This document contains advanced information and is subject to change without prior notice.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a
Maxim product. Maxim retains the right to make changes to its products or specifications to improve
performance, reliability or manufactur-ability. All information in this document, including descriptions of
features, functions, performance, technical specifications and availability, is subject to change without notice
at any time. While the information furnished herein is held to be accurate and reliable, no responsibility will
be assumed by Maxim for its use. Furthermore, the information contained herein does not convey to the
purchaser of microelectronic devices any license under the patent right of any manufacturer.
Maxim products are not intended for use in life support products where failure of a Maxim product could
reasonably be expected to result in death or personal injury. Anyone using a Maxim product in such an
application without express written consent of an officer of Maxim does so at their own risk, and agrees to
fully indemnify Maxim for any damages that may result from such use or sale.
is a registered trademark of Maxim Integrated Products, Inc.
All other products or service names used in this publication are for identification purposes only, and may be
trademarks or registered
trademarks of their respective companies. All other trademarks or registered trademarks mentioned herein
are the property of their
respective holders.
1.0: Description 13
1.1: Hardware Overview14
1.2: Support Tools18
2.0: Device Overview, Pin Assignments 21
2.1: Naming Conventions21
2.2: Pinout Diagrams22
2.3: Pin Descriptions (by Interface)27
2.4: Power and Ground Pins52
2.5: Pin List by Power Group55
2.6: Hookup Recommendations when Interfaces Are
Unused 57
3.0: Device Configuration 67
3.1: Reset67
3.2: Boot modes for the MMEs and the ARM67
3.3: Firmware Loader68
3.4: API Configuration68
3.5: Pin Multiplexing, GPIOs, etc.68
3.6: Debug Mode68
3.7: JTAG ID Register68
4.0: Device Operating Conditions 71
4.1: Absolute Maximum Ratings71
4.2: Recommended Operation Conditions71
4.3: Essential Characteristics72
4.4: Power Supply Currents for the Different Power
Domains73
4.5: AC Timing73
5.0: Block Level Operation 97
5.1: Detailed Block Diagram97
5.2: Reset Logic98
5.3: Clocks and PLLs99
5.4: Video Interfaces103
5.5: Video Scaling111
5.6: Audio Interfaces118
5.7: Host Interfaces120
5.8: Configuration and Status Register (CSR) Defini-
tion132
5.9: DMA Engine Register Definition136
5.10: Bitstream Write Register Definition144
5.11: Special Registers145
5.12: Memory Interfaces152
5.13: Serial Interfaces167
5.14: USB 2.0 On-the-Go Interface178
5.15: Ethernet Media Access Controller184
5.16: High-Speed Bitstreams188
6.0: System Design and Applications 193
6.1: Power Supply Design and Recommendations 193
6.2: Power Supply Sequencing193
6.3: Reset timing Diagrams193
6.4: Oscillator Connections, Values and Formulas194
7.0: Ordering Information 197
7.1: Product Information197
7.2: MG3500 Family Reflow Profile198
8.0: Packaging Information 201
8.1: Package Diagram201
8.2: Thermal Data202
9.0: Marking 203
Maxim Integrated ProductsAdvance Information | 3
Maxim Integrated ProductsAdvance Information | 4
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Change Log
This section of the data sheet lists the changes that have occurred since the last release. Customers
should be aware that not all releases are public, and therefore they might see gaps in the release
numbering system.
Change Log
Revision PageSectionChange
0.18
0.19
0.20 ThroughoutMade minor changes throughout the book.
0.21ThroughoutValid value for EWait of EM1Config is 1; EM1Cmd register set to 0x00; removal of several reg-
1.0141.1.2The heading title and description has been changed.
714.1The Core power supply current was changed from 1000 mA. typical to 1000 mA. maximum.
1956.4.3A new section was added describing use when only an external clock is used.
432.3.8Specified the resistance of the external USB Bias Current resistor.
432.3.9Modified the timing specification for the SD and MMC Interface.
462.3.14Specified the resistance of the internal pull-up and pull-down resistors
894.5.6Added a new section showing the bitstream timing.
995.3This entire section was re-written to clarify the clock structure.
1115.5The definition of the VOUT register was altered.
1455.11The specification for the ChipID register was added.
1525.12The SDRAM Requirements for Various Profiles table was updated.
1845.15Added note regarding the use of an external switch.
1905.16.5Updated the Bitstream Register section.
isters, Slave Host Interface; Valid value for EM1 is 0; Corrections to S/PDIF and I2S I/Os; BFifostatus changed to EM1fifostatus.
151.1.2Figure 1-2, only one independent video output is supported.
161.1.3The maximum pixel rate that VIP can process corresponds to the video input of resolution
ThroughoutMade editorial changes, added definitions, made updates and corrections to several diagrams
1920x1080i at 30 frames per seconds.
and tables throughout the book.
Maxim Integrated ProductsAdvance Information | 5
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Change Log
Revision PageSectionChange
1.1714.1The core supply voltage has been changed to 1.05v ± 5%.
714.2The minimum, typical, and maximum ranges of the core supply voltage have been re-adjusted.
784.5.2Modified the Video Interface Timing Diagram to incorporate the new t
784.5.2Modified Table 4-7 to indicate that VIDOUT_DATA is an output delay from VID_CLK for the
784.5.2Modified Table 4-8 to indicate that VIDOUT_DATA is an output delay from VID_CLK for the
784.5.2Modified Table 4-9 to indicate that VIDOUT_DATA is an output delay from VID_CLK for the
1445.10Made corrections to the bit settings of the BiFiStatus and BiFiConfig registers.
1885.16.1Changed the description for the bitstream interface.
1905.16.5Removed the old section “High-Speed Bitstream” since it is not supported.
