MAXIM MXL1544, MAX3175 User Manual

General Description
The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply in conjunction with the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423), and V.35 protocols. The MXL1544/ MAX3175 transceivers carry serial interface control sig­naling, while the MXL1543 carries the high-speed clock and data signals. Typically, the MXL1543 is terminated using the MXL1344A. The MAX3175 is identical to the MXL1544 except for the addition of a 10µs (typ) glitch rejection circuit at the receiver inputs. The MXL1544/ MAX3175 are available in 28-pin SSOP packages.
Applications
Data Networking
CSU and DSU
Data Routers
Switches
PCI Cards
Telecommunication Equipment
Features
MXL1544/MAX3175, MXL1543, MXL1344A Chipset
Is Pin Compatible with LTC1544, LTC1543, LTC1344A Chipset
Chipset Operates from a Single +5V SupplySoftware-Selectable DCE/DTE
Supports V.28 (RS-232), V.10/V.11 (RS-449/V.36,
EIA-530, EIA-530A, X.21, RS-423) Protocols
Flow-Through Pin Configuration
True Fail-Safe Operation
Low 0.5µA Shutdown Current (No-Cable Mode)
10µs Receiver Input Deglitching (MAX3175 Only)
TUV-Certified NET1/NET2 and TBR1/TBR2
Compliant
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
19-1992; Rev 0; 4/01
Typical Operating Circuit
Pin Configuration appears at end of data sheet.
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP. RANGE PIN-PACKAGE
MXL1544CAI 0°C to +70°C 28 SSOP MAX3175CAI 0°C to +70°C 28 SSOP
LL
CTS DSR RTSDTRDCD
MXL1544 MAX3175
D3
DCD B
R1
13
CTS A (106)
CTS B
R2R3
DSR A (109)
DSR B
R4
18 5 10 8 22 6 23 20 19 4 1 7 16 3 9 17 12 15 11 24 14 2
LL A (141)
DTR A (108)
DTR B
DCD A (107)
D1D2
RTS A (105)
RTS B
DB-25 CONNECTOR
RXD RXC TXDTXC SCTE
MXL1543
R1
R2R3
RXC B
RXD A (104)
RXD B
SG (102)
SHIELD (101)
RXC A (115)
D3D4
TXC A (114)
TXC B
SCTE A (113)
SCTE B
D1D2
TXD B
TXD A (103)
MXL1344A
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC= +5V, VDD= +6.8V, VEE= -5.6V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.) (Note 2)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
All Voltages to GND Unless Otherwise Noted Supply Voltages
V
CC
.......................................................................-0.3V to +6V
V
DD
....................................................................-0.3V to +7.2V
V
EE
........................................................................+0.3V to -7V
V
DD
to VEE(Note 1)............................................................13V
Logic Input Voltage
M0, M1, M2, DCE/DTE, INVERT, T_IN..................-0.3V to +6V
Logic Output Voltage
R_OUT....................................................-0.3V to (V
CC
+ 0.3V)
Transmitter Outputs
T_OUT_, T_OUT_/R_IN........................................-15V to +15V
Short-Circuit Duration.............................................Continuous
Receiver Inputs
R_IN_, T_OUT_/R_IN_ .........................................-15V to +15V
Continuous Power Dissipation (T
A
= +70°C)
28-Pin SSOP (derate 11.1mW/°C above +70°C) .........889mW
Operating Temperature Range...............................0°C to +70°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: VDDand VEE- can have maximum magnitude of 7.2V and 7V, respectively, but their difference cannot exceed 13V.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER SUPPLIES
V
S up p l y C ur r ent ( D C E
C C
M od e) ( D i g i tal Inp uts = G N D or V
) ( Tr ansm i tter s O utp uts
C C
S tati c)
VEE Supply Current (DCE Mode) (Digital Inputs = GND or V
) (Transmitters Outputs
CC
Static)
V
S up p l y C ur r ent ( D C E
D D
M od e) ( D i g i tal Inp uts = G N D or V
) ( Tr ansm i tter s O utp uts
C C
S tati c)
Internal Power Dissipation (DCE Mode)
LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN)
Input High Voltage V Input Low Voltage V
Logic Input Current I
I
CC
I
EE
I
DD
P
D
IH
IL
IN
RS-530, RS-530A, X.21, no load 2.7
RS-530, RS-530A, X.21, full load 95 120
V.28, no load 1 2
V.28, full load 1 2
No-cable mode, Invert = V
RS-530, RS-530A, X.21, no load 2.1
RS-530, X.21, full load 14
