Maxim MAX985ESA, MAX985EUK-T, MAX993ESD, MAX990EUA, MAX994ESD Datasheet

...
_______________General Description
The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 single/dual/quad micropower comparators feature low-voltage operation and Rail-to-Rail®inputs and outputs. Their operating voltage ranges from +2.5V to +5.5V, making them ideal for both 3V and 5V sys­tems. These comparators also operate with ±1.25V to ±2.75V dual supplies. They consume only 11µA of sup­ply current while achieving a 300ns propagation delay.
The common-mode input voltage range extends 250mV beyond the supply rails. Input bias current is typically
1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals.
The output stage’s unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX985/MAX989/MAX993 have a push/pull output stage that sinks as well as sources current. Large internal output drivers allow rail­to-rail output swing with loads up to 8mA. The MAX986/MAX990/MAX994 have an open-drain output stage that can be pulled beyond VCCto 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to single-ended converters.
The single MAX985/MAX986 are available in tiny 5-pin SOT23 packages.
________________________Applications
____________________________Features
11µA Quiescent Supply Current+2.5V to +5.5V Single-Supply OperationCommon-Mode Input Voltage Range Extends
250mV Beyond the Rails
300ns Propagation DelayPush/Pull Output Stage Sinks and Sources
8mA Current (MAX985/MAX989/MAX993)
Open-Drain Output Voltage Extends Beyond V
CC
(MAX986/MAX990/MAX994)
Unique Output Stage Reduces Output Switching
Current, Minimizing Overall Power Consumption
80µA Supply Current at 1MHz Switching
Frequency
No Phase Reversal for Overdriven InputsAvailable in Space-Saving Packages:
SOT23 (MAX985/MAX986) µMAX (MAX989/MAX990)
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
________________________________________________________________
Maxim Integrated Products
1
V
CC
IN-
IN+
1
5
V
EE
OUT
MAX985 MAX986
SOT23
TOP VIEW
2
3
4
_________________Pin Configurations
_____________________Selector Guide
19-1229; Rev 1; 7/97
PART
MAX985EUK-T
MAX985ESA MAX986EUK-T
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
TEMP. RANGE
PIN-
PACKAGE
5 SOT23-5 8 SO 5 SOT23-5
______________Ordering Information
Ordering Information continued at end of data sheet. Typical Application Circuit appears at end of data sheet.
COMPARATORS PER PACKAGE
OUTPUT
STAGE
MAX985 1 Push/Pull
MAX989 2 Push/Pull
PART
MAX990 2 Open-Drain MAX993 4 Push/Pull MAX994 4 Open-Drain
PIN-
PACKAGE
8 SO/ 5 SOT23-5
8 SO/µMAX 8 SO/µMAX 14 SO 14 SO
8 SO/ 5 SOT23-5
MAX986 1 Open-Drain
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.
Pin Configurations continued at end of data sheet.
MAX986ESA -40°C to +85°C 8 SO
SOT
TOP MARK
ABYZ
ABZA
Portable/Battery­Powered Systems
Mobile Communications Zero-Crossing Detectors Window Comparators Level Translators
Threshold Detectors/ Discriminators
Ground/Supply Sensing Applications
IR Receivers Digital Line Receivers
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC= +2.7V to +5.5V, VEE= 0V, VCM= 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCCto VEE) ...................................................6V
