MAXIM MAX9386, MAX9387, MAX9388 User Manual

General Description
The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, low-jitter ECL/PECL multiplexers (muxes) with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and out­put-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57.
Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1. The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output VBB, nominally VCC- 1.425V. The select inputs accept signals between VCCand VEE. Internal pulldowns to VEEensure a low-default condition if the select inputs are left open.
The differential inputs D_, D_ can be configured to accept a single-ended signal when the unused comple­mentary input is connected to the on-chip reference output VBB. All the differential inputs have internal bias and clamping circuits that ensure low-default output states when the inputs are left open.
The MAX9386/MAX9387/MAX9388 operate with a wide supply range
|
VCC- V
EE|
of 2.375V to 5.5V. The MAX9386/MAX9388 are offered in 20-pin TSSOP and QSOP packages. The MAX9387 is offered in 24-pin TSSOP and QSOP packages.
Applications
High-Speed Telecom and Datacom Applications
Central Office Backplane Clock Distribution
DSLAM/DLC
Features
318ps (typ) Propagation Delay
>2.7GHz Toggle Frequency
0.3ps(RMS) Random Jitter
<14ps (max) at +25°C Output-to-Output Skew
(MAX9387)
-2.375V to -5.5V Supplies for Differential
LVECL/ECL
+2.375V to +5.5V Supplies for Differential
LVPECL/PECL
Outputs Low for Open Inputs
Dual Output Buffers (MAX9387)
Pin Compatible with MC100EP57 (MAX9388EUP)
>2kV ESD Protection (Human Body Model)
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
________________________________________________________________ Maxim Integrated Products 1
19-2617; Rev 1; 12/02
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ordering Information
PART
TEMP
RANGE
PIN-
SELECTION
MAX9386EUP
5:1 mux with 1 output buffer
MAX9386EEP*
5:1 mux with 1 output buffer
Pin Configurations
Pin Configurations continued at end of data sheet.
Ordering Information continued at end of data sheet.
*Future product—contact factory for availability.
PACKAGE
-40°C to +85°C 20 TSSOP
-40°C to +85°C 20 QSOP
TOP VIEW
DO
1
DO
2
D1
3
4
D2
D2
D3
D3
D4
D4
MAX9386
5
6
7
8
9
10
20
V
CC
SEL2
19
SEL1
18
SEL0D1
17
Q
16
Q
15
14
V
CC
V
13
BB1
12
V
BB2
V
11
EE
TSSOP/QSOP
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCC- VEE...............................................................-0.3V to +6.0V
Inputs (D_, D_, SEL_) to V
EE
......................-0.3V to (VCC+ 0.3V)
D_ to D_ ..............................................................................±3.0V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
V
BB_
Sink/Source Current ...............................................±600µA
Continuous Power Dissipation (T
A
= +70°C)
20-Lead TSSOP (derate 11.0mW/°C above +70°C) ....880mW
θJAin Still Air ...........................................................+91°C/W
θ
JC
...........................................................................+20°C/W
24-Lead TSSOP (derate 12.2mW/°C above +70°C) ....976mW
θ
JA
in Still Air ...........................................................+82°C/W
θ
JC
...........................................................................+15°C/W
20-Lead QSOP (derate 9.1mW/°C above +70°C) .......727mW
θ
JA
in Still Air .........................................................+110°C/W
θ
JC
...........................................................................+34°C/W
24-Lead QSOP (derate 9.5mW/°C above +70°C) .......762mW
θ
JA
in Still Air .........................................................+105°C/W
θ
JC
...........................................................................+34°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection Human Body Model (D_, D_, Q_, Q_, SEL_, V
BB_
) .............≥2kV
Lead Temperature (soldering, 10s) .................................+300°C
DC ELECTRICAL CHARACTERISTICS
(VCC- VEE= 2.375V to 5.5V, outputs loaded with 50Ω±1% to V
CC
- 2V. Typical values are at VCC- VEE= 3.3V, V
IHD
= VCC- 1V,
V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1–4)