RS-530A, full load 25
V.28, no load 1
V.28, full load 12
No-cable mode 0.5 µA
RS-530, RS-530A, X.21, no load 0.6
RS-530, RS-530A, X.21, full load 1
V.28, no load 1
V.28, full load 12
No-cable mode 0.5 µA
RS-530, RS-530A, X.21, full load 300
V.28, full load 54
T1IN, T2IN, T3IN, T4IN ±10 M0, M1, M2, DCE/DTE, INVERT =
GND M0, M1, M2, DCE/DTE, INVERT = V
CC
C C
2.0 V
-100 -50 -30
0.5 10 µA
0.8 V
±10
mA
mA
mA
mW
µA
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VDD= +6.8V, VEE= -5.6V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.) (Note 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT, R4OUT)
Output High Voltage V
Output Low Voltage V
Output Short-Circuit Current I
Output Pullup Current I
OH
OL
SC
L
RECEIVER INPUTS
Receiver Glitch Rejection MAX3175 only 5 10 15 µs
V.11 TRANSMITTER
Open-Circuit Differential Output Voltage
Loaded Differential Output Voltage
Change in Magnitude of Output Differential Voltage
Common-Mode Output Voltage V
Change in Magnitude of Output Common-Mode Voltage
Short-Circuit Current I
Output Leakage Current I
V
V
V
V
ODO
ODL
OD
OC
OC
SC
Z
Rise or Fall Time tr, t
t
|t
PHL
t
PLH
PHL
t
PLH
Transmitter Input to Output
Data Skew
Output-to-Output Skew (Figures 2, 5) 3 ns
V.11 RECEIVER
Differential Input Voltage V
Input Hysteresis ∆V
Receiver Input Current I
Receiver Input Resistance R
TH
TH
IN
IN
Rise or Fall Time tr, t
t
|t
PHL
t
PLH
PHL
t
PLH
Receiver Input to Output
Data Skew
I
SOURCE
I
SINK
0 V
V
= 4mA 3 4.5 V
= 4mA 0.3 0.8 V
V
OUT
CC
= 0, no-cable mode 70 µA
OUT
-50 50 mA
Op en ci r cui t, R = 1.95k ( Fi g ur e 1) ±5V
R = 50 (Figure 1), TA = +25°C
0.5
V
ODO
0.67 V
ODO
R = 50 (Figure 1) ±2
R = 50 (Figure 1) 0.2 V
R = 50 (Figure 1) 3 V
R = 50 (Figure 1) 0.2 V
V
= GND 150 mA
OUT
-0.25V < V cable mode
R = 50 (Figures 2, 5) 2 15 25 ns
f
,
R = 50 (Figures 2, 5) 50 75 ns
­(Figures 2, 5) 3 12 ns
|
< +0.25V, power-off or no-
OUT
±1 ±100 µA
-7V ≤ VCM 7V -200 200 mV
-7V ≤ VCM 7V 15 40 mV
-10V ≤V
-10V ≤ V
(Figures 2, 6) 15 ns
f
,
(Figures 2, 6)
­(Figures 2, 6)
|
10V ±0.66 mA
A,B
10V 15 30 k
A,B
MXL1544 50 80 ns
MAX3175 10 µs
MXL1544 4 16 ns
MAX3175 1 µs
V
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VDD= +6.8V, VEE= -5.6V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.) (Note 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
V.10 TRANSMITTER
Open-Circuit Output Voltage Swing
Output Voltage Swing V
Short-Circuit Current I
Output Leakage Current I
Rise or Fall Time tr, t
Transmitter Input to Output
V.10 RECEIVER
Differential Threshold Voltage V
Input Hysteresis ∆V
Receiver Input Current I
Receiver Input Impedance R
Rise or Fall Time tr, t
V
t
PHL
t
PLH
t
PLH
O
T
SC
Z
f
TH
TH
IN
IN
f
Receiver Input to Output
t
PHL
|t
Data Skew
PHL
t
PLH
V.28 TRANSMITTER
Output Voltage Swing V
Short-Circuit Current I
Output Leakage Current I
O
SC
Z
Output Slew Rate SR RL = 3kΩ, CL = 2500pF (Figures 3, 7) 4 30 V/µs
t
Transmitter Input to Output
PHL
t
PLH
V.28 RECEIVER
Input Low Voltage V
Input High Voltage V
Input Hysteresis V
Input Resistance R
Rise or Fall Time tr, t
IL
IH
HYS
IN
f
RL = 3.9k (Figure 3) ±4 ±6V
RL = 450 (Figure 3) ±3.6
RL = 450Ω (Figure 3), TA = +25°C
0.9 x V
O
VO = GND, TA = +25°C ±150 mA
-0.25V < V or no-cable mode
RL = 450Ω, C
,
RL = 450Ω, C
< +0.25V, power-off
OUT
= 100pF (Figures 3, 7) 2 µs
L
= 100pF (Figures 3, 7) 1 µs
L
±1 ±100 µA
-250 250 mV
25 50 mV
-10V ≤ VA 10V ±0.66 mA
-10V ≤ VA 10V 15 30 k
(Figures 4, 8) 15 ns
MXL1544 55 ns
( Fi g ur es 4, 8)
MAX3175 10 µs
MXL1544 109 ns
MAX3175 10 µs
­|
( Fi g ur es 4, 8)
MXL1544 60 ns
MAX3175 1 µs
Open circuit (Figure 3) ±7V
RL = 3k (Figure 3) ±5 ±6V
VO = GND ±150 mA
-0.25V ≤ V no-cable mode
RL = 3kΩ, C
+0.25V, power-off or
OUT
= 2500pF (Figures 3, 7)
L
±1 ±100 µA
1.5 2.5
1.5 3
1.3 0.8 V
2.0 1.3 V
0.05 0.3 V
-15V < VIN < +15V 3 5 7 k
(Figures 4, 8) 15 ns
V
µs
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VDD= +6.8V, VEE= -5.6V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.) (Note 2)
Note 2: MXL1544/MAX3175 are designed to operate with VDDand VEEsupplied by the MXL1543 charge pump.
