MAXIM MAX9390, MAX9391 Technical data

General Description
The MAX9390/MAX9391 dual 2 x 2 crosspoint switches perform high-speed, low-power, and low-noise signal distribution. The MAX9390/MAX9391 multiplex one of two differential input pairs to either or both low-voltage differ­ential signaling (LVDS) outputs for each channel. Independent enable inputs turn on or turn off each differ­ential output pair.
Four LVCMOS/LVTTL logic inputs (two per channel) con­trol the internal connections between inputs and outputs. This flexibility allows for the following configurations: 2 x 2 crosspoint switch, 2:1 mux, 1:2 splitter, or dual repeater. This makes the MAX9390/MAX9391 ideal for protection switching in fault-tolerant systems, loopback switching for diagnostics, fanout buffering for clock/data distribution, and signal regeneration.
Fail-safe circuitry forces the outputs to a differential low condition for undriven inputs or when the common­mode voltage exceeds the specified range. The MAX9390 provides high-level input fail-safe detection for LVDS, HSTL, and other GND-referenced differential inputs. The MAX9391 provides low-level input fail-safe detection for LVPECL, CML, and other VCC-referenced differential inputs.
Ultra-low 82ps
(P-P)
(max) pseudorandom bit sequence (PRBS) jitter ensures reliable communications in high­speed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery, or serializers and deserializers. The high-speed switch­ing performance guarantees 1.5GHz operation and less than 65ps (max) skew between channels.
LVDS inputs and outputs are compatible with the TIA/EIA-644 LVDS standard. The LVDS outputs drive 100loads. The MAX9390/MAX9391 are offered in a 32-pin TQFP and 5mm x 5mm thin QFN package with exposed paddle and operate over the extended tem­perature range (-40°C to +85°C).
Also refer to the MAX9392/MAX9393 with flow-through pinout.
Applications
High-Speed Telecom/Datacom Equipment
Central-Office Backplane Clock Distribution
DSLAM
Protection Switching
Fault-Tolerant Systems
Features
1.5GHz Operation with 250mV Differential Output
Swing
2ps
(RMS)
(max) Random Jitter
AC Specifications Guaranteed for 150mV
Differential Input
Signal Inputs Accept Any Differential Signaling
Standard
LVDS Outputs for Clock or High-Speed Data
High-Level Input Fail-Safe Detection (MAX9390)
Low-Level Input Fail-Safe Detection (MAX9391)
+3.0V to +3.6V Supply Voltage Range
LVCMOS/LVTTL Logic Inputs Control Signal
Routing
MAX9390/MAX9391
Anything-to-LVDS Dual 2 x 2
Crosspoint Switches
________________________________________________________________ Maxim Integrated Products 1
Pin Configurations
Ordering Information
19-2829; Rev 1; 7/03
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
*Future product—contact factory for availability.
Pin Configurations continued at end of data sheet.
Functional Diagram and Typical Operating Circuit appear at end of data sheet.
PART TEMP RANGE PIN-PACKAGE
MAX9390EHJ -40°C to +85°C 32 TQFP
MAX9390ETJ* -40°C to +85°C 32 Thin QFN
MAX9391EHJ -40°C to +85°C 32 TQFP
MAX9391ETJ* -40°C to +85°C 32 Thin QFN
TOP VIEW
INA1
INA1
INB0
VCCASEL0
293031
MAX9390 MAX9391
INB0
BSEL0
TQFP
INA0
INA0
GND
26
25
27
24 V
CC
OUTA0
23
OUTA0
22
ENA0
21
GND
20
OUTA1
19
OUTA1
18
ENA1
17
14
15
13
CC
V
INB1
INB1
1611 12
BSEL1
OUTB1
OUTB1
GND
ENB0
OUTB0
OUTB0
ASEL1
32 28
1ENB1
2
3
4
5
6
7
8V
CC
10
9
GND
MAX9390/MAX9391
Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC= +3.0V to +3.6V, RL= 100Ω±1%, EN_ _ = VCC, VCM= 0.05V to (VCC- 0.6V) (MAX9390), VCM= 0.6V to (VCC- 0.05V) (MAX9391) T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at VCC= +3.3V, |VID| = 0.2V, VCM= +1.2V, TA= +25°C.)
