MAXIM MAX9420, MAX9423 Technical data

General Description
The MAX9420–MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for high­speed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.
The four channels can be operated synchronously with an external clock, or in asynchronous mode, deter­mined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differen­tial low state.
These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differen­tial LVPECL output signals.
A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50series outputs. The MAX9422 has 100differential input impedance and open-emitter outputs. The MAX9423 has 100differential input impedance and 50series outputs.
The MAX9420–MAX9423 are specified for operation from -40°C to +85°C, and are offered in space-saving 32-pin 5mm 5mm TQFP and 32-lead 5mm 5mm QFN packages.
Applications
Data and Clock Driver and Buffer
Central Office Backplane Clock Distribution
DSLAM Backplane
Base Station
ATE
Features
>500mV Differential Output at 3.0GHz Clock
336ps (typ) Propagation Delay in Asynchronous
Mode
17ps (typ) Channel-to-Channel Skew
Integrated 50Outputs (MAX9421/MAX9423)
Integrated 100Inputs (MAX9422/MAX9423)
Synchronous/Asynchronous Operation
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
TQFP (5mm x 5mm)
TOP VIEW
32 28
293031
25
26
27
IN0
VCCOUT0
OUT0
IN0
GND
IN1
IN1
10
13
15
14
1611 12
9
IN3
V
CC
IN3
OUT3
OUT3
IN2
GND
IN2
17
18
19
20
21
22
23
OUT1
24 V
CC
OUT1
GND
GND
OUT2
OUT2
V
CC
2
3
4
5
6
7
8V
EE
EN
EN
CLK
CLK
SEL
SEL
1V
EE
MAX9420 MAX9421 MAX9422 MAX9423
Pin Configurations
19-2285; Rev 0; 1/02
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Functional Diagram appears at end of data sheet.
Pin Configurations continued at end of data sheet.
*Future product—contact factory for availability.
PART
TEMP
RANGE
MAX9420EHJ -40°C to +85°C 32 TQFP Open Open
MAX9420EGJ* -40°C to +85°C 32 QFN Open Open
MAX9421EHJ -40°C to +85°C 32 TQFP Open 50
MAX9421EGJ* -40°C to +85°C 32 QFN Open 50
MAX9422EHJ -40°C to +85°C 32 TQFP 100 Open
MAX9422EGJ* -40°C to +85°C 32 QFN 100 Open
MAX9423EHJ -40°C to +85°C 32 TQFP 100 50
MAX9423EGJ* -40°C to +85°C 32 QFN 100 50Ω
PIN-
PACKAGE
DATA
INPUT
OUTPUT
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VEE= -2.0V to -3.6V, VCC= 2.375V to 3.6V, GND = 0, MAX9420/MAX9422 outputs terminated with 50±1% to VCC- 2.0V. Typical val­ues are at V
EE
= -3.3V, VCC= 3.3V, TA= +25°C, V
IHD
= -0.9V, V
ILD
= -1.7V, unless otherwise noted.) (Notes 1, 2, and 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +4.1V
V
EE
to GND............................................................-4.1V to +0.3V
Inputs to GND .............................................(V
EE
- 0.3V) to +0.3V
Differential Input Voltage .......................................................±3V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
Continuous Power Dissipation (T
A
= +70°C)
Single-Layer PC Board
32-Pin 5mm
5mm TQFP
(derate 9.5mW/°C above +70°C)................................761mW
32-Lead 5mm
5mm QFN
(derate 21.3mW/°C above +70°C).................................1.7W
Junction-to-Ambient Thermal Resistance in Still Air
32-Pin 5mm
5mm TQFP......................................+105°C/W
32-Lead 5mm
5mm QFN......................................+47°C/W
Junction-to-Ambient Thermal Resistance with 500
LFPM Airflow 32-Pin 5mm
5mm TQFP.........................................+73°C/W
