MAXIM MAX9400, MAX9402, MAX9403, MAX9405 User Manual

General Description
The MAX9400/MAX9402/MAX9403/MAX9405 are extremely fast, low-skew quad LVECL/ECL or LVPECL/ PECL buffer/receivers designed for high-speed data and clock driver applications. These devices feature an ultra-low propagation delay of 335ps and channel-to­channel skew of 16ps in asynchronous mode with 86mA supply current.
The four channels can be operated synchronously with an external clock, or in asynchronous mode determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.
A variety of input and output terminations are offered for maximum design flexibility. The MAX9400 has open inputs and open emitter outputs. The MAX9402 has open inputs and 50series outputs. The MAX9403 has 100differential input impedance and open emitter outputs. The MAX9405 has 100differential input impedance and 50series outputs.
These devices operate with a supply voltage of (VCC­VEE) = 2.375V to 5.5V, and are specified for operation from -40°C to +85°C. These devices are offered in space-saving 32-pin 5mm 5mm TQFP and 32-lead 5mm 5mm QFN packages.
Applications
Data and Clock Driver and Buffer
Central Office Backplane Clock Distribution
DSLAM Backplane
Base Station
ATE
Features
400mV Differential Output at 3.0GHz Data Rate
335ps Propagation Delay in Asynchronous Mode
8ps Channel-to-Channel Skew in Synchronous
Mode
Integrated 50Outputs (MAX9402/MAX9405)
Integrated 100Inputs (MAX9403/MAX9405)
Synchronous/Asynchronous Operation
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
MAX9400 MAX9402 MAX9403 MAX9405
TQFP (5mm x 5mm)
TOP VIEW
32 28
293031
25
26
27
IN0
VCCOUT0
OUT0
IN0
VEEIN1
IN1
10
13
15
14
1611 12
9
IN3
V
CC
OUT3
IN2
V
EE
17
18
19
20
21
22
23
OUT1
24 V
CC
OUT1
V
EE
V
EE
OUT2
OUT2
V
CC
2
3
4
5
6
7
8V
CC
EN
CLK
SEL
1V
CC
SEL
CLK
EN
IN3
OUT3
IN2
Pin Configurations
19-2223; Rev 2; 1/05
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Functional Diagram appears at end of data sheet.
PART
TEMP
RANGE
PIN-
DATA
OUTPUT
MAX9400EHJ
Open
MAX9400EGJ*
Open
MAX9402EHJ
50
MAX9402EGJ*
32 QFN
50
MAX9403EHJ
Open
MAX9403EGJ*
32 QFN
Open
MAX9405EHJ
50
MAX9405EGJ*
32 QFN
50
Pin Configurations continued at end of data sheet.
*Future product—contact factory for availability.
PACKAGE
-40°C to +85°C 32 TQFP Open
-40°C to +85°C 32 QFN Open
-40°C to +85°C 32 TQFP Open
-40°C to +85°C
-40°C to +85°C 32 TQFP 100
-40°C to +85°C
-40°C to +85°C 32 TQFP 100
-40°C to +85°C
INPUT
Open
100
100
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL Buffer/Receivers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC- VEE= 2.375V to 5.5V, MAX9400/MAX9403 outputs terminated with 50±1% to VCC- 2.0V. Typical values are at VCC- V
EE
=
3.3V, V
IHD
= VCC- 0.9V, V
ILD
= VCC- 1.7V, TA= +25°C, unless otherwise noted.) (Notes 1, 2, and 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto VEE................................................................-0.3V to +6V
Inputs to V
EE
...............................................-0.3V to (VCC+ 0.3V)
Differential Input Voltage .......................................................±3V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
Continuous Power Dissipation (T
A
= +70°C) 32-Pin 5mm x 5mm TQFP
(derate 9.5mW/°C above +70°C).................................761mW