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0 50 100 150 200 250
V.28 MODE SUPPLY CURRENT (ICC)
vs. DATA RATE
MXL1544/MAX3175 toc04
DATA RATE (kbps)
I
CC
(mA)
DCE MODE INVERT = 0
FULL LOAD (RL = 3kΩ, C
L
= 2500) AND NO LOAD
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
PLH
Receiver Input to Output
t
PHL
(Figures 4, 8)
MXL1544 60 100 ns
MAX3175 10 µs
MXL1544 70 450 ns
MAX3175 10 µs
V.11 MODE SUPPLY CURRENT (ICC)
vs. DATA RATE
120
FULL LOAD, R = 50
100
80
DCE MODE INVERT = 1
(mA)
60
CC
I
40
20
NO LOAD, R = 1.95k
0
0.1 1 10 100 1000 10,000
DATA RATE (kbps)
MXL1544/MAX3175 toc01
(mA)
DD
I
V.11 MODE SUPPLY CURRENT (IDD)
vs. DATA RATE
10
DCE MODE
9
INVERT = 1
8
7
6
5
4
3
FULL, R = 50
2
NO LOAD, R = 1.95k
1
0
0.1 1 10 100 1000 10,000 DATA RATE (kbps)
MXL1544/MAX3175 toc02
(mA)
EE
I
V.11 MODE SUPPLY CURRENT (IEE)
vs. DATA RATE
10
DCE MODE
9
INVERT = 1
8
7
6
5
4
FULL, R = 50
3
NO LOAD, R = 1.95k
2
1
0
0.1 1 10 100 1000 10,000 DATA RATE (kbps)
MXL1544/MAX3175 toc03
-300
-100
-200
100
0
200
300
-10 0-5 5 10
V.11 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
MXL1544/MAX3175 toc10
INPUT VOLTAGE (V)
INPUT CURRENT (µA)
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
V.28 MODE SUPPLY CURRENT (IDD)
vs. DATA RATE
MXL1544/MAX3175 toc05
DATA RATE (kbps)
I
DD
(mA)
0
5
15
10
20
25
010050 150 200 250
DCE MODE INVERT = 0
NO LOAD
FULL LOAD, RL = 3k
Ω,
CL = 2500pF
0
10
5
20
15
30
25
35
010050 150 200 250
V.28 MODE SUPPLY CURRENT (IEE)
vs. DATA RATE
MXL1544/MAX3175 toc06
DATA RATE (kbps)
I
EE
(mA)
DCE MODE INVERT = 0
FULL LOAD, RL = 3k, C
L
= 2500pF
NO LOAD
-5
-2
-3
-4
0
-1
4
3
2
1
5
0 10203040506070
V.11 LOADED DIFFERENTIAL OUTPUT
VOLTAGE vs. TEMPERATURE
MXL1544/MAX3175 toc07
TEMPERATURE (°C)
DIFFERENTIAL OUTPUT VOLTAGE (V)
DCE MODE INVERT = 1 R
L
= 50
V
OUT+
V
OUT-
-10
-4
-6
-8
0
-2
8
6
4
2
10
0 10203040506070
V.28 LOADED OUTPUT VOLTAGE
vs. TEMPERATURE
MXL1544/MAX3175 toc09
TEMPERATURE (°C)
OUTPUT VOLTAGE (V)
DCE MODE R
L
= 3k
V
OUT-
V
OUT+
-10
-4
-6
-8
0
-2
8
6
4
2
10
0 10203040506070
V.10 LOADED OUTPUT VOLTAGE
vs. TEMPERATURE
MXL1544/MAX3175 toc08
TEMPERATURE (°C)
OUTPUT VOLTAGE (V)
V
OUT+
V
OUT-
DCE MODE R
L
= 450
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
_______________________________________________________________________________________ 7
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
V.28 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
5
4
3
2
1
0
-1
INPUT CURRENT (mA)
-2
-3
-4
-5
-15 -5-10 0 5 10 15 INPUT VOLTAGE (V)
V.10 TRANSMITTER RISE AND FALL TIME
vs. LOAD CAPACITANCE
3.5
3.0
2.5
2.0
1.5
RISE/FALL TIME (µs)
1.0
0.5
RISE
FALL
V.28 SLEW RATE vs. LOAD CAPACITANCE
18
16
14
MXL1544/MAX3175 toc11
MXL1544/MAX3175 toc13
12
10
8
SLEW RATE (V/µs)
6
4
2
0
020001000 3000 4000 5000
SLEW+
SLEW-
CAPACITANCE (pF)
MXL1544 LOOPBACK SCOPE PHOTO
V.11 MODE (UNLOADED)
T
IN
T
/
OUT
R
IN
R
OUT
MXL1544/MAX3175 toc14
MXL1544/MAX3175 toc12
5V/div
5V/div
5V/div
0
0 1000 1500500 2000 2500 3000
CAPACITANCE (pF)
MXL1544 LOOPBACK SCOPE PHOTO
V.28 MODE (LOADED)
T
IN
T
/
OUT
R
IN
R
OUT
MXL1544/MAX3175 toc15
4µs/div
5V/div
5V/div