IN_-, IN_+ to V
EE
.......................................-0.3V to (VCC+ 0.3V)
OUT_ to V
EE
MAX985/MAX989/MAX993 ....................-0.3V to (VCC+ 0.3V)
MAX986/MAX990/MAX994.....................................-0.3V to 6V
OUT_ Short-Circuit Duration to V
EE
or VCC.......................10sec
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.10mW/°C above +70°C)............330mW
14-Pin SO (derate 8.33 mW/°C above +70°C)..............667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10sec).............................+300°C
Inferred from PSRR test
CONDITIONS
V2.5 5.5V
CC
Supply Voltage
UNITSMIN TYP MAXSYMBOLPARAMETER
12 20
2.5V VCC≤ 5.5V dB55 80PSRRPower-Supply Rejection Ratio
VCC= 5V
24
mV
±0.5 ±5
TA= +25°C
VEE- VCC+
0.25 0.25
±3V
HYST
Input Hysteresis
Full common-mode range
nAI
B
Input Bias Current (Note 4)
0.001 10
pF1.0C
IN
Input Capacitance
dB52 80CMRRCommon-Mode Rejection Ratio
pA0.5I
OS
Input Offset Current
±7
V
OS
Input Offset Voltage (Note 3)
V
OUT
= high µA1.0I
LEAK
Output Leakage Current (MAX986/MAX990/ MAX994 only)
35
95
TA= +25°C TA= -40°C to +85°C
11 20
VCC= 2.7V
µA
24
I
CC
Supply Current per Comparator
TA= +25°C TA= -40°C to +85°C
Sourcing or sinking, V
OUT
= V
EE
or V
CC
I
SC
Output Short-Circuit Current
TA= +25°C TA= -40°C to +85°C
TA= -40°C to +85°C V
EE
V
CC
VV
CMR
Common-Mode Voltage Range (Note 2)
mV
VCC= 5V VCC= 2.7V
mA
VCC= 5V, I
SINK
= 8mA
0.55
0.2 0.4
V
OL
OUT Output Voltage Low
VCC= 2.7V, I
SINK
= 3.5mA
V
0.4
0.15 0.3
TA= +25°C TA= -40°C to +85°C TA= +25°C TA= -40°C to +85°C TA= +25°C
VCC= 5V, I
SOURCE
= 8mA
TA= -40°C to +85°C 4.45
4.6 4.85
V
OH
TA= +25°C
OUT Output Voltage High (MAX985/MAX989/ MAX993 only)
VCC= 2.7V, I
SOURCE
= 3.5mA
TA= -40°C to +85°C
V
2.3
2.4 2.55
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +2.7V to +5.5V, VEE= 0V, VCM= 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
CONDITIONS UNITSMIN TYP MAXSYMBOLPARAMETER
VCC= 5.0V ns
80
t
RISE
OUT Rise Time (MAX985/MAX989/ MAX993 only)
50
40
µs20t
PU
Power-Up Time
nsVCC= 5.0V
80
t
FALL
OUT Fall Time 50
40
300
450
100mV overdrive
100mV overdrive
CL= 15pF
300
t
PD+
Propagation Delay
450
ns
450
t
PD-
300
MAX985/MAX989/ MAX993 only
10mV overdrive 100mV overdrive
MAX985/MAX989/ MAX993 only, CL= 15pF
10mV overdrive
10mV overdrive
CL= 15pF CL= 50pF CL= 200pF CL= 15pF CL= 50pF CL= 200pF
MAX986/MAX990/ MAX994 only, R
PULL-UP
= 5.1k
Note 1: The MAX98 _EUK specifications are 100% tested at TA= +25°C. Limits over the extended temperature range are guaran-
teed by design, not production tested.
Note 2: Inferred from the V
OS
test. Either or both inputs can be driven 0.3V beyond either supply rail without output phase reversal.
Note 3: V
OS
is defined as the center of the hysteresis band at the input.
Note 4: I
B
is defined as the average of the two input bias currents (IB-, IB+).
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
4 _______________________________________________________________________________________
__________________________________________Typical Operating Characteristics
(VCC= 5V, VCM= 0V, TA= +25°C, unless otherwise noted.)