32-Lead 5mm x 5mm QFN
(derate 21.3mW/°C above +70°C)...................................1.7W
Junction-to-Ambient Thermal Resistance in Still Air
32-Pin 5mm x 5mm TQFP ........................................+105°C/W
32-Lead 5mm x 5mm QFN ........................................+47°C/W
Junction-to-Ambient Thermal Resistance with
500LFPM Airflow
32-Pin 5mm x 5mm TQFP .........................................+73°C/W
Junction-to-Case Thermal Resistance
32-Pin 5mm x 5mm TQFP .........................................+25°C/W
32-Lead 5mm x 5mm QFN .........................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (Inputs and Outputs) ........................2kV
Soldering Temperature (10s) ...........................................+300°C
PARAMETER
CONDITIONS
UNITS
INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)
Differential Input High Voltage V
IHD
Figure 1
V
EE
+
1.4
V
Differential Input Low Voltage V
ILD
Figure 1
0.2
V
V
CC
- VEE < +3.0V 0.2
Differential Input Voltage V
ID
Figure 1
V
CC
- VEE +3.0V 0.2 3.0
V
MAX9400/ MAX9402
EN, EN, SEL, SEL , IN_, IN_,
-10 25
Input Current
MAX9403/ MAX9405
EN, EN, SEL, SEL, CLK, or CLK = V
IHD
or V
ILD
-10 25
µA
Differential Input Resistance
R
IN
MAX9403/MAX9405 86 114
OUTPUTS (OUT_, OUT_)
Differential Output Voltage
V
OH
-
V
OL
Figure 1
mV
Output Common-Mode Voltage V
OCM
Figure 1
1.5
1.1
V
Internal Current Source I
SINK
MAX9402/MAX9405, Figure 2 6.5 8.3 10 mA
Output Impedance R
OUT
MAX9402/MAX9405, Figure 2 40 50 60
POWER SUPPLY
MAX9402/MAX9405
180
Supply Current I
EE
MAX9400/MAX9403 86 118
mA
SYMBOL
MIN TYP MAX
IHD
or V
IIH, I
IL
CLK, or CLK = V
ILD
V
EE
600 660
VCC -
VCC -
1.25
150
V
CC
VCC -
VCC -
V
EE
VCC -
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
_______________________________________________________________________________________ 3
AC ELECTRICAL CHARACTERISTICS
(VCC- VEE= 2.375V to 5.5V, outputs terminated with 50±1% to VCC- 2.0V, enabled, CLK = 3.2GHz, fIN= 1.6GHz, input transition time = 125ps (20% to 80%), V
IHD
= VEE+ 1.2V to VCC, V
ILD
= VEEto VCC- 0.2V, V
IHD
- V
ILD
= 0.2V to smaller of |VCC- VEE| or 3V,
unless otherwise noted. Typical values are at V
CC
- VEE= 3.3V, V
IHD
= VCC- 0.9V, V
ILD
= VCC1.7V, TA= +25°C, unless otherwise
noted.) (Notes 1, 4)
PARAMETER
CONDITIONS
UNITS
437
IN-to-OUT Differential Propagation Delay
t
PLH1
t
PHL1
437
ps
597
CLK-to-OUT Differential Propagation Delay
t
PLH2
t
PHL2
SEL = low, Figure 4
597
ps
IN-to-OUT Channel-to-Channel Skew (Note 5)
t
SKD1
SEL = high 16 80 ps
CLK-to-OUT Channel-to­Channel Skew (Note 5)
t
SKD2
SEL = low 8 55 ps
Maximum Clock Frequency
)
V
OH
-
VOL 500mV, SEL = low 3.0
GHz
Maximum Data Frequency
)
V
OH
-
VOL 400mV, SEL = high 2
GHZ
1.3
Added Random Jitter (Note 6) t
RJ
SEL = high, fIN = 2GHz
1.5
ps
(RMS)
SEL = low, f
CLK
= 3.0GHz, IN_ = 3.0Gbps
2
23
- 1 PRBS pattern
17 30
Added Deterministic Jitter (Note 6)
t
DJ
SEL = high, IN = 2.0Gbps 223 - 1 PRBS pattern
40 55
ps
(P-P)
IN-to-CLK Setup Time t
S
Figure 4 80 ps
CLK-to-IN Hold Time t
H
Figure 4 80 ps
Output Rise Time t
R
Figure 3 80 120 ps
Output Fall Time t
F
Figure 3 80 120 ps
Propagation Delay Temperature Coefficient
tPD/
T
0.2 1
ps/°C
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full oper-
ating temperature range.
