number SER-3 (DT3: High temp. generatOr)
,,
f..;~,,
‘---------------------------@ Error number SER-6 (DT6: Chilled/hotw.inlet)
......... ....,
‘------------Indicatethe kind of errormessage
-------- @ Error number SER-2 (DT2: Cooling water outlet)
_.......------ @ Error number SER-4 (DT4 : Lowtemp. generatOr)
............... @ Er
—
● -------- @) Error number SER-7 (DT7 : Cooling WZik.rinlet)
rornumberSER-1 (DT1: Chi1led/hotw.outlet)
–64–
Page 68
(4) (XINfKTCfNTME C#RT
———
———
———————
——————
Cooling
a)
m
u
+
a
u
r
\n
Cco
wl-
Arrl
-1
x
L1
Ciz
0C3
l-UJCJ-J
2
—
UJz
d
C_)m
>.+
CJl
I
Zln-
0
-x:
l-o(n
==
-In-
-n;
O<NW
J
-—.
-1
0
K
l-<
Zu.1
0=
v-x
-—— —
.- u-l
.
——— ——— —
-——
-——
*
l––––––––––––--
(
—-
——
—-
—
——-
UJ
0
0
z
(3
z
l-u
Diz
<0.
l--
Inul
——— —-——
In
Ci
u
In
0
.
4
——— ——— —
-——————
——— ——— —
zu)
w
n
0c-l
———— ——
o
L
1-
a
=
.—
-0
on
Wli
u-ll02
ti -
——-
.——
w
0
J
——
-——
———
0
1-
Z
0
——
c
u
F
❑
:
cl:
UJu
ml-
In:
e-
——
w
>
0
0Lz
60
l-zurn
old
-1-1
-0
am
—.
IL
(IIZ3
<x<
au-l>
-—— —
n-
u+
4
z
IA
(i
m
a
—6 5—
Page 69
b
——————
—————
b) Heating operation
Oi
u
t<
w
1
\n
Cro
uJlJln
-1
5
.—— ——— —
.—— —
——— ———
——-——
nz
Ou
l-UJUJ
-1
a
_t_ _
v
w
m
In
v
w
m
0
.
.
-——————-
.—————
—
———
Q
>
(
.—— ———
-—— ———
-—— ———
———— —-
——— ——— —
0
w
1-
a
=
.——
——————-
-—————
——
o=
IJJu
lnl-
Oz
e-4-
U(Y
Ww
u)l-
Inz
z
1
0
w
1-
i
-——
———
—-—
Id
x———— ——
1-
4
n
>
1-
c-
N
Ci
IA
1
l--
U-J(JI
u
2
0
&w
l->
(n
-1
v
—66—
z
0
1-
Z
C5
G
l-z
Ow
-1-1cIY3_l
-o
&mCLIm>=
IL
0
wm
i->a
axae
u+
CY
w
3
0
z
w0
n
0
Cn z-1
eoa
au>
Page 70
(5) CONTROLTIME CHART
a) Dilutioncycleof coolingmode
Operation time of dilutioncycle
Low combustion
CombustionON
OFF
#1 ABSpumP ON
OFF
#z AK pumP ON
OFF
RI?FpumpON
OFF
Chilled/hotON
water PumP
OFF
Cooling
ON
water PumP
OFF
stop
FIG.2-8
10 —-––––––––––––––––––––
z
:7.5—
l-d
t-
5
100’ c
212’F
125” C
257” F
I
I
I
1
I
I
150” C155° C
302° F
311’F
GENERATORTEMPERATURE
FIG.2-9
–67–
Page 71
Diluticn cycle of halingmock
b)
I Lowcombustion
CQmbstial
m
cm
#lA13SKlnnpoN
OFF
~illed/hotON
waterRnlul
m
4min.
Stop signal
FIG.2-10
c) Restarttiingdilutimcycleqti(n
It is possibleto restartduringdilutioncycleoperation.
+
Chiller/heaterstop
—68—
Page 72
(6 )MAXIMUMINPUT CONTROL( COOLING OPERATION)
Gas controlvalveiscontrolledforchiller/beaterprotectionby coolingwaterinlet
temperaturewithoutspecification.
Maximuminput is decreased, when cooling water inlettemperatureis below 28°C (82 .4F)
orabove33°C (91 .4F).
Once a cooling seasonwhen the chiller/heateroperateswithin 20 hours Per day
1
and within 3 monthes of cooling season.
Once 3 monthes, when the chiller/heateroperates within 20 hours per day and over
2
3 monthes of cooling season.
(Once aweek incooling season, when thechiller/heater has24 hours operation..