1895.16.4Modified Figure 5-39 to show signal BS-DATA is 8 bits long.
1895.16.4Changed the definition for Cycle 7 of the waveform diagram.
1905.16.5In Bitstream Control 2, removed the unsupported value 1 for BSClkEnMode, BSStopCond,
1905.16.5Bitstream Interface Control registers 8, A, and C have been removed.
1936.2The second half of the RESETn signal in Figure 6-1has been removed.
2018.0Added a new Ordering Information section.
1.2141.1Added Hardware Description section back.
784.5.2Corrected the note below Table 4-7 to say the clock should be supplied by MG3500.
784.5.2Re-adjusted the t
784.5.2Re-adjusted the t
814.5.3Inverted the AUD_LRCK signal in Figure 4-6.
814.5.3Re-adjusted the shaded area for ETH_RXDV and ETH_RXER signals in Figure 4-10.
814.5.3Modified the description for Figure 4-7.
814.5.2Completely re-drew Figure 4-7.
844.5.4The ETH_TXD signal was corrected to ETH_RXD in Table 4-12.
844.5.4Changed the description for t
864.5.4Changed signals ETH_RXDV and ETH_RXER in Table 4-14.
864.5.4Changed the description for t
884.5.4Changed signals ETH_RXDV and ETH_RXER in Table 4-16.
884.5.4Changed the ETH_RXDV signal in Table 4-16.
814.5.3Re-adjusted the shaded area for ETH_RXDV and ETH_RXER signals in Figure 4-14.
2039.0Removed the approval table from the Marking section.
1977.1.3Changed the maximum height.
standard definition video interface AC timing values. It also specifies the minimum and maximum timing value in ns.
high definition video interface AC timing values. It also specifies the minimum and maximum
timing value in ns.
high-speed video interface AC timing values. It also specifies the minimum and maximum timing value in ns.
Changed the definition for Cycle 7 of the waveform diagram.
and BSStrobeModeEn signals.
parameter in Figure 4-5.
VCQ
parameter in Figure 4-5.
VIH
to indicate a clock High time in Table 4-12.
ETH
to indicate a clock High time in Table 4-14.
ETH
parameter.
VCQ
6 | Advance Information Maxim Integrated Products
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Change Log
Revision PageSectionChange
1.311“SoC Features” Separated Definitions of output ports for Audio Codecs and Decoders.
11“SoC Features” Changed SDRAM voltage for DDR_VDD.
131.0Changed the description to provide a summary of both MG3500 and MG2580.
131.0Changed Table 1-1 to specify the features of both MG3500 and MG2580.
131.0Added the slave mode support for MG2580 in Table 1-1.
141.1.1Added the total number of macroblocks required for the H.264 Codec.
141.1.2Changed the description for video processors and interfaces for clarity.
151.1.2Added a note following the text describing Figure 1-2 to indicate that video composition fea-
151.1.2Added a column to Table 1-2 that shows video modes for the video composition.
161.1.4Added a note to indicate the supported formats for video output processor.
161.1.7Modified the description for valid input and outputs for audio interfaces.
171.1.12Removed IDE from the list of external devices that can communicate with the host interface.
181.2Removed the evaluation applications and demonstration product applications supplied by Mo-
191.2Changed the middle box at the bottom of Figure 1-4 to say Mobilygen Software.
312.3.3Added pin descriptions for MG2580 to Table 2-4.
462.3.14Indicated in Table 2-17 that GPIO_2-12, -13, and -15 are not applicable for MG2580.
572.6Indicated in Table 2-24 that VID23_MISO, _MOSI, and _MSS are not available for MG2580
572.6Removed the descriptions for the USB and Ethernet pin names in Table 2-24.
572.6Specified that USB_ADD is recommended for USB_REXT in Table 2-24.
572.6Added a footnote to Table 2-24 that recommends a two-step procedure on how to connect the
714.0Changed the range for the DDR_VDD IO voltage in Table 4-2.
714.0Changed the operating conditions range for DDR_VREF in Table 4-2.
864.5.4Changed ETH_RXER[3:0] to ETH_RXD[3:0] in Figure 4-12.
884.5.4Changed ETH_RXER[1:0] to ETH_RXD[1:0] in Figure 4-14.
1255.7.1Specified the bit range for AddrInc and WEn in the “DevConfigAn Register” table.
1265.7.1Specified the bit range for RHold in the “DevConfigBn Register” table.
1685.13.3Added a new section to describe TWI on MG2580. This includes description as well as a new
1695.13.2Changed Figure 5-33 to show that VID23_SDA is not applicable to MG2580.
1705.13.4Indicated that this section is about SPI on MG3500. Added a note to imply that V23 SPI port
1715.13.5Changed Figure 5-35 to show that VID23_MSS, VID23_MCLK, VID23_MOSI, and
1715.13.5Added a new section for SPI on MG2580. This includes descriptions as well as a modified di-
1735.13.8Indicated in the Serial I/O Control table that V23_MCLK_AltSeL and V23_MOSI_AltSeL are
1735.13.8Indicated in the GPIO 2 Sel that table GPIO_2_12, GPIO_2_13, and GPIO_2_15 fields will
1735.13.8Indicated in the GPIO 2 Pull-up Enable table GPIO_2_12, GPIO_2_13, and GPIO_2_15 fields
1735.13.8Indicated in the GPIO 2 Pull-up Enable table GPIO_2_12, GPIO_2_13, and GPIO_2_15 fields
1977.1.3Removed the part number to order MG2580A2 since this part will no longer be built.
tures are not available when two VIPs are used as inputs.
bilygen.
for VIDEO_PORT 2/3.