Note 4: Guaranteed by design and characterization. Limits are set to ±6 sigma. Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Note 6: Device jitter added to the input signal.
SYMBOL
f
CLK(MAX
f
IN(MAX
MIN TYP MAX
MAX9400/MAX9403 237 335
MAX9402/MAX9405
SEL = high, Figure 3
237 335
MAX9400/MAX9403 397 475
MAX9402/MAX9405
SEL = low, f
= 3.0GHz clock, fIN = 1.5GHz 0.64
CLK
397 475
0.74
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL Buffer/Receivers
4 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC- VEE= 3.3V, MAX9400, outputs terminated with 50±1% to VCC- 2.0V, enabled, SEL = high, CLK = 2.0GHz, fIN= 1.0GHz, input transition time = 125ps (20% to 80%), V
IHD
= VCC- 1.0V, V
ILD
= VCC- 1.5V, TA= +25°C, unless otherwise noted.)
70
75
85
80
90
95
-40 10-15 35 60 85
SUPPLY CURRENT (IEE)
vs. TEMPERATURE
MAX9400 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
0
200
600
400
800
1000
0 1000500 1500 2000 2500 3000 3500
OUTPUT AMPLITUDE (VOH - VOL)
vs. IN_ FREQUENCY
MAX9400 toc02
IN_ FREQUENCY (MHz)
OUTPUT AMPLITUDE (mV)
100
90
80
70
60
-40 10-15 356085
OUTPUT RISE/FALL vs. TEMPERATURE
MAX9400 toc03
TEMPERATURE (°C)
OUTPUT RISE/FALL TIME (ps)
t
R
t
F
325
335
330
345
340
350
355
-40 85
IN-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
MAX9400 toc04
TEMPERATURE (°C)
PROPAGATION DELAY (ps)
10-15 35 60
t
PLH
t
PHL
520
500
480
460
440
-40 10-15 356085
CLK-TO-OUT PROPAGATION DELAY
vs. TEMPERATURE
MAX9400 toc05
TEMPERATURE (°C)
PROPAGATION DELAY (ps)
t
PLH2
t
PHL2
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
_______________________________________________________________________________________ 5
Pin Description
PIN NAME FUNCTION
1, 8,11,
17, 24, 30
V
CC
Positive Supply Voltage. Bypass VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2 SEL
Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables all four channels to operate asynchronously. Setting SEL = low and SEL = high (differential low) enables all four channels to operate in synchronous mode.
3 SEL Inverting Differential Select Input
4 CLK Noninverting Differential Clock Input
5 CLK
Inverting Differential Clock Input. A rising edge on CLK (and falling on CLK) transfers data from the inputs to the outputs when SEL = low.
6EN
Noninverting Differential Output Enable Input. Setting EN = high and EN = low (differential high) enables the outputs. Setting EN = low and EN = high (differential low) drives outputs low.
7 EN Inverting Differential Output Enable Input
9 IN3 Noninverting Differential Input 3
10 IN3 Inverting Differential Input 3
12 OUT3 Inverting Differential Output 3
13 OUT3 Noninverting Differential Output 3
14, 20,
21, 27
V
EE
Negative Supply Voltage
15 IN2 Noninverting Differential Input 2
16 IN2 Inverting Differential Input 2
18 OUT2 Inverting Differential Output 2
19 OUT2 Noninverting Differential Output 2
22 OUT1 Noninverting Differential Output 1
23 OUT1 Inverting Differential Output 1
25 IN1 Inverting Differential Input 1
26 IN1 Noninverting Differential Input 1
28 OUT0 Noninverting Differential Output 0
29 OUT0 Inverting Differential Output 0
31 IN0 Inverting Differential Input 0
32 IN0 Noninverting Differential Input 0
EP Exposed Paddle (MAX940_EGJ only). Connected to VEE internally. See package dimensions.