5V/div
MXL1544 LOOPBACK SCOPE PHOTO
T
IN
T
/
OUT
R
IN
R
OUT
4µs/div
V.10 MODE (LOADED)
MXL1544/MAX3175 toc16
4µs/div
5V/div
5V/div
5V/div
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
8 _______________________________________________________________________________________
Pin Description
PIN NAME FUNCTION
1VCC+5V Supply Voltage (±5%). Bypass with a 1µF capacitor to ground.
2VDDPositive Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground.
3 T1IN Transmitter 1 TTL-Compatible Input
4 T2IN Transmitter 2 TTL-Compatible Input
5 T3IN Transmitter 3 TTL-Compatible Input
6 R1OUT Receiver 1 CMOS Output
7 R2OUT Receiver 2 CMOS Output
8 R3OUT Receiver 3 CMOS Output
9 T4IN Transmitter 4 TTL-Compatible Input
10 R4OUT Receiver 4 CMOS Output
11 M0 TTL-Compatible Mode Select Pin with Internal Pullup to V
12 M1 TTL-Compatible Mode Select Pin with Internal Pullup to V
13 M2 TTL-Compatible Mode Select Pin with Internal Pullup to V 14 DCE/DTE TTL-Compatible Input with Internal Pullup to VCC. Logic level high selects DCE interface.
15 INVERT TTL Inp ut w i th Inter nal P ul l up to V
16 T4OUTA/R4INA Transmitter Output/Inverting Receiver Input
17 R3INB Noninverting Receiver Input
18 R3INA Inverting Receiver Input
19 R2INB Noninverting Receiver Input
20 R2INA Inverting Receiver Input
21 T3OUTB/R1INB Noninverting Transmitter Output/Noninverting Receiver Input
22 T3OUTA/R1INA Inverting Transmitter Output/Inverting Receiver Input
23 T2OUTB Noninverting Transmitter Output
24 T2OUTA Inverting Transmitter Output
25 T1OUTB Noninverting Transmitter Output
26 T1OUTA Inverting Transmitter Output
27 GND Ground
28 V
EE
Negative Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground.
CC
CC
CC
. IN V E RT = H IGH r ever ses acti on of D C E /DTE for C hannel 4.
C C
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
_______________________________________________________________________________________ 9
Detailed Description
The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply and the charge pump from the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449, V.36, EIA-530, EIA-530A, X.21, RS-
423), and V.35 protocols. The MXL1544 or MAX3175 usually carries the control signals. The MXL1543 car­ries the high-speed clock and data signals, and the MXL1344A provides termination for the clock and data signals.
The MXL1544/MAX3175 feature a 0.5µA no-cable mode, true fail-safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against
excessive power dissipation. When activated, the ther­mal shutdown circuitry places the driver outputs into a high-impedance state. The MAX3175 deglitching fea­ture reduces errors in unterminated equipment.
The state of the mode-select pins M0, M1, and M2 determines which serial-interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers will be configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 is disabled and receiver R1 is activated. The INVERT pin state changes the DCE/DTE functionality regarding T4 and R4 only. M0, M1, M2, INVERT, and DCE/DTE are internally pulled up to V
CC
to ensure logic
HIGH if left unconnected.