A
/
/
PALLADIUM
CELL
V2
operate thepIrgerm-lP.
Opm the No.1 ~valve(VI).
&cklheattaMvacunn~W
(Vacuum is below 4 red-k)
the No.2 purge valve (V2) for 1 minute.
the No. 2 purge valve (V2).
Clcse
the No.3 purge valve(V3) for 30minutes
Close
close
<Before heating operation>
the No.3 purge valve(V3).
tooperate thepurge pump for30minutes.
the No.1 purge valve(VI).
thepurge pump.
manclmti.
oM=atetimmzePJmP.
2Open theNo.1 purge value(V1).
3 Open the No.2 purge valve (V2) for 1 minute.
4Close theNo.2purge value(V2).
5 Open the No.3 purge valve (V3) for 10 minutes.
6Closethe No.3 purge valve(V3).
7Keep tooperate thepurge pump for30minutes.
8 close the No.1
9Stop the purge
purge valve(Vi).
mm.
‘r
PURGEPUMP
\
K
.
FIG.3-2PURGEUNIT
V3
r
SV2
/
/s”l
\vl
L
MANOMETER
\
PURGE
TANK
‘LIQUID
TRAP
.
Note)1.
2.
3.
4.
In heating
In heatingmode, pleaseclosetheservicevalvesformaintenanceand
manometer (Svl and SV2).
Never check the attainedvacuum in heating mode.
Please ofen gas ballastvalveuntilsounding exhaustgas.
The cooling water of theopen typerecycling cooling tower lowers the
the coolingwaterusing the heatof vaporizedlatentheat and is reused.As this
time,thewateris evaporatedand dissolved salts(hardness
sulfateion, etc. )m the waterwillincrease.
of wateroccur, and waterqualitywill be gradually degraded.
arealwaysm contactwitheach otherm the cooling tower,the sulfurousacidgas,
dust,earthand sand, etc.in the atmospherewill intrudeintothe coolingtower,
furtherdegrading thewaterquality.
Firstof all, waterqualitycontrolmethodis determineddue to theresultsof
analyzingthewaterquality.
The standardvalues ofwater qualitvareshownintable 3-lasanexample.And water
qualityshould be controlledwithinthe standardvalues.
the blow controlmethodin which all wateris replacedperiodicallyor wateris
continuously andforciblyreplacedas suppress
possibleand a methodin which waterprocessingchemicalsareput into the water
because ofthe poorqualitv of the make-up water orsaving the water.
Namely, the condensation phenomena
theconcentrationofwater asmuch as
component, chloride ion,
Asthe waterand air
The control method includes
of
—82—
Page 84
Table 3-1 Standard values of the water quality
CXilled/hotwater
CirculatingIkklke-up
X2 6.5~8. O
Itms
PH(25°C(77”F))
Electrical
conduct ivity
*ICoding water
Ck-passorMake-lm
Circulating
X2 6.5h8.0
—
800 or less200 or less500 or less
witer
X2 6.5~8.0
(25°CvS/cm)
M
alkalinity100 or less50 or less
(ppm)
Total hardness200 or less50 or less100 or less
.———
Chlorine ion
Sulfuricacid200 or less50 or less100orless
ion
Total ironl.Oorless0.3l.Oorless
(ppm)
200 or less50 or less100 or less
(ppm)
(PPm)
(PPm)
100 or less
————..—
Cor-
water
%2 6.5~8. O
ros ion
200or lesso
50 or less
50 or less
50 or lesso
50 or less
0.3
Tendency
Scale
o0
—
o
o
o
00
Sulfur ion
(Pm)
!mmniuo ionl.Oorless0.2 or less0.5orless0.2 or lesso
wculd be presmted as the m vatiwill increase while the wateris cirdatingm the
towerevmifthemvaluetemorarily~whm carkmic acid gas dkxolves into
ti~watiused.
arenoti@u&dinii—lestan&mkbecause the tolerzxmatwhich faihmsmay r-esdt
are not definite,freecarbonicacid, manganese,residualchlorine,etc. do serveas
corrosivefactors.
(Note 2)
IWhitemofthestandadvalueshasastrmgtxziringcnthefailuretitocorrcsim
or scale and if
assumedthatcorrosionor scaletendsto be caused,therefore,theseshouldbe
periodicallycontrolled.
(Note 3)
As the rangeof the qualityof waterwhich may becomeuseableif the wateris
proc==ddiff~dtxx=ndingcn the Chemimls to be WXXI,itis not given here.
&sitableto =tthe am-opriatewater qditycrntrml values under the @&ncP, of a
waterprocessingspecialistperiodicallycontrolit.