10,000
1
0.01 0.1 1 10 100
OUTPUT LOW VOLTAGE
vs. OUTPUT SINK CURRENT
MAX985-04
OUTPUT SINK CURRENT (mA)
OUTPUT LOW VOLTAGE (mV) (V
OL
)
10
100
1000
V
IN+
< V
IN-
VCC = 2.7V
V
CC
= 5.0V
600
350
0 200 1000
PROPAGATION DELAY
vs. CAPACITIVE LOAD (V
CC
= 3V)
500
450
400
550
MAX985-05a
CAPACITIVE LOAD (pF)
t
PD
(ns)
400
800600
VOD = 50mV
TO V
OUT
= 50% OF
FINAL VALUE
TO V
OUT
= 10% OF
FINAL VALUE
120
0
-60 100
OUTPUT SHORT-CIRCUIT
CURRENT vs. TEMPERATURE
20 10
90 80
110
100
MAX985-06
TEMPERATURE (°C)
OUTPUT SINK CURRENT (mA)
-40 -20 0 20 40 60 80
70 60 50 40 30
VCC = 5.0V
VCC = 2.7V
530
350
0 200 1000
PROPAGATION DELAY
vs. CAPACITIVE LOAD (V
CC
= 5V)
450 430 410 390 370
510 490 470
MAX985-05b
CAPACITIVE LOAD (pF)
t
PD
(ns)
400
800600
VOD = 50mV
TO V
OUT
= 50% OF
FINAL VALUE
TO V
OUT
= 10% OF
FINAL VALUE
1.1
-0.3
-60 100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
-0.1
0.7
0.9
MAX985-07
TEMPERATURE (°C)
OFFSET VOLTAGE (mV)
-40 -20 0 20 40 60 80
0.5
0.3
0.1
10,000
0.1
0.01
0.1
1 10 100
OUTPUT HIGH VOLTAGE
vs. OUTPUT SOURCE CURRENT
1
MAX985-08
OUTPUT SOURCE CURRENT (mA)
OUTPUT HIGH VOLTAGE
(mV) (V
CC
- V
OH
)
10
100
1000
V
IN+
> V
IN-
VCC = 5.0V
VCC = 2.7V
18
8
-60 100
SUPPLY CURRENT
vs. TEMPERATURE
10
9
16
17
15
MAX985-01
TEMPERATURE (°C)
SUPPLY CURRENT (µA)
-40 -20 0 20 40 60 80
14 13 12 11
V
IN+
> V
IN-
VCC = 5.0V
VCC = 2.7V
1000
1
0.01 0.1 1 10 100 1000
SUPPLY CURRENT vs.
OUTPUT TRANSITION FREQUENCY
MAX985-02
OUTPUT TRANSITION FREQUENCY (kHz)
SUPPLY CURRENT (µA)
10
100
VCC = 5.0V
VCC = 2.7V
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
_______________________________________________________________________________________
5
MAX985/MAX989/MAX993
SWITCHING CURRENT, OUT RISING
IN+
OUT
I
CC
MAX985-13
100ns/div
50mV/ div
2V/div
1mA/div
VOD = 50mV
SWITCHING CURRENT, OUT FALLING
IN+
OUT
I
CC
MAX985-14
100ns/div
50mV/ div
2V/div
1mA/div
VOD = 50mV
1MHz RESPONSE
IN+
OUT
MAX985-15
200ns/div
50mV/ div
2V/div
VOD = 50mV
POWER-UP DELAY
V
CC
OUT
MAX985-16
5µs/div
V
IN-
= 50mV
V
IN+
= 0V
900 800 700
600
0
0 80 120 160 200
PROPAGATION DELAY
vs. INPUT OVERDRIVE
500
400 300 200 100
MAX985-10
INPUT OVERDRIVE (mV)
t
PD
(ns)
40
VCC = 2.7V
VCC = 5.0V
450
380
-40 100
PROPAGATION DELAY
vs. TEMPERATURE
390
430
440
MAX985-09
TEMPERATURE (°C)
t
PD
(ns)
-20 0 20 40 60 80
420
410
400
TO V
OUT
= 50% POINT
OF FINAL VALUE
TO V
OUT
= 10% POINT
OF FINAL VALUE
VOD = 50mV
MAX985/MAX989/MAX993
PROPAGATION DELAY (t
PD+
)
IN+
OUT
MAX985-11
100ns/div
50mV/ div
2V/div
VOD = 50mV
PROPAGATION DELAY (t
PD-
)
IN+
OUT
MAX985-12
100ns/div
50mV/ div
2V/div
VOD = 50mV
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VCM= 0V, TA= +25°C, unless otherwise noted.)