USB pins when the USB block is not used on MG3500.
diagram, Figure 5-33.
is not available on MG2580.
VID23_MISO are not applicable to MG2580.
agram, Figure 5-35.
not available on MG2580.
have no effect on MG2580 since GPIO pins are not connected.
will have no effect on MG2580 since GPIO pins are not connected.
will have no effect on MG2580 since GPIO pins are not connected.
Maxim Integrated ProductsAdvance Information | 7
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Change Log
Revision PageSectionChange
1.429/302.3.2Changed VID0_PIXCLK and VID1_PIXCLK to IO
402.3.6Added a note for DDR_DQ[31:16] and DDR_DQM[3:] pins are not connected in 16-bit mode
462.3.14Removed alternate functionality for GPIO_6 and GPIO_7
562.5Removed signal USB_VBUS from 3.3V Power Group
714.2Updated ETH_VDD 3.3V +/- 5%
784.5.2Included tVH(min) and tVH(max) in Table 4-7, Table 4-8 and Table 4-9
Added HSYNC, VSYNC, and FRAME signals to the timing diagram. Clarified Setup and Hold
time description with reference to VID_CLK for VID_DATA and VIDOUT_DATA.
814.5.3Updated figure 4-6 as it was not readable in v1.3
87/884.5.4Updated RMII Transmit/Receive Timing Diagram in Figure 4-13 by replacing TXCLK with RX-
103/
104
1655.12.5Removed 512 byte page size under NAND flash bulleted item
1665.12.5Updated NAND/NOR Flash Interface connected to NOR Flash Memory Figure 5-30
5.4Included separate block diagrams for MG3500 and MG2580 video paths
CLK. Updated Tables 4-15 accordingly by removing transmit and replacing it with receive
clock.. Changed Min. and Max. values in Table 4-16 for ECYC-ETH_CLK, ETL- Low and ETHHigh Time signal.
• USB 2.0 On-The-Go (OTG) ports including the
physical layer
• High Speed Bit-stream I/O
• AES and SHA hardware acceleration
Peripheral Interfaces
• Secure Digital (SD), Secure Digital Input/
Output (SDIO), Multi-Media Card (MMC), and
Consumer Electronics AT Attachment (CEATA)
• Compact FLASH, IDE
General Purpose Interfaces
• Two SPI or Two Wire Interface ports
• Three UARTs
1. When both 10/100 and GigE need to be enabled, an
external switch must be installed to select the clock.
Maxim Integrated ProductsAdvance Information | 12
1.0 Description
The Maxim High-Profile H.264 Codecs currently comprises two devices: MG3500 HD H.264 Codec
SoC and MG2580 720p30 H.264 Codec SoC. The MG3500 HD H.264 Codec SoC is a full HD 1080p30
H.264 Codec. It is the ideal choice for any 1080p30 H.264 application as well as multi-channel D1
applications as found in the security surveillance space. Similarly , the MG2580 SoC is the cost-reduced
version of the High-Profile H.264 Codecs that performs 720p30 H.264 and MJPEG encoding
operations. The MG2580 is particularly adapted for both IP camera a nd H.264 webcam designs. Both
chips encompass an ARM926-EJ processor as well as a complete set of System-On-a-Chip (SoC)
features.
Table 1-1 shows the features for each of the devices. Specific information for both of these devices are
covered in this datasheet.
All references to MG3500 throughout this manual also apply to the MG2580 as well unless stated
otherwise.
Table 1-1MG3000 Family of High-Definition H.264 Codecs
Standard Definition Codec
High Definition H.264 Codec1080p30720p30
MPEG-2 Decoder
JPEG Codec
Video Input Ports Supported (8-bit or 16-bit)21
Frame Multiplexed Video Inputs4–
Video Input Processors22
Video Output Ports Supported (8-bit or 16-bit)
Video Output Prcessors11
Audio Input Ports21
Audio Codecs and Decoders
High-Speed Bitstream I/O–
Embedded ARM926-EJ Processor
Master Mode Operation
Slave Mode Operation
Embedded 10/100/GigE Ethernet MAC
USB On-The-Go including Physical Layer
SD, SDIO, MMC, CE-ATA Peripheral Interface
Compact Flash
32-Bit SDRAM Interface
SPI or Two-Wire Interface32
UARTs33
Pulse Width Modulators33
GPIO, Shared6461
GPIO, Dedicated88
1.The MG2580 supports 8-bit output only. MG3500 can support an 8-bit or 16-bit output.
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
FeatureMG3500MG2580
1
11
Maxim Integrated ProductsAdvance Information | 13
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1.1 Hardware Overview
This section provides an overview of each of the blocks in the MG3500 SoC. See “Block Diagram” on
page 11.
1.1.1 Video Codecs
The MG3500 SoC includes efficient hardware implementations of two HD encoders and three HD
decoders:
• H.264 Encoder/Decoder
•MPEG2 Decoder
• JPEG/MJPEG Encoder/Decoder
As shown in Figure 1-2, the H.264 Codec, MPEG2 Decoder and JPEG/MJPEG Codec are implemented
as separate elements in order to support real time trans-coding from one format to another.
The H.264 Codec hardware pipeline allows the highest processing power at the lowest power
consumption to support all of the H.264 tools for the High, Main, and Baseline profiles. The processing
power that enables HD Encoding or Decoding can also be applied to Encoding or Decoding multiple
reduced resolution or SD streams.
The H.264 Codec is capable of encoding or decoding up to 1920 pixels per line (horizontal) and up to
2000 lines (vertical) as long as the total number of 16x16 macroblocks does not exceed 8192 and the
macroblocks per second does not exceed 244800.