(Notes 1, 2, and 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +4.1V
IN_ _, IN_ _, OUT_ _, OUT_ _, EN_ _,
_SEL_ to GND.........................................-0.3V to (V
CC
+ 0.3V)
IN_ _ to IN_ _ ..........................................................................±3V
Short-Circuit Duration (OUT_ _, OUT_ _) ...................Continuous
Continuous Power Dissipation (T
A
= +70°C) 32-Pin QFP (derate 13.1mW/°C
above +70°C).............................................................1047mW
32-Pin 5mm x 5mm Thin QFN (derate 21.3mW/°C
above +70°C).............................................................1702mW
Junction-to-Ambient Thermal Resistance in Still Air
32-Pin QFP..............................................................+76.4°C/W
32-Pin 5mm x 5mm Thin QFN....................................+47°C/W
Junction-to-Case Thermal Resistance
32-Pin 5mm x 5mm Thin QFN......................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection (Human Body Model)
(IN_ _, IN_ _, OUT_ _, OUT_ _, EN_ _, SEL_ _) ................±2kV
Soldering Temperature (10s) ...........................................+300°C
LVCMOS/LVTTL INPUTS (EN_ _, _SEL_)
Input High Voltage V
Input Low Voltage V
Input High Current I
Input Low Current I
DIFFERENTIAL INPUTS (IN_ _, IIIINNNN____ ____)
Differential Input Voltage V
Input Common-Mode Range V
Input Current
LVDS OUTPUTS (OUT_ _, OOOOUUUUTTTT____ ____)
Differential Output Voltage V
Change in Magnitude of V Between Complementary Output States
Offset Common-Mode Voltage V
Change in Magnitude of V Between Complementary Output States
PARAMETER SYM B O L CONDITIONS MIN TYP MAX UNITS
OD
OS
IH
IL
IH
IL
ID
CM
I
IN_ _
I
IN_ _ MAX9391 |V
OD
V
OD
OS
V
OS
VIN = +2.0V to V
VIN = 0 to +0.8V 0 10 µA
V
> 0 and V
ILD
MAX9390 0.05 VCC - 0.6
MAX9391 0.6 VCC - 0.05
MAX9390 |VID| < 3.0V -75 +10
,
RL = 100, Figure 2 250 350 450 mV
Figure 2 1.0 50 mV
Figure 2 1.125 1.25 1.375 V
Figure 2 1.0 50 mV
2.0 V
0 0.8 V
CC
< VCC, Figure 1 0.1 3.0 V
IHD
| < 3.0V -10 +100
ID
020µA
CC
V
V
µA
MAX9390/MAX9391
Anything-to-LVDS Dual 2 x 2
Crosspoint Switches
_______________________________________________________________________________________ 3
AC ELECTRICAL CHARACTERISTICS
(VCC= +3.0V to +3.6V, fIN< 1.34GHz, t
R_IN
= t
F_IN
= 125ps, RL= 100Ω±1%, |VID| > 150mV, VCM= +0.075V to (VCC- 0.6V)
(MAX9390 only), V
CM
= +0.6V to (VCC- 0.075V) (MAX9391 only), EN_ _ = VCC, TA= -40°C to +85°C, unless otherwise noted. Typical
values are at V
CC
= +3.3V, |VID| = 0.2V, VCM= +1.2V, fIN= 1.34GHz, TA= +25°C.) (Note 5)
Note 1: Measurements obtained with the device in thermal equilibrium. All voltages referenced to GND except V
ID
, VOD, and ∆VOD.
Note 2: Current into the device defined as positive. Current out of the device defined as negative. Note 3: DC parameters tested at T
A
= +25°C and guaranteed by design and characterization for TA= -40°C to +85°C.