-40°C +25°C +85°C
PARAMETER
CONDITIONS
UNITS
INPUT (D_, D_, SEL_)
Single-Ended Input High Voltage
V
IH
VBB connected to the unused input (Figure 1)
VCC -
VCC -
VCC -
V
Single-Ended Input Low Voltage
V
IL
VBB connected to the unused input (Figure 1)
V
CC
-
V
CC
-
VCC -
V
Differential Input High Voltage
V
IHD
Figure 1
V
Differential Input Low Voltage
V
ILD
Figure 1
V
V
CC
- V
EE
< 3.0V
V
CC
-
V
CC
-
V
CC
-
Differential Input Voltage
Figure 1
V
CC
- V
EE
3.0V
V
Input Current I
IN
V
IH
, VIL, V
IHD
, V
ILD
µA
SYMBOL
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
-
CC
1.225
1.945
V
+
EE
1.2
V
EE
0.095
0.095 3.000 0.095 3.000 0.095 3.000
-100 +100 -100 +100 -100 +100
V
I H D - V I LD
-
V
CC
1.225
0.880
V
CC
1.625
V
CC
V
CC
0.095
V
EE
-
1.945
V
+
EE
1.2
-
V
EE
0.095
0.880
V
CC
1.625
V
CC
V
CC
0.095
V
EE
-
V
CC
1.225
-
1.945
V
+
EE
1.2
-
V
EE
0.095
0.880
V
-
CC
1.625
V
CC
V
-
CC
0.095
V
EE
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
_______________________________________________________________________________________ 3
AC ELECTRICAL CHARACTERISTICS
(VCC- VEE= 2.375V to 5.5V, outputs loaded with 50Ω±1% to V
CC
- 2V, V
IHD
- V
ILD
= 0.15V to 1V, fIN≤ 2.5GHz input duty cycle
= 50%, input transition time = 125ps (20% to 80%). Typical values are at V
CC
- VEE= 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, fIN=
622MHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) (Note 7)
-40°C +25°C +85°C
CONDITIONS
UNITS
Differential Input-to-Output Delay
t
PLHD
,
t
PHLD
Figure 2
ps
SEL_-to-Output Delay
t
PLH2
,
t
PHL2
Figure 4, input transition time = 500ps
ns
Output-to­Output Skew
MAX9387 only, Figure 5 (Note 9)
ps
Input-to-Output Skew
t
SKIO
Figure 6 (Note 10)
ps
t
SKPP
(Note 11)
ps
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC- VEE= 2.375V to 5.5V, outputs loaded with 50Ω±1% to V
CC
- 2V. Typical values are at VCC- VEE= 3.3V, V
IHD
= VCC- 1V,
V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1–4)
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
OUTPUT (Q_, Q_)
Single-Ended Output High Voltage
V
OH
Figure 2
V
Single-Ended Output Low Voltage
V
OL
Figure 2
V
Differential Output Voltage
Figure 2
mV
REFERENCE OUTPUT (VBB_ )
Reference Voltage Output
V
BB1
,
V
BB2
(Note 5)
V
POWER SUPPLY
MAX9386
MAX9387
(Note 6)
I
EE
MAX9388
mA
V
1.145
V
1.945
V
OH - V OL
I
+ I
BB1
= ±0.5mA
BB2
V
1.525
Supply Current
MIN TYP MAX MIN TYP MAX MIN TYP MAX
-
CC
-
CC
650 830 650 840 650 840
-
VCC -
CC
1.425
34 50 36 50 38 50
40 60 42 60 45 60
31 47 33 47 35 47
V
CC
0.895
V
CC
1.695
V
CC
1.325
-
-
-
V
CC
1.145
V
CC
1.945
V
CC
1.525
-
-
-
V
CC
1.425
V
-
V
-
-
CC
1.145
V
CC
1.945
V
CC
1.525
-
-
-
CC
0.895
V
CC
1.695
-
V
CC
1.325
VCC -
1.425
V
CC
0.895
V
CC
1.695
V
CC
1.325
-
-
-
PARAMETER SYMBOL
P ar t- to- P ar t S kew
(20% to 80%) (Note 8)
t
SKOO
MIN TYP MAX MIN TYP MAX MIN TYP MAX
222 309 377 238 318 395 254 333 431
1.64 1.4 1.6
3.9 26 3.9 14 8.0 26
7.3 53 7.7 50 8.3 50
111 130 133
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
4 _______________________________________________________________________________________
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into an I/O pin is defined as positive. Current out of an I/O pin is defined as negative. Note 3: DC parameters production tested at T
A
= +25°C and guaranteed by design over the full operating temperature range.
Note 4: Single-ended data input operation using V
BB_
is limited to (VCC- VEE) 3.0V.
Note 5: Use V
BB_
only for inputs that are on the same device as the V
BB_
reference.
Note 6: All pins open except V
CC
and VEE.
Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma. Note 8: Measured from the 50% point of the input signal with the 50% point equal to V
BB
, to the 50% point of the output signal.
Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Note 10: Measured between input-to-output paths of the same part at the signal crossing points for a same-edge transition of the
differential input signal.
Note 11: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge
transition.
Note 12: Device jitter added to the differential input signal.