The HD MPEG2 Decoder is also capable of decoding up to a maximum of 1920 pixels per line
(horizontal) and 2000 lines (vertical). It does not have encoding capabilities.
The JPEG/MJPEG Codec is also capable of decoding up to a maximum of 1920 pixels per line
(horizontal) and 2000 lines (vertical) for real time video, but in addition, it can encode or decode up to
8k by 8k still images that reside in the memory.
1.1.2 Video Processors and Interfaces
As shown in Figure 1-2, the MG3500 SoC video path has two Video Input Processors (VIP: VIP1 and
VIP2) and one Video Output Processor (VOP).
The Codec has two 8-bit video inputs (VID0 and VID1) that can be used either as two individual 8-bit
ITU-R BT 656 video inputs or a single 16-bit ITU-R BT 1 120 video input fo r HD inputs from an HDMI
receiver or other HD input.
Additionally, the Codec provides two bi-directional ports (VID2 and VID3) that can be used either as
an HD input or as an output (one 8-bit or one 16-bit output).
These bi-directional ports can be clocked at higher frequency to support non-standard video interfaces.
These two 8-bit interfaces can be combined to create a single 16-bit HD ITU-R BT 1120 interface.
The bi-directional video ports can also be used to drive an LCD display in one of two modes. As an
standard output, it can drive an 8-bit RGB LCD interface or it can be used as a 16-bit HD output. Two
additional bits are available to drive an 18-bit RGB LCD interface.
Each video input supports independent clocks and synchronization signals. The clock frequency can be
driven over 100 MHz in order to support non-standard video inputs including HD sensors with 8- bit
interfaces.
14 | Advance Information Maxim Integrated Products
Memory
Controller
VIP2
180 MHz
VIP1
180 MHz
VOP
125 MHz
Two 8-Bit
Video I/Os
125 MHz
Maximum
Memory
Two 8-Bit
Video Inputs
125 MHz
Maximum
Video Portion of the MG3500 and MG3264 Codec
From Memory
RGB or
YUV 4:2:2
Video
Codecs
High Definition
H.264 Codec
High Definition
MPEG2 Decoder
High Definition
JPEG Codec
VID0_D[7:0]
VID1_D[7:0]
VID2_D[7:0]
VID3_D[7:0]
32-bit Data
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Figure 1-2Block Diagram of the Video Input Section
The two VIPs and one VOP provide the capability of processing two independent video inputs and one
independent video output. Together with the flexible Video Interfaces described above, the modes
shown in Table 1-2 are supported.
Note: Video composition features, such as memory-based scaling or merging multiple videos into one
screen are not available when two VIPs are both used as inputs.
Table 1-2Video Modes
Video ModeVideo InputsVideo OutputsVideo Composition
11 HD 1 HDYes
21 HD1 SDYes
32 HDNoneNot Available
42 SD1 HDNot Available
51 SD + 1 HD1 SDNot Available
62 SD1 SDNot Available
Note: The HD output can be used as an 18-bit LCD interface and an SD output can be used as an 8-bit
LCD interface.
Maxim Integrated ProductsAdvance Information | 15
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1.1.3 Video Input Processor
There are two identical Video Input Processors (VIPs) that perform high quality scaling, chroma and
gamma adjustment, filtering, and the extraction of video analytics. The maximum pixel rate that the VIP
can process corresponds to video input of resolution 1920x1080i at 30 frames per seconds.
1.1.4 Video Output Processor
The Video Output Processor (VOP) performs high quality scaling of un-compressed video, overlays it
with two graphic planes, performs gamma and chroma adjustment, overlays a hardware cursor, and
outputs the combined video to a video port. Each graphic plane can be from 1 to 32 bits. Graphic planes
using less than eight bits use a Look-Up Table (LUT).
Note: Some formats may not be possible depending on the output resolution and available system memory
bandwidth. For example 32 bits/pixel modes are not possible for 1080i60 resolution output.
The video output can be either be YCbCr via an 8-bit ITU-R BT 656 interface, YCbCr via a 16-bit
ITU-R BT 1120 interface, RGB via an 8-bit interface, or RGB via an 18-bit interface. In some of the
output modes, the MG3500/MG2580 HD H.264 Codec SoC is also capable of generating optional
external sync signals.
1.1.5 Video Multi-Media Engine
The V ideo Multi-Media Engine (MME) is a proprietary Reduced Instruction Set Computer (RISC) that
has been optimized for single cycle context switching and low power. The Video MME controls all
aspects of the VIPs, Video Cores, and the VOP (see the MG3500/MG2580 HD H.264 Codec SoC Block
Diagram on page 3 for more information).
1.1.6 Audio Multi-Media Engine
The Audio MME implements all audio Codecs in firmware.
1.1.7 Audio Interfaces
There are two I2S inputs, three I2S outputs, and one S/PDIF output. One of the two I2S inputs is
associated with one of the audio clocks. The other audio input, the three audio outputs, and the S/PDIF
output must share a common clock and sample rate. The three I
2
S outputs and the S/PDIF output must
also share a common format.
16 | Advance Information Maxim Integrated Products
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1.1.8 SDRAM
The MG3500/MG2580 HD H.264 Codec SoC has a high performance memory subsystem that uses
either a 16- or 32-bit wide external SDRAM. The SDRAM is DDR2, and runs up to 264 MHz.
1.1.9 ARM926-EJ
The MG3500/MG2580 HD H.264 Codec SoC has an embedded ARM926-EJ processor that runs at
speeds up to 240 MHz. This processor is not used for Audio or Video Codec functions, so it is
completely available to implement any required system level functions. Mobilygen provides Codec and
Data Streaming APIs under Linux 2.6.20.