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
6 _______________________________________________________________________________________
______________________________________________________________Pin Description
MAX985 MAX986
SO
PIN
Comparator Output61
SOT23-5
Comparator Noninverting Input33
Negative Supply Voltage45
Comparator Inverting Input24
Positive Supply Voltage72
Comparator A Output
Comparator A Noninverting Input
Comparator B Inverting Input
Comparator B Noninverting Input
Comparator A Inverting Input
Comparator C Noninverting Input
Comparator B Output
Comparator C Inverting Input
Comparator C Output
Comparator D Noninverting Input
4
8
1
3
6
5
2
7
Comparator D Output
11
4
1
3
6
5
2
7
9
8
Comparator D Inverting Input
OUT
IN+
V
EE
IN-
V
CC
OUTA
INA+
INB-
INB+
INA-
OUTB
INC-
OUTC
— —
10 12
14
13
INC+ IND+
OUTD
IND-
No Connection. Not internally connected.1, 5, 8 N.C.
MAX989 MAX990
MAX993 MAX994
FUNCTIONNAME
SO/µMAX SO
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
_______________________________________________________________________________________ 7
_______________Detailed Description
The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5V and +5.5V and consume only 11µA. Their common-mode input voltage range extends
0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8mA loads.
The output stage employs a unique design that mini­mizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push/pull output structure that sinks as well as sources current. The MAX986/MAX990/MAX994 have an open­drain output stage that can be pulled beyond VCCto an absolute maximum of 6V above VEE.
Input Stage Circuitry
The devices’ input common-mode range extends from
-0.25V to (VCC+ 0.25V). These comparators may oper­ate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are pro­tected from overvoltage by internal body diodes con­nected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias cur­rents increase exponentially as the input voltage exceeds the supply rails.
Output Stage Circuitry
These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state oper­ation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The
Typical Operating Characteristics
graph Supply Current vs. Output Transition Frequency shows the minimal supply-current increase as the out­put switching frequency approaches 1MHz. This char­acteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in high­speed, battery-powered applications is a substantial increase in battery life.
__________Applications Information
Additional Hysteresis
MAX985/MAX989/MAX993
The MAX985/MAX989/MAX993 have ±3mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calcu­late resistor values for the MAX985/MAX989/MAX993.
1) Select R3. Leakage current at IN is under 10nA, so the current through R3 should be at least 1µA to minimize errors caused by leakage current. The cur­rent through R3 at the trip point is (V
REF
- V
OUT
) / R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = V
REF
/ 1µA
or R3 = (V
REF
- VCC) / 1µA. Use the smaller of the
two resulting resistor values. For example, if V
REF
=
1.2V and VCC= 5V, then the two R3 resistor values are 1.2Mand 3.8M. Choose a 1.2Mstandard value for R3.
2) Choose the hysteresis band required (VHB). For this example, choose 50mV.
3) Calculate R1 according to the following equation:
R1 = R3 x (VHB/ VCC)
For this example, insert the values R1 = 1.2Mx (50mV / 5V) = 12k.
4) Choose the trip point for VINrising (V
THR
; V
THF
is the trip point for VINfalling). This is the threshold voltage at which the comparator switches its output from low to high as VINrises above the trip point. For this example, choose 3V.
V
CC
MAX985 MAX989 MAX993
OUT
R3
R1
R2
V
REF
V
EE
V
IN
V
CC
Figure1. Additional Hysteresis (MAX985/MAX989/MAX993)
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
8 _______________________________________________________________________________________
5) Calculate R2 as follows. For this example, choose an
8.2kstandard value:
6) Verify trip voltages and hysteresis as follows:
MAX986/MAX990/MAX994
The MAX986/MAX990/MAX994 have ±3mV internal hysteresis. They have open-drain outputs and require an external pull-up resistor (Figure 2). Additional hys­teresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX985/MAX989/MAX993.
Use the following procedure to calculate resistor values:
1) Select R3 according to the formulas R3 = V
REF
/
500µA or R3 = (V
REF
- VCC) / 500µA - R4. Use the
smaller of the two resulting resistor values.
2) Choose the hysteresis band required (VHB). For this example, choose 50mV.
3) Calculate R1 according to the following equation:
R1 = (R3 + R4) x (VHB/ VCC)
4) Choose the trip point for VINrising (V
THR
; V
THF
is the trip point for VINfalling). This is the threshold voltage at which the comparator switches its output from low to high as VINrises above the trip point.