Junction-to-Case Thermal Resistance
32-Pin 5mm
5mm TQFP.........................................+25°C/W
32-Lead 5mm
5mm QFN.........................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (IN_, IN_) ........................................500V
Others.............................................................................1.2kV
Lead Temperature (soldering, 10s) .................................+300°C
LVECL INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)
Differential Input High Voltage V
Differential Input Low Voltage V
Differential Input Voltage V
Input Current IIH, I
Differential Input Resistance (IN, IN)
LVPECL OUTPUTS (OUT_, OUT_)
Differential Output Voltage
Output Common-Mode Voltage V
Internal Current Source I
Output Impedance R
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IHD
ILD
ID
Figure 1
Figure 1 V
Figure 1
MAX9420/ MAX9421
IL
MAX9422/ MAX9423
MAX9422/MAX9423 86 100 114
IN
­Figure 1 600 660 mV
OL
Figure 1
MAX9421/MAX9423, Figure 2 6.5 8.2 10.0 mA
MAX9421/MAX9423, Figure 2 40 50 60
V
V
SINK
R
OH
OCM
OUT
V
+
EE
1.4
EE
VEE -3.0V 0.2 3.0
> -3.0V 0.2 V
V
EE
EN, EN, SEL, SEL , IN_, IN_, CLK, or CLK = V
IHD
or V
ILD
EN, EN, SEL, SEL, CLK, or CLK = V
IHD
or V
ILD
-10 25
-10 25
V
-
CC
1.5
VCC -
1.25
VCC -
0V
-0.2 V
EE
1.1
V
µA
V
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VEE= -2.0V to -3.6V, VCC= 2.375V to 3.6V, GND = 0, MAX9420/MAX9422 outputs terminated with 50±1% to VCC- 2.0V. Typical val­ues are at V
EE
= -3.3V, VCC= 3.3V, TA= +25°C, V
IHD
= -0.9V, V
ILD
= -1.7V, unless otherwise noted.) (Notes 1, 2, and 3)
AC ELECTRICAL CHARACTERISTICS
(VEE= -2.0V to -3.6V, VCC= 2.375V to 3.6V, GND = 0, outputs terminated with 50±1% to VCC- 2.0V. For SEL = high, CLK = high or low, f
IN
= 2.0GHz. For SEL = low, FIN= 1.5GHz, CLK = 3.0GHz, input transition time = 125ps (20% to 80%), V
IHD
= VEE+ 1.4V to
0, V
ILD
= VEEto -0.2V, V
IHD
- V
ILD
= 0.2V to the smaller of 3.0V or |VEE|. Typical values are at VEE= -3.3V, VCC= 3.3V, GND = 0, T
A
= +25°C, V
IHD
= -0.9V, V
ILD
= -1.7V, unless otherwise noted.) (Note 4)
)
)
(
)
(
)
(
)
POWER SUPPLY
Negative Supply Current I
Positive Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
EE
CC
OUT_, OUT_ open
OUT_, OUT_ open
MAX9421/MAX9422/ MAX9423
710mA
MAX9421/MAX9423 153 -180
MAX9420/MAX9422 87 105
mA
IN-to-OUT Differential
CLK-to-OUT Differential
IN-to-OUT Channel-to-Channel Skew (Note 5)
CLK-to-OUT Channel-to­Channel Skew (Note 5)
Maximum Clock Frequency f
Maximum Data Frequency f
Added Random Jitter (Note 6) t
Added Deterministic Jitter (Note 6)
IN-to-CLK Setup Time t
CLK-to-IN Hold Time t
Output Rise Time t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
P LH 1, tP H L 1
t
P LH 2, tP H L 2
t
SKD1
t
SKD2
CLK(MAX
IN(MAX
RJ
t
DJ
SEL = high, Figure 3 250 336 450 ps
SEL = low, Figure 4 350 506 575 ps
SEL = high 17 60 ps
SEL = low 17 55 ps
V
VOL 500mV, SEL = low 3.0 GHz
OH
-
V
VOL 400mV, SEL = high 2 GHz
OH
-
SEL = low, f
SEL = high, fIN = 2GHz 0.53 1.0 ps
SEL = low, f
23
- 1 PRBS pattern
2
SEL = high, IN_ = 3.0Gbps 223 - 1 PRBS
= 3.0GHz, fIN = 1.5GHz 0.65 1.0 ps
CLK
= 3.0GHz, IN_ = 3.0Gbps,
CLK
pattern
Figure 4 80 ps
S
H
Figure 4 80 ps
Figure 3 90 120 ps
R
28 45
23 45
RMS
RMS
ps
P-P
AC ELECTRICAL CHARACTERISTICS (continued)
(VEE= -2.0V to -3.6V, VCC= 2.375V to 3.6V, GND = 0, outputs terminated with 50±1% to VCC- 2.0V. For SEL = high, CLK = high or low, f