AC ELECTRICAL CHARACTERISTICS (continued)
VCC- VEE= 2.375V to 5.5V, outputs loaded with 50Ω±1% to V
CC
- 2V, V
IHD
- V
ILD
= 0.15V to 1V, fIN≤ 2.5GHz input duty cycle
= 50%, input transition time = 125ps (20% to 80%). Typical values are at V
CC
- VEE= 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, fIN=
622MHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) (Note 7)
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
Added Random Jitter (Note 12)
t
RJ
Clock
fIN = 2.5GH z
ps(RMS)
Added Deterministic Jitter (Note 12)
T
DJ
PRBS 2
23
- 1
ps
P-P
Switching Frequency
f
MAX
VOH - VOL 300mV, Figure 2
GHz
Select Toggle Frequency
f
SEL
MHz
Output Rise and Fall Time (20% to 80%)
t
R
, tFFigure 2
ps
fIN = 156M H z 0.3 1.15 0.3 1.15 0.3 1.15
pattern
fIN = 622M H z 0.3 1.15 0.3 1.15 0.3 1.15
fIN = 156M b p s 3395 3395 3395
fIN = 622M b p s 2161 2161 2161
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.3 1.15 0.3 1.15 0.3 1.15
2.7 2.7 2.7
100 100 100
67 105 138 74 117 155 81 128 165
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(VCC- VEE= 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, outputs loaded with 50Ω±1% to V
CC
- 2V, f
IN
= 1.5GHz, input duty cycle =
50%, input transition time = 125ps (20% to 80%), unless otherwise noted.)
SUPPLY CURRENT (IEE)
vs. TEMPERATURE
MAX9386 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
6035-15 10
25
30
35
40
45
50
55
60
20
-40 85
OUTPUT AMPLITUDE (VOH - VOL)
vs. FREQUENCY
MAX9386 toc02
FREQUENCY (MHz)
OUTPUT VOLTAGE (mV)
2400200016001200800400
200
400
600
800
1000
0
0 2800
OUTPUT RISE/FALL vs. TEMPERATURE
MAX9386 toc03
TEMPERATURE (°C)
RISE/FALL TIME (ps)
603510-15
100
110
120
130
140
150
90
-40 85
FALL
RISE
DIFFERENTIAL PROPAGATION DELAY
vs. INPUT HIGH VOLTAGE
MAX9386 toc04
INPUT HIGH VOLTAGE (V)
PROPAGATION DELAY (ps)
2.72.42.11.81.5
280
290
300
310
320
330
340
350
360
370
270
1.2 3.0
t
PLHD
t
PHLD
DIFFERENTIAL PROPAGATION DELAY
vs. TEMPERATURE
MAX9386 toc05
TEMPERATURE (°C)
TRANSITION TIME (ps)
603510-15
290
300
310
320
330
340
350
280
-40 85
t
PLHD
t
PHLD
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
6 _______________________________________________________________________________________
PIN
MAX9386
NAME FUNCTION
1 2 D0 Noninverting Differential Input 0. Internal 250k to VCC and 150k to VEE.
23D0 Inverting Differential Input 0. Internal 150kΩ to VCC and 150k to VEE.
3 4 D1 Noninverting Differential Input 1. Internal 250k to VCC and 150k to VEE.
45D1 Inverting Differential Input 1. Internal 150kΩ to VCC and 150k to VEE.
5 6 D2 Noninverting Differential Input 2. Internal 250k to VCC and 150k to VEE.
67D2 Inverting Differential Input 2. Internal 150kΩ to VCC and 150k to VEE.
7 8 D3 Noninverting Differential Input 3. Internal 250k to VCC and 150k to VEE.
89D3 Inverting Differential Input 3. Internal 150kΩ to VCC and 150k to VEE.
9 D4 Noninverting Differential Input 4. Internal 250k to VCC and 150k to VEE.
10 D4 Inverting Differential Input 4. Internal 150k to VCC and 150k to VEE.
11 10, 11 V
EE
Negative Supply
12 12 V
BB2
Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V
BB2
to VCC with a 0.01µF ceramic
capacitor. Otherwise leave open.
13 13 V
BB1
Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V
BB1
to VCC with a 0.01µF ceramic
capacitor. Otherwise leave open.
14, 20
1, 14
17, 20
V
CC
Positive Supply. Bypass each VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15 15 Q Inverting Output. Typically terminate with 50 resistor to VCC - 2V.
16 16 Q Noninverting Output. Typically terminate with 50 resistor to VCC - 2V.
17 18 SEL0 Select Logic Input 0. Internal 120k pulldown to VEE.
18 19 SEL1 Select Logic Input 1. Internal 120k pulldown to VEE.