Note 4: Current through either output. Note 5: Guaranteed by design and characterization. Limits set at ±6 sigma. Note 6: t
SKEW
is the magnitude difference of differential propagation delays for the same output over same conditions. t
SKEW
=
|t
PHL
- t
PLH
|.
Note 7: Measured between outputs of the same device at the signal crossing points for a same-edge transition, under the same
conditions.
Note 8: Device jitter added to the differential input signal.
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC= +3.0V to +3.6V, RL= 100Ω±1%, EN_ _ = VCC, VCM= 0.05V to (VCC- 0.6V) (MAX9390), VCM= 0.6V to (VCC- 0.05V) (MAX9391) T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at VCC= +3.3V, |VID| = 0.2V, VCM= +1.2V, TA= +25°C.)
(Notes 1, 2, and 3)
(
)
(
)
Output Short-Circuit Current (Either Output Shorted to GND)
Output Short-Circuit Current (Outputs Shorted Together)
SUPPLY CURRENT
Supply Current I
PARAMETER SYM B O L CONDITIONS MIN TYP MAX UNITS
V
|I
|I
OS
OSB
CC
V
= ±100m V
ID
|
( N ote 4)
V
= ±100mV, V
ID
|
(Note 4)
RL = 100Ω, EN_ _ = V
OUT_ _
V
OUT_ _
OUT_ _
= V
CC
RL = 100Ω, EN_ _ = VCC, switching at 670MHz (1.34Gbps)
or V
= V
OUT_ _
= 0 30 40
OUT_ _
= 0 18 24
OUT_ _
mA
5.0 12 mA
68 98
68 98
mA
PARAMETER SYM B O L CONDITIONS MIN TYP MAX UNITS
_SEL_ to Switched Output t
SWITCH
Disable, Time to Differential Output Low
Enable, Time to Differential Output High
Switching Frequency f
Low-to-High Propagation Delay t
High-to-Low Propagation Delay t
t
PHD
t
PDH
MAX
PLH
PHL
Figure 3 1.1 ns
Figure 4 1.7 ns
Figure 4 1.7 ns
VOD > 250mV 1.50 2.20 GHz
Figures 1, 5 294 409 565 ps
Figures 1, 5 286 402 530 ps
Pulse Skew |t
Output-to-Output Skew t
Output Low-to-High Transition Time (20% to 80%)
Output High-to-Low Transition Time (80% to 20%)
Added Random Jitter t
Added Deterministic Jitter t
PLH
- t
|t
PHL
SKEW
CCS
t
R
t
F
RJ
DJ
Figures 1, 5 (Note 6) 7 97 ps
Figures 5, 6 (Note 7) 10 65 ps
Figures 1, 5; fIN = 100MHz 112 153 185 ps
Figures 1, 5; fIN = 100MHz 112 153 185 ps
f
= 1.34GHz, clock pattern (Note 8) 2 ps
IN_ _
1.34Gbps, 223 - 1 PRBS (Note 8) 55 82 ps
RMS
P-P
MAX9390/MAX9391
Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
4 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC= +3.3V, |VID| = 0.2V, VCM= +1.2V, fIN= 1.34GHz, TA= +25°C.)