IN
= 2.0GHz. For SEL = low, FIN= 1.5GHz, CLK = 3.0GHz, input transition time = 125ps (20% to 80%), V
IHD
= VEE+ 1.4V to
0, V
ILD
= VEEto -0.2V, V
IHD
- V
ILD
= 0.2V to the smaller of 3.0V or |VEE|. Typical values are at VEE= -3.3V, VCC= 3.3V, GND = 0, T
A
= +25°C, V
IHD
= -0.9V, V
ILD
= -1.7V, unless otherwise noted.) (Note 4)
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
4 _______________________________________________________________________________________
Typical Operating Characteristics
(VEE= -3.3V, VCC= 3.3V, GND = 0, MAX9420/MAX9422 outputs terminated with 50±1% to VCC- 2.0V, SEL = high, f
CLK
= 3.0GHz,
fIN= 1.5GHz, input transition time = 125ps (20% to 80%), V
IHD
= -0.9V, V
ILD
= -1.7V, TA= +25°C, unless otherwise noted.)
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full oper-
ating temperature range.
Note 4: Guaranteed by design and characterization. Limits are set to ±6 sigma. Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Note 6: Device jitter added to the input signal.
Output Fall Time t
Propagation Delay Temperature Coefficient
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Figure 3 90 120 ps
F
tPD/
T
0.2 1 ps/°C
SUPPLY CURRENT (ICC)
vs. TEMPERATURE
100
MAX9420/MAX9422 SEL = HIGH
95
OUTPUTS NOT TERMINATED
90
85
80
SUPPLY CURRENT (mA)
75
70
-40 10-15 35 60 85 TEMPERATURE (°C)
9
MAX9420 toc01
8
7
6
OUTPUT AMPLITUDE (mV)
5
4
-40 10-15 35 60 85
OUTPUT RISE/FALL TIME
vs. TEMPERATURE
100
MAX9420/MAX9422 SEL = HIGH
95
t
90
85
OUTPUT RISE/FALL TIME (ps)
80
75
-40 10-15 35 60 85 TEMPERATURE (°C)
R
t
F
370
360
MAX9420 toc04
350
340
330
320
PROPAGATION DELAY (ps)
310
300
290
-40 10-15 35 60 85
SUPPLY CURRENT (IEE)
vs. TEMPERATURE
MAX9420/MAX9422 SEL = HIGH OUTPUTS NOT TERMINATED
TEMPERATURE (°C)
IN-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
MAX9420/MAX9422 SEL = HIGH
t
PLH1
t
PHL1
TEMPERATURE (°C)
1000
MAX9420 toc02
800
600
400
OUTPUT AMPLITUDE (mV)
200
0
0 1000500 1500 2000 2500 3000 3500
600
575
MAX9420 toc05
550
525
500
475
PROPAGATION DELAY (ps)
450
425
-40 10-15 35 60 85
OUTPUT AMPLITUDE (VOH - VOL)
vs. FREQUENCY
MAX9420/MAX9422 SEL = HIGH
IN_ FREQUENCY (MHz)
CLK-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
MAX9420/MAX9422 SEL = LOW
TEMPERATURE (°C)
t
PLH2
t
PHL2
MAX9420 toc03
MAX9420 toc06
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
_______________________________________________________________________________________ 5
Pin Description
PIN NAME FUNCTION
1, 8 V
2 SEL
3 SEL Inverting Differential Select Input
4 CLK
5 CLK Noninverting Differential Clock Input
6EN
7 EN Inverting Differential Output Enable Input
9 IN3 Noninverting Differential Input 3
10 IN3 Inverting Differential Input 3
11, 17,
24, 30
12 OUT3 Inverting Differential Output 3
13 OUT3 Noninverting Differential Output 3
14, 20,
21, 27
15 IN2 Noninverting Differential Input 2 16 IN2 Inverting Differential Input 2 18 OUT2 Inverting Differential Output 2
19 OUT2 Noninverting Differential Output 2
22 OUT1 Noninverting Differential Output 1 23 OUT1 Inverting Differential Output 1 25 IN1 Inverting Differential Input 1
26 IN1 Noninverting Differential Input 1
28 OUT0 Noninverting Differential Output 0 29 OUT0 Inverting Differential Output 0 31 IN0 Inverting Differential Input 0
32 IN0 Noninverting Differential Input 0
EP Exposed Paddle (MAX942_EGJ only). Connected to VEE internally. See package dimensions.