1.1.10 Ethernet Media Access Controller
The Ethernet MAC supports 10/100/1000 Mbps Ethernet interfaces.1 This is typically connected to an
external Physical Layer (Phy) device but can also be connected directly to Ethernet switches that
support Reverse MII interfaces.
1.1.11 USB 2.0
The USB interface is USB 2.0, High-Speed with the ability to operate as Device, Host, or On-The-Go
(OTG) at speeds of up to 480 MHz. The USB interface includes the Physical Layer.
1.1.12 FLASH, IDE and Host Interface
The host interface can be used to communicate to external devices including NOR FLASH, NAND
FLASH, and COMPACT FLASH, as well as other devices.
1.1.13 SD/MMC Interface
The SD/MMC interface is designed to support Secure Digital (SD), Secure Digital Input/Output
(SDIO), Multi-Media Card (MMC), and Consumer Electronics A T Attachment (CE-AT A) devices. This
four-bit wide interface supports up to a 25 MHz clock rate (100 Mbits/sec. transfer rate).
1.1.14 AES and SHA Hardware Acceleration
The MG3500 SoC design includes hardware acceleration for the Advanced Encryption Standard (AES)
and Secure Hashing Algorithm (SHA). The AES accelerator supports CBC, CTR, ECB, and CCM
modes with 128, 192, and 256 bit keys for secure data storage and transmission. The SHA accelerator
supports the creation of 128, 224, and 256 bit digests for Digital Signatures and Digital Time Stamps.
1.1.15 Serial and Misc. IO
The MG3500 SoC has several UARTs for communication, Pulse Width Modulators (PWMs) for
control, I
2
C-compatible T wo W ire Interfaces (TWIs) for device control, and Serial Peripheral Interfaces
(SPIs) for device control.
The MG3500 SoC also has eight dedicated General Purpose Input/O utput (GPIO) pins and up to 64
shared GPIO pins that can be used for system control. The shared GPIO pins are multiplexed with other
functions and are only available when the primary function for the pin is not being used. For example,
if your design does not require a SPI interface (see “SPI/Bitstream Interface Timing” on page 89), the
four pins dedicated to that interface can be used as GPIO pins.
1. When both 10/100 and GigE need to be enabled, an external switch must be installed to select the clock.
Maxim Integrated ProductsAdvance Information | 17
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Customer Production
Applications or Mobilygen
Demonstrations, Web-
based Applications,
Command Line Shell
Applications, and Plug-ins
APPLICATION SOFTWARE
Built on Mobilygen's Demonstration Product Applications,
Web-based, Command Line Shell, and Plug-in Modules
Mobilygen Software can
run on an Embedded
ARM926 or an External
Processor
Mobilygen CODECs
and Silicon
SUPPORT SOFTWARE
Production Ready Drivers and APIs
CODECs and SILICON
Production Ready Firmware and Silicon
1.2 Support Tools
This section provides an overview of the software and hardware development tools that are available to
support the part.
Figure 1-3Software Architecture
The Mobilygen-developed MG3500 SoC software is developed for Linux 2.6.20. Mobilygen supplies
these APIs and Drivers:
•Codec API
• qHAL Hardware Abstraction Layer
• Data Streaming API
• On-Chip Device Drivers
Figure 1-4 shows an expanded version of Figure 1-3 that has all of the elements of the system software
included. In this figure:
• Blue boxes are applications, firmware, drivers, and silicon supplied by Mobilygen.
• Green boxes are applications that are available from third-party vendors (public domain or Linux
vendors)
• White boxes are customer-written applications
18 | Advance Information Maxim Integrated Products
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Figure 1-4Software Elements
Note: As shown in Figure 1-4, the Mobilygen supplied drivers and higher-level functions (the lower
two-thirds of Figure 1-4) are production ready and fully supported by Mobilygen. The Customer
Production Applications and Mobilygen Demonstration programs (the upper third of Figure 1-4) are
available for customers to use as an advanced starting point, but are not production ready.
Maxim Integrated ProductsAdvance Information | 19
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
20 | Advance Information Maxim Integrated Products
2.0 Device Overview, Pin Assignments
2.1 Naming Conventions
The MG3500 SoC has both signal and power connections. Each signal has a unique name. Power
connections do not necessarily have unique names.
The signals are organized by signal groups. The signal names typically have two parts separated by an
underscore. When that is the case the first part represents the name of the signal group a nd the second
part defines the function within that group. The signal gr oup names do not have an underscore in them,
so the first underscore separates the signal group name from the function name. The function name may
have an underscore in it. Signals that are active low end with a lower case ‘n’.
Power connection names also have two parts separated by an underscore. The first part represents the
power domain, and the second part represents the power type.
All pins have a Primary function, and the name that is assigned to the pin reflects that primary function.
Many of the pins have an Alternate (ALT) function that can be used if the primary function is not used.
Some pins are capable of being used as General Purpose I/O pins (GPIO) is neither their primary or their
secondary functions are being used. These pins are available for customer-assigned uses.
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
The pinout diagrams and tables in this section list the pins by their Primary name. The pinout tables also
show the Alternate and GPIO capabilities of the pins if any are assigned to them.
Maxim Integrated ProductsAdvance Information | 21
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
RESET Group
AUDIO Power
1234567891011
A
B
C
D
E
F
G
H
J
K
L
12 13 14 15 16 17 18 19 20 21 22
M
N
P
R
T
U
V
W
Y
AA
AB
12345678910111213141516171819202122
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
JTAG Group
AUDIO Power
AUDIOGroup
AUDIO Power
DDR Group
DDR Power
CF Group
HOST Power
HOST Group
HOST Power
HOST Group
HOST Power
PWM Group
HOST Power
UART Group
HOST Power
TWI Group
HOST Power
DDR Group
DDR Power
VID01 Group
VID01 Power
VID23 Group
VID23 Power
USB Group
USB Power
CONFIG Group
VID01 Power
ETH Group
ETH Power
SPI Group
HOST Power
SDMMC Group
HOST Power
GPIO Group
HOST Power
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLK
IN
SDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
CLK Grp
HOST Pwr
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OUTCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0
D6
VID1
OUTCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG
0
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSS1
VID23
VDD
VID23
VDD
ETH
VDD
ETH
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSS0
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
CORE
VDD
2.2 Pinout Diagrams
Figure 2-1 shows a map of all the signal positions.