MAX9400/MAX9402/MAX9403/MAX9405
Detailed Description
The MAX9400/MAX9402/MAX9403/MAX9405 are extremely fast, low-skew quad LVECL/ECL or LVPECL/ PECL buffer/receivers designed for high-speed data and clock driver applications. The devices feature an ultra-low propagation delay of 335ps and channel-to­channel skew of 16ps in asynchronous mode with an 86mA supply current.
The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.
A variety of input and output terminations are offered for maximum design flexibility. The MAX9400 has open inputs and open-emitter outputs. The MAX9402 has open inputs and 50series outputs. The MAX9403 has 100differential input impedance and open-emitter outputs. The MAX9405 has 100differential input impedance and 50series outputs.
Supply Voltage
The MAX9400/MAX9402/MAX9403/MAX9405 are de­signed for operation with a single supply. Using a single negative supply of VEE= -2.375V to -5.5V (VCC= ground) yields LVECL/ECL-compatible input and output levels. Using a single positive supply of VCC= 2.375V to 5.5V (VEE= ground) yields LVPECL/PECL input and output levels.
Data Inputs
The MAX9400/MAX9402 have open inputs and require external termination. The MAX9403/MAX9405 have inte­grated 100differential input termination resistors from IN_ to IN_, reducing external component count.
Outputs
The MAX9402/MAX9405 have internal 50series out­put termination resistors and 8mA internal pulldown current sources. Using integrated resistors reduces external component count.
The MAX9400/MAX9403 have open-emitter outputs. An external termination is required. See the Output Termination section.
Enable
Setting EN = high and EN = low enables the device. Setting EN = low and EN = high forces the outputs to a differential low, and all changes on CLK, SEL, and IN_ are ignored.
Asynchronous Operation
Setting SEL = high and SEL = low enables the four channels to operate independently as buffer/receivers.
The CLK signal is ignored in this mode. In asynchro­nous mode, the CLK signal should be set to either a logic low or high state to minimize noise coupling.
Synchronous Operation
Setting SEL = low and SEL = high enables all four channels to operate in synchronous mode. In this mode, buffered inputs are clocked into flip-flops simul­taneously on the rising edge of the differential clock input (CLK and CLK).
Differential Signal Input Limit
The maximum signal magnitude of the differential inputs is VCC- VEEor 3V, whichever is less.
Applications Information
Input Bias
Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.
Output Termination
Terminate open-emitter outputs (MAX9400/MAX9403) through 50to VCC- 2V or use an equivalent Thevenin termination. Terminate both outputs and use identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a dif­ferential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and OUT_.
Ensure that the output currents do not exceed the cur­rent limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device’s total thermal limits should be observed.
Power-Supply Bypassing
Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass VCCto VEEwith high-frequency surface-mount ceramic
0.1µF and 0.01µF capacitors as close to the device as possible with the 0.01µF capacitor closest to the device pins. Use multiple bypass vias for connection to mini­mize inductance.
Circuit Board Traces
Input and output trace characteristics affect the perfor­mance of the MAX9400/MAX9402/MAX9403/MAX9405. Connect each of the inputs and outputs to a 50Ω char- acteristic impedance trace. Avoid discontinuities in dif­ferential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinu­ities. Reduce reflections by maintaining the 50Ω char-
Quad Differential LVECL/LVPECL Buffer/Receivers
6 _______________________________________________________________________________________
acteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.