Figure 1. V.11 DC Test Circuit
Figure 3. V.10/V.28 Driver Test Circuit
Figure 2. V.11 AC Test Circuit
Figure 4. V.10/V.28 Receiver Test Circuit
Test Circuits
V
OD
B
D
A
100
100pF
R
V
R
B
A
OC
R
15pF
DA
V
C
O
L
DAR
R
L
15pF
100pF
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
10 ______________________________________________________________________________________
Figure 5. V.11, V.35 Driver Propagation Delays
Figure 6. V.11, V.35 Receiver Propagation Delays
Figure 7. V.10, V.28 Driver Propagation Delays
Figure 8. V.10, V.28 Receiver Propagation Delays
Switching Time Waveforms
5V
B-A
D
0
V
0
-V
0
A
B
V
1.5V
t
PLH
50%
0
90% 10%
t
r
t
SKEW
V
0D2
-V
0D2
V
0H
R
V
0L
B-A
0
t
PLH
1.5V
3V
D
0
V
0
A
-V
0
1.5V
t
PHL
3V
0
t
f
f = 1MHz: tr 10ns: tf 10ns
V
DIFF
1/2 V
0
f = 1MHz: tr 10ns: tf 10ns
-3V
= V(B) - V(A)
INPUT
OUTPUT
1.5V
0
t
PHL
90%
t
PLH
-3V
50%
10%
t
f
t
SKEW
0
t
PHL
1.5V
3V
0
t
r
V
IH
A
V
IL
V
0H
R
V
0L
1.3V
t
PHL
0.8V
1.7V
t
PLH
2.4V
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
______________________________________________________________________________________ 11
The MXL1544/MAX3175s mode can be selected through software control of the M0, M1, M2, INVERT, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left floating will be internally pulled up to VCC- logic HIGH). If the M0, M1, and M2 mode inputs are all unconnected, the MXL1544/MAX3175 will enter no-cable mode.
Fail-Safe
The MXL1544/MAX3175 guarantee a logic HIGH receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. The V.11 receiver threshold is set between -200mV and 0mV to guarantee fail-safe operation. If the differential receiver input voltage (B - A) is 0mV, ROUT is logic HIGH. In the case of a terminated bus with all transmitters dis­abled, the receivers differential input voltage is pulled to 0 by the termination. With the receiver thresholds of the MXL1544/MAX3175, this results in ROUT logic HIGH.
The V.10 receiver threshold is set between -250mV and 0mV. If the V.10 receiver input voltage is less than or equal to -250mV, ROUT is logic HIGH. The V.28 receiv­er threshold is set between 0.8V and 2.0V. If the receiv­er input voltage is less than or equal to 0.8V, ROUT is logic HIGH. In the case of a terminated bus with trans­mitters disabled, the receivers input voltage is pulled to 0 by the termination.
Applications Information
Cable-Selectable Mode
A cable-selectable, multiprotocol DTE/DCE interface is shown in Figure 9. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial interface mode, the appropriate combination of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MXL1543. The serial interface protocol of the MXL1544/MAX3175 is now selected based on the cable that is connected to the DB-25 interface.
V.10 (RS-423) Interface
The V.10 interface (Figure 10) is an unbalanced single­ended interface capable of driving a 450load. The V.10 driver generates a minimum VOvoltage of ±4V across A and C when unloaded and a minimum volt­age of 0.9 ✕VOwhen loaded with 450. The V.10 receiver has a single-ended input and does not reject common-mode differences between C and C. The V.10 receiver input trip threshold is defined between
+250mV and -250mV with input impedance character­istic shown in Figure 11.
The MXL1544/MAX3175 V.10 mode receiver has a dif­ferential threshold between -250mV and +250mV. To ensure that the receiver has proper fail-safe operation see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.10 receiver has a typi­cal hysteresis of 25mV. Switch S3 in Figure 12 is open in V.10 mode to disable the V.28 5ktermination at the receiver input. Switch S4 is closed and switch S5 is open to internally ground the receiver B input.
V.11 (RS-422) Interface
As shown in Figure 13, the V.11 protocol is a fully bal­anced differential interface. The V.11 driver generates a minimum of ±2V between nodes A and B when 100 minimum resistance is presented at the load. The V.11 receiver is sensitive to differential signals of ±200mV at receiver inputs A and B. The V.11 receiver input must comply with the impedance curve of Figure 11 and reject common-mode signals developed across the cable (referenced from C to C in Figure 13) of up to ±7V.
The MXL1544/MAX3175 V.11 mode receiver has a dif­ferential threshold between -200mV and +200mV. To ensure that the receiver has proper fail-safe operation; see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.11 receiver has a typi­cal hysteresis of 15mV. Switch S3 in Figure 14 is open in V.11 mode to disable the V.28 5ktermination at the inverting receiver input. Because the control signals are slow (60kbps), 100termination resistance is generally not required for the MXL1544/MAX3175. The receiver inputs must also be compliant with the impedance curve shown in Figure 11.