5) Calculate R2 as follows:
6) Verify trip voltages and hysteresis as follows:
Board Layout and Bypassing
Power-supply bypass capacitors are not typically need­ed, but use 100nF bypass capacitors when supply impedance is high, when supply leads are long, or when excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance.
V rising: V = V x R1 x
1
R1
V falling
IN THR REF
IN
:
+ +
+
 
 
=
+
 
 
=
1
2
1
3 4
1
3 4
R R R
V V
R x V
R R
Hysteresis V V
THF THR
CC
THR THF
R2 =
1
V
V
THR
REF
x R R R R1
1
1
1
3 4
 
 
− +
V rising: V = V x R1 x
1
R1
V falling
IN THR REF
IN
:
+ +
 
 
=
 
 
=
1
2
1
3
1
3
R R
V V
R x V
R
Hysteresis V V
THF THR
CC
THR THF
R2 =
1
V
V
R2 =
1
3.0V
1.2 x 12k
THR
REF
.
.
x R R R
k M
k
1
1
1
1
3
1
12
1
2 2
8 03
 
 
 
 
=
V
EE
V
CC
OUT
R3
R2
R1
R4
V
REF
V
IN
V
CC
MAX986 MAX990 MAX994
Figure 2. Additional Hysteresis (MAX986/MAX990/MAX994)
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
_______________________________________________________________________________________ 9
Zero-Crossing Detector
Figure 3 shows a zero-crossing detector application. The MAX985’s inverting input is connected to ground, and its noninverting input is connected to a 100mVp-p signal source. As the signal at the noninverting input crosses 0V, the comparator’s output changes state.
Logic-Level Translator
Figure 4 shows an application that converts 5V logic lev­els to 3V logic levels. The MAX986 is powered by the +5V supply voltage, and the pull-up resistor for the MAX986’s open-drain output is connected to the +3V supply volt­age. This configuration allows the full 5V logic swing with­out creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the +3V supply to VCCand the +5V supply to the pull-up resistor.
MAX985
IN+
4
3
OUT
1
2
5
V
CC
100mV
V
CC
V
EE
IN-
Figure 3. Zero-Crossing Detector Figure 4. Logic-Level Translator
_____________________________________________Pin Configurations (continued)
14 13 12 11 10
9 8
1
2
3 4 5 6 7
OUTD IND­IND+ V
EE
V
CC
INA+
INA-
OUTA
MAX993 MAX994
INC+ INC­OUTCOUTB
INB-
INB+
SO
OUT
N.C.
V
EE
1
2
87N.C.
V
CC
IN-
IN+
N.C.
SO
TOP VIEW
3
4
6
5
MAX985 MAX986
INB-
INB+
V
EE
1
2
87V
CC
OUTB
INA-
INA+
OUTA
SO/µMAX
3
4
6
5
MAX989 MAX990
+5V (+3V)
+3V (+5V)
100k
4
100k
3
5V (3V) LOGIC IN
IN-
IN+
V
CC
V
EE
2
MAX986
5
OUT
R
PULL-UP
3V (5V)
1
LOGIC OUT
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
10 ______________________________________________________________________________________
_Ordering Information (continued)________Typical Application Circuit
MAX98_ MAX99_
IN+
*R
PULL-UP
THRESHOLD DETECTOR
* MAX986/MAX990/MAX994 ONLY
V
IN
OUT
V
CC
V
CC
V
EE
V
REF
IN-
14 SO
14 SO-40°C to +85°C
-40°C to +85°C
MAX994ESD
MAX993ESD
8 µMAX-40°C to +85°CMAX990EUA
8 SO
8 µMAX
8 SO
PIN-
PACKAGE
TEMP. RANGE
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
MAX990ESA
MAX989EUA
MAX989ESA
PART
SOT
TOP MARK
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23,
Rail-to-Rail I/O Comparators
______________________________________________________________________________________ 11
________________________________________________________Package Information
SOT5L.EPS
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
___________________________________________Package Information (continued)
8LUMAXD.EPS
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Loading...