V
GND Ground
Negative Supply Voltage. Bypass VEE to GND with 0.1µF and 0.01µF ceramic capacitors. Place the
EE
capacitors as close to the device as possible with the smaller value capacitor closest to the device. Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables all four
channels to operate asynchronously. Setting SEL = low and SEL = high (differential low) enables all four channels to operate in synchronous mode.
Inverting Differential Clock Input. A rising edge on CLK (and falling on CLK) transfers data from the inputs to the outputs when SEL = differential low.
Noninverting Differential Output Enable Input. Setting EN = high and EN = low (differential high) enables the outputs. Setting EN = low and EN = high (differential low) drives the output low.
Positive Supply Voltage. Bypass VCC to GND with 0.1µF and 0.01µF ceramic capacitors. Place the
CC
capacitors as close to the device as possible with the smaller value capacitor closest to the device.
MAX9420–MAX9423
Detailed Description
The MAX9420–MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for high­speed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.
The four channels can be operated synchronously with an external clock, or in asynchronous mode, deter­mined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differen­tial low state.
These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differen­tial LVPECL output signals.
A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50series outputs. The MAX9422 has 100differential input impedance and open-emitter outputs. The MAX9423 has 100differential input impedance and 50series outputs.
Supply Voltages
For interfacing to differential LVECL input levels, the VEErange is -2.0V to -3.6V with GND = 0. The V
CC
range is from 2.375V to 3.6V, compatible with LVPECL logic. Output levels are referenced to VCC.
Data Inputs
The MAX9420/MAX9421 have open inputs and require external termination. The MAX9422/MAX9423 have inte­grated 100differential input termination resistors from IN_ to IN_, reducing external component count.
Outputs
The MAX9421/MAX9423 have internal 50series out­put termination resistors and 8mA internal pulldown current sources. Using integrated resistors reduces external component count.
The MAX9420/MAX9422 have open-emitter outputs. An external termination is required. See the Output Termination section.
Enable
Setting EN = high and EN = low enables the device. Setting EN = low and EN = high forces the outputs to a differential low. All changes on CLK, SEL, and IN_ are ignored.
Asynchronous Operation
Setting SEL = high and SEL = low enables the four channels to operate independently as LVECL-to­LVPECL translators. The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either logic low or high state to minimize noise coupling.
Synchronous Operation
Setting SEL = low and SEL = high enables all four channels to operate in synchronized mode. In this mode, buffered inputs are clocked into flip-flops simul­taneously on the rising edge of the differential clock input (CLK and CLK).
Differential Signal Input Limit
The maximum signal magnitude of all the differential inputs is 3.0V.