V.28 (RS-232) Interface
The V.28 interface is an unbalanced single-ended inter­face (Figure 10). The V.28 generator provides a mini­mum of ±5V across the 3kload impedance between A and C. The V.28 receiver has single-ended input.
The MXL1544/MAX3175 V.28 mode receiver has a threshold between +0.8V and +2.0V. To aid in rejecting system noise, the MXL1544/MAX3175 V.28 receiver has a typical hysteresis of 50mV. Switch S3 in Figure 15 is closed in V.28 mode to enable the 5kV.28 termina­tion at the receiver inputs.
No-Cable Mode
The MXL1544/MAX3175 will enter no-cable mode when the mode-select pins are left unconnected or connect­ed HIGH (M0 = M1 = M2 = 1). In this mode, the multi­protocol drivers and receivers are disabled and the
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
12 ______________________________________________________________________________________
Figure 9. Cable-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector
C6
100pFC7100pFC8100pF
3
8111213
V
CC
5V
1µF
C1
C4 1µF
NC
V
NC
10
11
12 13 14
CC
10
11
12 13 14
3
1
CHARGE
2
PUMP
4
5
D1
6
D2
7
D3
8
R1
9
R2
R3
MXL1543
M0 M1 M2 DCE/DTE
1
V
CC
2
V
DD
3
D1
4
D2
5
D3
6
R1
7
R2
8
R3
R4
9
D4
MXL1544
M0
MAX3175
M1 M2 DCE/DTE INVERT
C3
4.7µF
DTE_TXD/DCE_RXD
DTE_SCTE/DCE_RXC
DTE_TXC/DCE_TXC
DTE_RXC/DCE_SCTE
DTE_RXD/DCE_TXD
C10 1µF
DTE_RTS/DCE_CTS
DTE_DTR/DCE_DSR
DTE_DCD/DCE_DCD
DTE_DSR/DCE_DTR
DTE_CTS/DCE_RTS
1µF
C9
GND
14
V
C13
C2 1µF
C5
4.7µF
1µF
MODE
V.35 RS-449. V.36 RS-232
28
27 26
25
24 23 22 21
20 19
18 17 16 15
28
V
EE
27
26 25 24 23
22 21
20 19 18 17
16
15
CC
2
V
EE
C12 1µF
C11 1µF
CABLE WIRING FOR
MODE SELECTION
PIN 18
PIN 7 N.C. PIN 7
4 6 7 9 10 16 15 18 17 19 20 22 23 24 15
PIN 21
PIN 7 PIN 7 N.C.
CABLE WIRING FOR
DTE/DCE SELECTION
PIN 25
MODE
PIN 7
DTE
N.C.
DCE
MXL1344A
DCE/DTE
M2
V
CC
LATCH
M1
21
M0
DCE
DTE
2
RXD A
TXD A
14
RXD B
TXD B
24
RXC A
SCTE A
11
RXC B
SCTE B
15
TXC A
TXC A
12
TXC B
TXC B
17
SCTE A
RXC A
9
SCTE B
RXC B
3
TXD A
RXD A
16
TXD B
RXD B
7
SG
1
SHIELD
DB-25
CONNECTOR
25
DCE/DTE
21
M1
18
M0
4
CTS A
RTS A
19
RTS B
20 23
10
22
13
CTS B
DSR A
DTR A DTR B
DSR B
8
DCD A
DCD A
DCD B
DCD B
6
DTR A
DSR A
DTR B
DSR B
5
RTS A
CTS A
RTS B
CTS B
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
______________________________________________________________________________________ 13
supply current is less than 10µA. The receiver outputs enter a high-impedance state in no-cable mode, which allows these output lines to be shared with other receiv­er outputs (the receiver outputs have an internal pullup resistor to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a high­impedance state, so these output lines can be shared with other devices.
Receiver Glitch Rejection
To improve operation in an unterminated or otherwise noisy system, the MAX3175 features 10µs of receiver input glitch rejection. The glitch-rejection circuitry blocks the reception of high-frequency noise (tB< 5µs) while receiving a low-frequency signal (t
B
>15µs) allow­ing glitch-free operation in unterminated systems at up to 60kbps. The MXL1544 does not have this feature and can be operated at frequencies greater than 60kbps if properly terminated.
Figure 10. Typical V.10/V.28 Interface
Figure 11. Receiver Input Impedance Curve
Figure 12. V.10 Internal Resistance Network
Figure 13. Typical V.11 Interface
GENERATOR
I
Z
-10V
-3.25mA
-3V
+3V
A
C
UNBALANCED
INTERCONNECTING
CABLE
3.25mA
V
Z
+10V
LOAD
CABLE
TERMINATION
A
C
BALANCED
GENERATOR
INTERCONNECTING
A
B
C
CABLE
RECEIVER
TERMINATION
A
B
C
CABLE
100
MIN
LOAD
RECEIVER
A
A
R5
30k
R8
5k
S3
R4
GND
30k
S4
B
B
C
10k
10k
S5
R6
R7
MXL1544 MAX3175
RECEIVER
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
14 ______________________________________________________________________________________
DTE vs. DCE Operation
Figure 16 shows a port with one DB-25 connector that can be configured for either DTE or DCE operation. The configuration requires separate cables for proper sig­nal routing in DTE or DCE operation. Figure 16 illus­trates a DCE or DTE controller-selectable interface. The DCE/DTE and INVERT inputs switch the ports mode of operation (Table 1).