Chip Information
TRANSISTOR COUNT: 713
PROCESS: Bipolar
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
_______________________________________________________________________________________ 7
V
CC
V
ID
V
ID
= 0V
V
IHD
(MAX) V
CC
V
EE
V
ILD
(MAX)
V
OH
- V
OL
V
OCM
V
OH
V
OL
V
EE
V
ID
V
ID
= 0V
V
IHD
(MIN)
V
ILD
(MIN)
INPUT VOLTAGE DEFINITION OUTPUT VOLTAGE DEFINITION
Figure 1. Input and Output Voltage Definitions
IN_
IN_
IN_
IN_
V
CC
OUT_
OUT_
V
CC
V
EE
OUT_
OUT_
50
50
8mA8mA
MAX9400/MAX9402 MAX9403/MAX9405
MAX9402/MAX9405
MAX9400/MAX9403
100
Figure 2. Input and Output Configurations
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL Buffer/Receivers
8 _______________________________________________________________________________________
t
PLH1
t
PHL1
VOH - V
OL
V
IHD
- V
ILD
VOH - V
OL
VOH - V
OL
t
R
t
F
80%
20% 20%
80%
DIFFERENTIAL OUTPUT WAVEFORM
IN_
IN_
OUT_
OUT_
OUT_ - OUT_
SEL = HIGH EN = HIGH
Figure 3. IN-to-OUT Propagation Delay and Transition Timing Diagram
V
IHD
- V
ILD
V
IHD
- V
ILD
V
IHD
- V
ILD
CLK
CLK
IN_
IN_
OUT_
OUT_
t
H
t
S
t
H
t
PLH2
t
PHL2
SEL = LOW EN = HIGH
Figure 4. CLK-to-OUT Propagation Delay Timing Diagram
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
_______________________________________________________________________________________ 9
IN_
IN_
100
1k
V
CC
V
EE
1/4 MAX9400/MAX9402
OUT_
OUT_
IN_
IN_
1k
V
CC
V
EE
1/4 MAX9403/MAX9405
OUT_
OUT_
100
Figure 5. Input Bias Circuits for Unused Inputs
32
31
30
29
28
27
26
IN0
IN0
V
CC
OUT0
OUT0
VEEIN1
25 IN1
9
10
11
12
13
14
15
IN3
IN3
V
CC
OUT3
OUT3
V
EE
IN2
16
IN2
17
18
19
20
21
22
23
V
CC
*EXPOSED PADDLE AND CORNER PINS ARE CONNECTED TO VEE.
OUT2
OUT2
V
EE
V
EE
OUT1
OUT1
8
7
6
5
4
3
2
V
CC
EN
EN
CLK
CLK
SEL
SEL
MAX9400 MAX9402 MAX9403 MAX9405
QFN-EP*
1V
CC
24 V
CC
TOP VIEW
*EXPOSED PADDLE
*
*
*
*
Pin Configurations (continued)
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL Buffer/Receivers
10 ______________________________________________________________________________________
Functional Diagram
DQ
CK
D Q
CK
1
0
IN0 IN0
OUT0 OUT0
DQ
CK
D Q
CK
1
0
IN1 IN1
OUT1 OUT1
DQ
CK
D Q
CK
1
0
IN2 IN2
OUT2 OUT2
DQ
CK
D Q
CK
1
0
IN3 IN3
CLK CLK
SEL SEL
EN EN
OUT3 OUT3
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
______________________________________________________________________________________ 11
32L TQFP, 5x5x01.0.EPS
B
1
2
21-0110
PACKAGE OUTLINE, 32L TQFP, 5x5x1.0mm
B
2
2
21-0110
PACKAGE OUTLINE, 32L TQFP, 5x5x1.0mm
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL Buffer/Receivers
12 ______________________________________________________________________________________
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.
32L QFN.EPS
MAX9400/MAX9402/MAX9403/MAX9405
Quad Differential LVECL/LVPECL
Buffer/Receivers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2005 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.
Loading...