22 | Advance Information Maxim Integrated Products
Figure 2-1Map of all the MG3500 SoC Signal Positions (Top View)
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1234567891011
A
B
C
D
E
F
G
H
J
K
L
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSS1
VID23
VDD
VID23
VDD
ETH
VDD
ETH
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSS0
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
1234567891011
A
B
C
D
E
F
G
H
J
K
L
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSSI
VID23
VDD
VID23
VDD
ETH
VDD
ENET
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSSO
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
A
B
C
D
E
F
G
H
J
K
L
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0D6VID1
OCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG0CORE
VDD
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
W
Y
AA
AB
M
N
P
R
T
U
V
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLKINSDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
M
N
P
R
T
U
V
W
Y
AA
AB
1234567891011
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
Figure 2-2 is a map of the upper-left quadrant.
Figure 2-2Map of the Upper-left Quadrant (Top View)
Maxim Integrated ProductsAdvance Information | 23
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1213141516171819202122
A
B
C
D
E
F
G
H
J
K
L
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OUTCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0
D6
VID1
OUTCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG0CORE
VDD
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
1234567891011
A
B
C
D
E
F
G
H
J
K
L
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSSI
VID23
VDD
VID23
VDD
ETH
VDD
ENET
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSSO
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
A
B
C
D
E
F
G
H
J
K
L
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0D6VID1
OCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG0CORE
VDD
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
W
Y
AA
AB
M
N
P
R
T
U
V
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLKINSDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
M
N
P
R
T
U
V
W
Y
AA
AB
1234567891011
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
Figure 2-3 is a map of the upper-right quadrant.
24 | Advance Information Maxim Integrated Products
Figure 2-3Map of the Upper-Right Quadrant (Top View)
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
1213141516171819202122
W
Y
AA
AB
M
N
P
R
T
U
V
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLK
IN
SDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
1234567891011
A
B
C
D
E
F
G
H
J
K
L
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSSI
VID23
VDD
VID23
VDD
ETH
VDD
ENET
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSSO
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
A
B
C
D
E
F
G
H
J
K
L
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0D6VID1
OCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG0CORE
VDD
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
W
Y
AA
AB
M
N
P
R
T
U
V
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLKINSDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
M
N
P
R
T
U
V
W
Y
AA
AB
1234567891011
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
Figure 2-4 is a map of the lower-right quadrant.
Figure 2-4Map of the Lower-Right Quadrant (Top View)
Maxim Integrated ProductsAdvance Information | 25
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
M
N
P
R
T
U
V
W
Y
AA
AB
1234567891011
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
1234567891011
A
B
C
D
E
F
G
H
J
K
L
CFG
3
CFG
2
VID23
MCLK
VID2D0VID2D1VID2D4VID2D6VID2
PIXCLK
ETH
RXERR
VID23