The MXL1543 and MXL1544/MAX3175 can be connect­ed for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with an appropriate gen­der connector or a port with a connector that can be configured for DTE or DCE operation by rerouting the signals to the MXL1543 and MXL1544/MAX3175 using
a dedicated DTE cable or dedicated DCE cable. The interface mode is selected by logic outputs from the controller or from jumpers to either VCCor GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 17. Figure 18 illus­trates a dedicated DTE port using a DB-25 male con­nector.
Figure 15. V.28 Termination and Internal Resistance NetworkFigure 14. V.11 Internal Resistance Networks
A
A
R5
30k
R8 5k
10k
R6
MXL1544 MAX3175
RECEIVER
A
A
R5
30k
R8 5k
10k
R6
MXL1544 MAX3175
RECEIVER
S3
R7
R4
B
B
C
30k
GND
10k
S3
R7
10k
R4
B
B
C
GND
30k
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
______________________________________________________________________________________ 15
Table 1. Mode Select Table
PROTOCOL M2 M1 M0
Not Used (Default V.11)
RS-530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10
RS-530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10
X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10
V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28
RS-449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10
V.28/RS-232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28
No Cable 1 1 1 0 0 Z Z Z Z Z Z Z Z
Not Used (Default V.11)
RS-530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z
RS-530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z
X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z
V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z
RS-449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z
V.28/RS-232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z
No Cable 1 1 1 0 1 Z Z Z Z Z Z Z Z
Not Used (Default V.11)
RS-530A 0 0 1 1 0 V.11 V.10 V.11 Z V.10 V.11 V.10 Z RS-530 0 1 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z X.21 0 1 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.35 1 0 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z RS-449/V.36 1 0 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.28/RS-232 1 1 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z No Cable 1 1 1 1 0 Z Z Z Z Z Z Z Z Not Used (Default V.11)
RS-530A 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10
RS-530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10
X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10
V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28
RS-449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10
V.28/RS-232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28
No Cable 1 1 1 1 1 Z Z Z Z Z Z Z Z
0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10
0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z
0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z
0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10
DCE/
DTE
INVERT T1 T2 T3 R1 R2 R3 T4 R4
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
16 ______________________________________________________________________________________
Figure 16. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector
C6
100pFC7100pFC8100pF
3
8111213
V
CC
5V
1µF
3
1
C1
C4 1µF
10
11
12 13 14
2 4
5
6
7
8
9
CHARGE
D1
D2
D3
MXL1543
M0 M1 M2 DCE/DTE
PUMP
R1
R2
R3
C3
4.7µF
DTE_TXD/DCE_RXD
DTE_SCTE/DCE_RXC
DTE_TXC/DCE_TXC
DTE_RXC/DCE_SCTE
DTE_RXD/DCE_TXD
14
V
C12 1µF
CC
2
V
EE
4 6 7 9 10 16 15 18 17 19 20 22 23 24 15
C13
C2 1µF
C5
4.7µF
1µF
28
27 26
25