Quad Differential LVECL-to-LVPECL Translators
6 _______________________________________________________________________________________
Figure 1. Input and Output Voltage Definitions
GND
V
ID
V
ID
V
EE
INPUT VOLTAGE DEFINITION OUTPUT VOLTAGE DEFINITION
V
= 0
ID
V
= 0
ID
V
(MAX) V
IHD
V
(MAX)
ILD
V
- V
OH
OL
V
(MIN)
IHD
V
(MIN)
ILD
V
OCM
CC
V
OH
V
OL
GND
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
_______________________________________________________________________________________ 7
Figure 2. Input and Output Configurations
Figure 3. IN-to-OUT Propagation Delay Timing Diagram
IN_
IN_
MAX9420/MAX9421 MAX9422/MAX9423
MAX9420/MAX9422
V
CC
OUT_
OUT_
I
SINK
IN_
IN_
R
OUT
R
OUT
I
SINK
MAX9421/MAX9423
100k
V
CC
OUT_
OUT_
V
EE
IN_
IN_
t
PLH1
OUT_
OUT_
20% 20%
OUT_ - OUT_
DIFFERENTIAL OUTPUT WAVEFORM
V
- V
IHD
ILD
t
PHL1
VOH - V
OL
80%
t
R
VOH - V
VOH - V
OL
OL
80%
t
F
SEL = HIGH EN = HIGH
Applications Information
Input Bias
Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.
Output Termination
Terminate open-emitter outputs (MAX9420/MAX9422) through 50to VCC- 2V or use an equivalent Thevenin termination. Terminate outputs using identical termina­tion on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and OUT_.
Ensure that the output currents do not exceed the cur­rent limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the devices total thermal limits should be observed.
Power-Supply Bypassing
Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass VCCto GND and VEEto GND with high-frequency sur­face-mount ceramic 0.1µF and 0.01µF capacitors in parallel as close to the device as possible, with the
0.01µF capacitor closest to the device pins. Use multi-
ple parallel vias for ground-plane connection to mini­mize inductance.
Circuit Board Traces
Input and output trace characteristics affect the perfor­mance of the MAX9420–MAX9423. Connect each of the inputs and outputs to a 50characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by main­taining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce the reflec­tions by maintaining 50characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.
Chip Information
TRANSISTOR COUNT: 927
PROCESS: Bipolar
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
8 _______________________________________________________________________________________
Figure 4. CLK-to-OUT Propagation Delay Timing Diagram
CLK
V
- V
IHD
ILD
CLK
t
H
IN_
IN_
t
PLH2
OUT_
OUT_
t
S
V
- V
IHD
ILD
VOH - V
t
H
t
PHL2
OL
SEL = LOW EN = HIGH
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
_______________________________________________________________________________________ 9
Figure 5. Input Bias Circuits for Unused Inputs
IN3
32
31
30
29
28
27
26
IN0
IN0
V
CC
OUT0
OUT0
GND
IN1
IN1
25
9
10
11
12
13
14
15
IN3
V
CC
OUT3
OUT3
GND
IN2
16
IN2
17
18
19
20
21
22
23
V
CC
*EXPOSED PADDLE AND CORNER PINS ARE CONNECTED TO V
EE
LEAD UNDER PACKAGE.
**
**
OUT2
OUT2
GND
GND
OUT1
OUT1
8
7
6
5
4
3
2
V
EE
EN
EN
CLK
CLK
SEL
SEL
QFN-EP*
1V
EE
24 V
CC
TOP VIEW
MAX9420 MAX9421 MAX9422 MAX9423
Pin Configurations (continued)
V
IN_
IN_
IN_
IN_
100
100
GND
MAX9420
1k
1k
1/4
MAX9421
V
EE
V
CC
CC
IN_
OUT_
OUT_
OUT_
100
OUT_
OUT_
IN_
MAX9422
1k
1/4
MAX9423
V
EE
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
10 ______________________________________________________________________________________
Functional Diagram
IN0 IN0
1
DQ
D
IN1 IN1
DQ
D
IN2 IN2
DQ
D
IN3 IN3
DQ
D
Q
CK
CK
Q
CK
CK
Q
CK
CK
Q
CK
CK
0
1
0
1
0
1
0
OUT0 OUT0
OUT1 OUT1
OUT2 OUT2
OUT3 OUT3
CLK CLK
SEL SEL
EN EN
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
______________________________________________________________________________________ 11
Package Information
32L TQFP, 5x5x01.0.EPS
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
12 ______________________________________________________________________________________
Package Information (continued)
MAX9420–MAX9423
Quad Differential LVECL-to-LVPECL Translators
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
Loading...