SUPPLY CURRENT
vs. TEMPERATURE
MAX9390 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
58
62
66
70
74
78
82
54
-40 85
VCC = +3.6V
VCC = +3.3V
VCC = +3V
OUTPUT AMPLITUDE
vs. FREQUENCY
MAX9390 toc02
FREQUENCY (GHz)
OUTPUT AMPLITUDE (mV)
2.22.00.2 0.4 0.6 1.0 1.2 1.4 1.60.8 1.8
50
100
150
200
250
300
350
400
0
02.4
OUTPUT RISE AND FALL TIMES
vs. TEMPERATURE
MAX9390 toc03
TEMPERATURE (°C)
RISE/FALL TIME (ps)
603510-15
130
140
150
160
170
180
120
-40 85
t
F
fIN = 100MHz
t
R
PROPAGATION DELAY
vs. TEMPERATURE
MAX9390 toc04
TEMPERATURE (°C)
PROPAGATION DELAY (ps)
603510-15
360
370
380
390
400
410
420
430
440
450
350
-40 85
MAX9390
DIFFERENTIAL INPUT CURRENT
vs. TEMPERATURE
MAx9390 toc05
TEMPERATURE (°C)
INPUT CURRENT (µA)
603510-15
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
-50
-40 85
VIN = -0.1V
VIN = 3V
MAX9391
DIFFERENTIAL INPUT CURRENT
vs. TEMPERATURE
MAX9390 toc06
TEMPERATURE (°C)
INPUT CURRENT (µA)
603510-15
0
10
20
30
40
50
60
70
80
-10
-40 85
VIN = 3.2V
VIN = 0.3V
MAX9390 INPUT CURRENT vs. V
IHD
MAX9390 toc07
V
IHD
(V)
INPUT CURRENT (µA)
3.33.02.4 2.70.6 0.9 1.2 1.5 1.8 2.10.3
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
-50
03.6
IN_ _ OR IN_ _ = GND
VCC = +3V
VCC = +3.6V
MAX9391
DIFFERENTIAL INPUT CURRENT vs. V
ILD
MAX9390 toc08
V
ILD
(V)
INPUT CURRENT (µA)
3.33.02.4 2.70.6 0.9 1.2 1.5 1.8 2.10.303.6
-10
10
0
40
30
20
50
60
70
80
VCC = +3.6V
VCC = +3V
IN_ _ OR IN_ _ = V
CC
MAX9390/MAX9391
Anything-to-LVDS Dual 2 x 2
Crosspoint Switches
_______________________________________________________________________________________ 5
Pin Description
PIN NAME FUNCTION
1 ENB1
2 OUTB1
3 OUTB1
4, 9,
20, 25
5 ENB0
6 OUTB0
7 OUTB0
8, 13,
24, 29
10 INB0
11 INB0
GND Ground
V
B1 Output Enable. Drive ENB1 high to enable the B1 LVDS outputs. An internal 435k resistor pulls ENB1 low when unconnected.
B1 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTB1 and OUTB1 at the receiver inputs to ensure proper operation.
B1 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTB1 and OUTB1 at the receiver inputs to ensure proper operation.
B0 Output Enable. Drive ENB0 high to enable the B0 LVDS outputs. An internal 435k resistor pulls ENB0 low when unconnected.
B0 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTB0 and OUTB0 at the receiver inputs to ensure proper operation.
B0 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTB0 and OUTB0 at the receiver inputs to ensure proper operation.
Power-Supply Input. Bypass each VCC to GND with 0. 1µF and 0.01µF ceramic capacitors. Install both
CC
bypass capacitors as close to the device as possible, with the 0.01µF capacitor closest to the device.
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kΩ resistor to V the input high when unconnected (MAX9390). An internal 68k resistor to GND pulls the input low when unconnected (MAX9391).
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kΩ resistor to V pulls the input high when unconnected (MAX9390). An internal 68k resistor to GND pulls the input low when unconnected (MAX9391).
pulls
CC
CC
12 BSEL0
14 INB1
15 INB1
16 BSEL1
Input Select for B0 Output. Selects the differential input to reproduce at the B0 differential outputs. Connect BSEL0 to GND or leave open to select the INB0 (INB0) set of inputs. Connect BSEL0 to V INB1 (INB1) set of inputs. An internal 435k resistor pulls BSEL0 low when unconnected.
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kΩ resistor to V the input high when unconnected (MAX9390). An internal 68k resistor to GND pulls the input low when unconnected (MAX9391).
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kΩ resistor to V pulls the input high when unconnected (MAX9390). An internal 68k resistor to GND pulls the input low when unconnected (MAX9391).
Input Select for B1 Output. Selects the differential input to reproduce at the B1 differential outputs. Connect BSEL1 to GND or leave open to select the INB0 (INB0) set of inputs. Connect BSEL1 to VCC to select the INB1 (INB1) set of inputs. An internal 435k resistor pulls BSEL1 low when unconnected.
to select the
CC
CC
pulls
CC
Loading...
+ 9 hidden pages