24 23 22 21
20 19
18 17 16 15
MXL1344A
DCE/DTE
21
LATCH
M2
M1
M0
DCE
DTE
2
RXD A
TXD A
14
RXD B
TXD B
24
RXC A
SCTE A
11
RXC B
SCTE B
15
TXC A
TXC A
12
TXC B
TXC B
17
SCTE A
RXC A
9
SCTE B
RXC B
3
TXD A
RXD A
16
TXD B
RXD B
7
SG
1
SHIELD
C10 1µF
DTE_RTS/DCE_CTS
DTE_DTR/DCE_DSR
DTE_DCD/DCE_DCD
DTE_DSR/DCE_DTR
DTE_CTS/DCE_RTS
DTE_LL/DCE_LL
INVERT
DCE/DTE
DB-25
4 19 20 23
8 10
6 22
5 13
18
CONNECTOR
RTS A RTS B
DTR A DTR B
DCD A DCD B
DSR A DSR B
CTS A CTS B
LL A
CTS A CTS B
DSR A DSR B
DCD A DCD B
DTR A DTR B
RTS A RTS B
LL A
C9
V
CC
1µF
M2 M1 M0
10
11
12 13 14
1
2
3
4
5
6
7
8
9
V
CC
V
DD
MXL1544
M0
MAX3175
M1 M2
DCE/DTE
28
V
EE
27
GND
26
D1
25 24
D2
23
D3
22 21
R1
20
R2
19 18
R3
17
16
R4
D4
15
INVERT
C11 1µF
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
______________________________________________________________________________________ 17
Figure 17. Controller-Selectable DCE Port with DB-25 Connector
C10 1µF
RXD
RXC
TXC
SCTE
TXD
CTS
DSR
DCD
DTR
RTS
INVERT
C6
100pFC7100pFC8100pF
3
8111213
V
CC
5V
1µF
3
1
C1
2 4
C4 1µF
5
6
7
8
9
10
11
MXL1543
M0
12
M1
13
M2
14
NC
DCE/DTE
V
CC
1
V
CC
2
V
DD
3
4
5
6
7
8
10
9
MXL1544
11
M0
MAX3175
12
M1
13
M2
14
NC
DCE/DTE
C3
4.7µF
C9
1µF
LL
M2 M1 M0
CHARGE
PUMP
D1
D2
D3
R1
R2
R3
D1
D2
D3
R1
R2
R3
R4
D4
GND
INVERT
28
C2 1µF
27 26
C5
4.7µF
25
24 23 22 21
20 19
18 17 16 15
28
V
EE
27
26 25 24 23
22 21
20 19 18 17
16
15
1µF
C13
C11 1µF
14
C12 1µF
V
CC
2
V
EE
4 6 7 9 10 16 15 18 17 19 20 22 23 24 15
V
CC
DCE/DTE
MXL1344A
M2
LATCH
M1
21
M0
3
RXD A (104)
16
RXD B
17
RXC A (115)
9
RXC B
15
TXC A (114)
12
TXC B
24
SCTE A (113)
11
SCTE B
2
TXD A (103)
14
TXD B
7
SGND (102)
1
SHIELD (101)
DB-25
FEMALE
CONNECTOR
5
CTS A (106)
13
CTS B
6
DSR A (107)
22
DSR B
8
DCD A (109)
10
DCD B
20
DTR A (108)
23
DTR B
4
RTS A (105)
19
RTS B
18
LL A (141)
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
18 ______________________________________________________________________________________
Figure 18. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector
C6
100pFC7100pFC8100pF
3
8111213
V
CC
5V
1µF
3
1
C1
C4 1µF
10
11
12 13 14
2 4
5
6
7
8
9
CHARGE
D1
D2
D3
MXL1543
M0 M1 M2 DCE/DTE
PUMP
R1
R2
R3
C3
4.7µF
TXD
SCTE
TXC
RXC
RXD
14
V
C12 1µF
CC
2
V
EE
4 6 7 9 10 16 15 18 17 19 20 22 23 24 15
C13
C2 1µF
C5
4.7µF
1µF
28
27 26
25
24 23 22 21
20 19
18 17 16 15
MXL1344A
DCE/DTE
M2
LATCH
M1
21
M0
2
TXD A (103)
14
TXD B
24
SCTE A (113)
11
SCTE B
15
TXC A (114)
12
TXC B
17
RXC A (115)
9
RXC B
3
RXD A (104)
16
RXD B
7
SG
1
SHIELD
C9
V
CC
C10 1µF
RTS
DTR
DCD
DSR
CTS
INVERT
1µF
LL
M2 M1 M0
10
11
12 13 14
1
2
3
4
5
6
7
8
9
V
CC
V
DD
MXL1544
M0
MAX3175
M1 M2
DCE/DTE
28
V
EE
27
GND
26
D1
25 24
D2
23
D3
22 21
R1
20
R2
19 18
R3
17
16
R4
D4
15
INVERT
C11 1µF
4
19
20
23
8
10
6
22
5
13
18
DB-25 MALE
CONNECTOR
RTS A (105) RTS B
DTR A (108) DTR B
DCD A (109) DCD B
DSR A (107) DSR B
CTS A (106) CTS B
LL A (141)
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable
Control Transceivers
______________________________________________________________________________________ 19
Pin Configuration
Chip Information
TRANSISTOR COUNT: 2348
PROCESS: BiCMOS
TOP VIEW
V
V
T1IN
T2IN
T3IN
R1OUT
R2OUT
R3OUT
T4IN
R4OUT
DCE/DTE
M0
M1
M2
1
CC
2
DD
3
4
5
MXL1544
6
MAX3175
7
8
9
10
11
12
13
14
28
V
EE
27
GND
26
T1OUTA
25
T1OUTB
24
T2OUTA
23
T2OUTB
22
T3OUTA/R1INA
21
T3OUTB/R1INB
20
R2INA
19
R2INB
18
R3INA
17
R3INB
16
T4OUTA/R4INA
15
INVERT
SSOP
MXL1544/MAX3175
+5V Multiprotocol, Software-Selectable Control Transceivers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information
SSOP.EPS
Loading...