MISO
VID2D2VID2D5VID2D7VID2
FIELD
ETH
RXCLK
ETH
RXDV
VID23
MOSI
VID2D3VID2
VSYNC
VID23
D16
ETH
RXD7
ETH
RXD2
ETH
RXD1
VID23
MSS
VID2
HSYNC
VID3
D1
VID3D2VID3D6USB
XIN
USBDMUSB
DP
VID3D3VID3D7USBXOUSB
VBUS
USB
ID
VID3D0VID3
D4
USB
D_VBUS
USB
REXT
VID3D5VID23
D17
VID23
GPIO
USB
ANA_TST
ETH
RXD6
ETH
RXD3
ETH
RXD0
ETH
COL
ETH
RXD5
ETH
RXD4
ETH
MDCLK
ETH
CRS
ETH
TXEN
ETH
TXD4
ETH
TXD0
ETH
MDIO
ETH
TXERR
ETH
TXD5
ETH
TXD3
ETH
TXD2
ETH
TXD7
ETH
TXD6
ETH
TXCLK
ETH
TXD1
TWI0
SCL
SPI
MOSI
SPI
MCLK
SPI
MSSI
VID23
VDD
VID23
VDD
ETH
VDD
ENET
VDD
USB
AGND
USB
AGND
USB
AGND
USB
ACGND
CFG
1
VID23
VDD
USB
AVDD
USB
AVDD
USB
ACVDD
USB
DVDD
SPI
MISO
CORE
VDD
SPI
MSSO
ETH
GND
ETH
GND
VID23
GND
VID23
GND
CORE
GND
CORE
GND
USB
DGND
VID23
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
A
B
C
D
E
F
G
H
J
K
L
JTAG
TDO
TEST
JTAG
TAP_SEL
JTAG
TDI
JTAG
TRSTn
JTAG
TCK
JTAG
TMS
CFG
HOST1
CFG
HOST0
VID0
FIELD
VID0
OCLK
VID0
PIXCLK
VID0
VSYNC
VID0
HSYNC
VID0
D0
VID0D1VID0D5VID1
PIXCLK
VID0D2VID0D6VID1
OCLK
VID0D3VID0D7VID1
VSYNC
VID0D4VID1
FIELD
VID1
HSYNC
VID1D0VID1D4VID1
D7
VID1D1VID1D5VID01
MOSI
VID1D2VID1D6VID01
MCLK
VID1D3VID01
MSS
VID01
MISO
RESETn
CFG0CORE
VDD
VID01
VDD
AUD1
MCLK
AUD1
BCK
AUD1
LRCK
AUD1
IDAT
CORE
VDD
VID01
VDD
VID01
VDD
CORE
VDD
AUD
VDD
CORE
VDD
DDR
VDD
DDR
VDD
AUD
VDD
AUD0
ODAT1
AUD0
ODAT2
AUD0
MCLK
AUD0
BCK
DDR
VDD
DDR
DQ18
DDR
DQM2
DDR
DQ19
DDR
DQ20
DDR
DQM3
DDR
DQ23
AUD0
IDAT
AUD0
SPDIF
AUD0
LRCK
AUD0
ODAT0
DDR
DQS2n
DDR
DQS2
DDR
DQ17
DDR
DQ16
DDR
DQ21
DDR
DQ22
DDR
VDD
DDR
DQ26
DDR
DQ24
DDR
DQS3n
DDR
DQS3
CORE
GND
DDR
GND
DDR
GND
DDR
GND
CORE
GND
CORE
GND
VID01
GND
AUD
GND
AUD
GND
DDR
GND
DDR
GND
VID01
GND
12 13 14 15 16 17 18 19 20 21 22
W
Y
AA
AB
M
N
P
R
T
U
V
HOST
CS4n
HOST
CS3n
HOST
CS2n
HOST
CS1n
CLKINSDMMCCDSDMMC
D1
SDMMCWPSDMMC
D0
SDMMCD3SDMMC
CLK
DDR
BA0
DDR
WEn
DDRA1DDR
BA1
DDR
CASn
DDRA2DDR
A10
DDR
RASn
DDR
CKE
DDR
DQ5
DDR
DQ7
DDR
A12
DDRA6DDR
DQ0
DDRA8DDRA7DDR
A9
DDR
DQS0n
DDR
DQS0
DDR
DQ1
DDR
DQ3
DDR
DQ4
DDR
DQ2
SDMMCD2SDMMC
CMD
DDRA3DDRA0DDR
CSn
DDRA5DDRA4DDR
A11
DDR
VREF
DDR
DQ6
DDR
VDD
DDR
VDD
DDR
VDD
DDR
VDD
DDR
PADHI
DDR
DQ31
DDR
PADLO
DDR
DQ25
DDR
VDD
DDR
DQS1n
DDR
DQM1
DDR
DQ9
DDR
DQS1
DDR
DQ30
DDR
DQ28
DDR
DQ27
DDR
DQ29
DDR
CLK1
DDR
CLK1n
DDR
CLK0
DDR
CLK0n
HOST
VDD
CORE
VDD
PLL
VDD
CORE
VDD
CLK
SEL
CORE
VDD
DDR
VDD
CORE
VDD
DDR
VDD
DDR
VDD
DDR
DQ14
DDR
DQ15
DDR
DQM0
DDR
DQ8
DDR
DQ13
DDR
DQ11
DDR
DQ10
DDR
DQ12
CORE
GND
CORE
GND
CORE
GND
CORE
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
DDR
GND
M
N
P
R
T
U
V
W
Y
AA
AB
1234567891011
HOST
CS0n
HOST
CS5n
GPIO3GPIO2GPIO
1
GPIO7GPIO6GPIO
5
GPIO
0
GPIO
4
UART0
RTS
UART0
TXD
UART1
RXD
UART0
CTS
UART0
RXD
UARTD
TXD
UARTD
RXD
UART1
TXD
TWI0
SDA
PWM2PWM1PWM
0
HOST
D12
HOST
D13
HOST
D14
HOSTD8HOSTD9HOST
D10
HOSTD4HOSTD5HOST
D6
HOSTD2HOSTD3HOST
WEn
HOSTD1HOST
D_EN
HOST
WAIT
HOST
D15
HOST
D11
HOST
D7
CF
INPACKn
HOST
A12
HOST
ALEnCFIORDnCFBVD2
HOST
INTnCFIOWRnCFCD1
HOST
A11
HOST
A10
HOST
A8
CF
RESETCFREGn
HOST
A6
CFWPHOSTA5HOST
A2
HOST
A7
HOST
A3
HOSTD0HOST
REn
HOST
DMARQ
HOSTWPCF
BVD1CFCD2CFWAITn
HOSTA4HOST
A1
HOST
A22
HOST
A21
HOST
VDD
HOST
A20
HOST
A19
CORE
VDD
HOST
A18
HOST
VDD
HOST
A17
HOST
A16
HOST
VDD
HOST
VDD
HOST
VDD
HOST
A15
HOST
A14
HOST
A13
HOST
VDD
HOST
A9
CORE
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
HOST
GND
Figure 2-5 is a map of the lower-left quadrant.
Figure 2-5Map of the Lower-left Quadrant (Top View)
26 | Advance Information Maxim Integrated Products
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
2.3 Pin Descriptions (by Interface)
This section provides a summary of the interfaces and corresponding signals of the MG3500 SoC. The
376 signals of the MG3500 SoC are divided into signal groups as shown in Table 2-1.
Table 2-1Signal Group Names
Voltage
Signal GroupGroup NamePower Domain
CoreCORECORE1.00
AudioAUDxAUD1.8, 2.5, 3.312
Video Ports 0 and 1VID01, VIDxVID011.8, 2.5, 3.330
Video Ports 2 and 3VID23, VIDxVID231.8, 2.5, 3.327
HostHOSTHOST1.8, 2.5, 3.352
Compact FlashCFHOST1.8, 2.5, 3.311
DDR SDRAMDDRDDR1.871
EthernetETHETH3.326
USBUSBUSB3.39
SD/MMCSDHOST1.8, 2.5, 3.38
UARTUARTHOST1.8, 2.5, 3.38
SPISPIHOST1.8, 2.5, 3.35
TWITWIHOST1.8, 2.5, 3.32
PWMPWMHOST1.8, 2.5, 3.33
GPIOGPIOHOST1.8, 2.5, 3.38
ConfigurationCFGVID011.8, 2.5, 3.36
ClockCLKHOST1.8, 2.5, 3.32
ResetRESETAUD1.8, 2.5, 3.31
JTAGJTAGAUD1.8, 2.5, 3.37
Total Signals288
Power Connections88
Total Balls376
RequirementSignals
In each group the signals are listed alphabetically by Primary signal name. The tables also include
alternate functions for each signal that has either a secondary function (ALT column) or can be used as
a GPIO (GPIO column). There is a column indicating the signal type: Input (I), Input/Output (I/O),
Input/Open Drain output (IOD), or Analog (A).
The MG3500 SoC has independent power domains for various functions and the power domain for each
Signal Group is also listed. The possible power domains are CORE, AUD, ETH, HOST, DDR, USB,
VID01, and VID23.
Maxim Integrated ProductsAdvance Information | 27
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
2.3.1 Audio Signal Group
The Audio Signal Group has 12 signals as shown in Table 2-2. It consists of two independent audio
2
interfaces. Audio Group 0 contains one I
Audio Group 1 contains one I
2
S input with independent clocking . These signals are all in the AUD
S input and three I2S outputs that share common clocking.
power domain.
Table 2-2Audio Signals
Primary Signal
ALTGPIOBallDescriptionNameType
AUD0_BCKIO––G20 Audio Port 0 I2S bit clock clocks input or output
data
AUD0_IDATI––F21 Audio Port 0 I
AUD0_LRCKI/O––G21 Audio Port 0 I
data is for the left or right channel
AUD0_MCLKI/O––G19 Audio Port 0 I
sampling clock)
AUD0_ODAT0O––G22 Audio Port 0 I
AUD0_ODAT1O––F19 Audio Port 0 I
AUD0_ODAT2O–GPIO_1_20F20 Audio Port 0 I
AUD0_SPDIFO–GPIO_1_21F22 Audio Port 0 Sony/Philips digital interface
AUD1_BCKI/O–GPIO_1_22E20 Audio Port 1 I
data
AUD1_IDATI–GPIO_1_24E22 Audio Port 1 I
AUD1_LRCKI/O–GPIO_1_23E21 Audio Port 1 I
the data is for the left or right channel
AUD1_MCLKI/O––E19 Audio Port 1 I
sampling clock)
2
S input data
2
S left right clock indicates whether
2
S Master clock (256 times the
2
S output data
2
S output data
2
S output data
2
S bit clock clocks input or output
2
S input data
2
S left right clock indicates whether
2
S Master clock (256 times the
28 | Advance Information Maxim Integrated Products
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
2.3.2 Video Ports 0 and 1 Signal Group
Video Ports 0 and 1 Signal Group include 30 signals to support two 8-bit video input ports or a single
16-bit video input port (see Table 2-3). The Signal Group also includes a serial control interface that can
be used for configuring external video decoders, sensors, or other video interface devices. These signals
are all in the VID01 power domain.
Table 2-3Video Ports 0 and 1 Signals
Primary Signal
ALTGPIOBallDescriptionNameType
VID01_MCLKOVID01_SCL GPIO_1_26 C20 Video Ports 0 and 1 Master Clock Video;
Ports 0 and 1 serial clock
VID01_MISOI–GPIO_1_28 A21 Video Ports 0 and 1 Master Input / Slave
VID01_MOSIOVID01_SDA GPIO_1_27 B20 Video Ports 0 and 1 Master Out pu t / Slave
VID01_MSSO–GPIO_1_25 D19 Video Ports 0 and 1 Slave Select
VID0_D7I––C16 Video Port 0 Data [7:0]
VID0_D6I––B16
VID0_D5I––A16
VID0_D4I––D15
VID0_D3I––C15
VID0_D2I––B15
VID0_D1I––A15
VID0_D0 I––D14
VID0_FIELDI–GPIO_1_19 A13 Video Port 0 Field
VID0_HSYNCI–GPIO_2_00 C14 Video Port 0 Hsync
VID0_OUTCLKO––A14 Video Port 0 Output Clock
VID0_PIXCLKIO––B13 Video Port 0 Pixel Clock
VID0_VSYNCI–GPIO_2_01 B14 Video Port 0 Vsync
VID1_D7I––A20 Video Port 1 Data [7:0]
VID1_D6I––C19
VID1_D5I––B19
VID1_D4I––A19
VID1_D3I––D18
VID1_D2I––C18
VID1_D1I––B18
VID1_D0 I––A18
VID1_FIELDI–GPIO_1_31 D16 Video Port 1 Field
VID1_HSYNCI–GPIO_1_29 D17 Video Port 1 Hsync
VID1_OUTCLKO–-B17 Video Port 1 Output Clock
Output
Input;
Video Ports 0 and 1 Serial Data
Maxim Integrated ProductsAdvance Information | 29
MG3500/MG2580 HD H.264 Codec SoC Data Sheet
Table 2-3Video Ports 0 and 1 Signals
Primary Signal
ALTGPIOBallDescriptionNameType
VID1_PIXCLKIO–-A17 Video Port 1 Pixel Clock
VID1_VSYNCI–GPIO_1_30 C17 Video Port 1 Vsync
30 | Advance Information Maxim Integrated Products
Loading...
+ 174 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.