19 SEL2 Select Logic Input 2. Internal 120k pulldown to VEE.
MAX9386/MAX9388 Pin Description
MAX9388
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
_______________________________________________________________________________________ 7
PIN
MAX9387
NAME FUNCTION
1, 18, 24
V
CC
Positive Supply. Bypass each VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2 D0 Noninverting Differential Input 0. Internal 250k to VCC and 150k to VEE.
3 D0 Inverting Differential Input 0. Internal 150k to VCC and 150k to VEE.
4 D1 Noninverting Differential Input 1. Internal 250k to VCC and 150k to VEE.
5 D1 Inverting Differential Input 1. Internal 150k to VCC and 150k to VEE.
6 D2 Noninverting Differential Input 2. Internal 250k to VCC and 150k to VEE.
7 D2 Inverting Differential Input 2. Internal 150k to VCC and 150k to VEE.
8 D3 Noninverting Differential Input 3. Internal 250k to VCC and 150k to VEE.
9 D3 Inverting Differential Input 3. Internal 150k to VCC and 150k to VEE.
10 D4 Noninverting Differential Input 4. Internal 250k to VCC and 150k to VEE.
11 D4 Inverting Differential Input 4. Internal 150k to VCC and 150k to VEE.
12, 13 V
EE
Negative Supply
14 V
BB2
Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V
BB2
to VCC with a 0.01µF ceramic capacitor. Otherwise
leave open.
15 V
BB1
Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V
BB1
to VCC with a 0.01µF ceramic capacitor. Otherwise
leave open.
16 Q1 Inverting Output 1. Typically terminate with 50 resistor to VCC - 2V.
17 Q1 Noninverting Output 1. Typically terminate with 50 resistor to VCC - 2V.
19 Q0 Inverting Output 0. Typically terminate with 50 resistor to VCC - 2V.
20 Q0 Noninverting Output 0. Typically terminate with 50 resistor to VCC - 2V.
21 SEL0 Select Logic Input 0. Internal 120k pulldown to VEE.
22 SEL1 Select Logic Input 1. Internal 120k pulldown to VEE.
23 SEL2 Select Logic Input 2. Internal 120k pulldown to VEE.
MAX9387 Pin Description
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
8 _______________________________________________________________________________________
Figure 1. Input Definitions
DIFFERENTIAL INPUT VOLTAGE DEFINITION
V
CC
V
EE
V
CC
V
IH
V
IL
V
BB
V
EE
V
IHD
- V
ILD
V
IHD
(MAX)
V
ILD
(MAX)
V
IHD
(MIN)
V
ILD
(MIN)
V
IHD
- V
ILD
SINGLE-ENDED INPUT VOLTAGE DEFINITION
Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram
V
OH
V
OL
V
IHD
- V
ILD
VOH - V
OL
VOH - V
OL
VOH - V
OL
V
IHD
t
PLHD
t
R
t
F
t
PHLD
V
ILD
20%
80%
DIFFERENTIAL OUTPUT
WAVEFORM
0V (DIFFERENTIAL)
20%
80%
D_
D_
Q_
Q_
Q_ - Q_
Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Diagram
VOH - V
OL
t
PLH1
t
PHL1
V
OH
V
OL
V
IH
V
BB
V
BB
V
IL
D_ WHEN D_ = V
BB
Q_
Q_
D_ WHEN D_ = V
BB
OR
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
_______________________________________________________________________________________ 9
Figure 4. Select Input (SEL0)-to-Output (Q_, Q_) Delay Timing Diagram
VOH - V
OL
t
PLH2
t
PHL2
V
OH
V
OL
V
IH
V
IHD
V
BB
V
IL
V
ILD
V
IHD
- V
ILD
Q_
D_, D1
Q_
D_, D1
SEL_ = VIL OR OPEN SELO
Figure 5. Output-to-Output Skew (t
SKOO
) Definition (MAX9387 Only)
t
SKOO
t
SKOO
Q0
Q0
Q1
Q1
Figure 6. Input-to-Output Skew (t
SKIO)
Definition
D1 OR D2 OR D3
D0
D0
D1 OR D2 OR D3
Q0
Q0
Q0
Q0
t
SKIO
= | t
PLHD
* - t
PLHD
** | OR | t
PHLD
* - t
PHLD
** |
t
PLHD
*t
PHLD
*
t
PLHD
** t
PHLD
**
t
PLHD
*: MEASURED BETWEEN D0, D0 INPUT, AND OUTPUT.
t
PLHD
**: MEASURED BETWEEN ANY OTHER INPUT AND OUTPUT.
MAX9386/MAX9387/MAX9388
Detailed Description
The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, and low-jitter ECL/PECL muxes with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redun­dant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57.
Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1 (see Tables 1 and 2). The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output V
BB,
nominally VCC-
1.425V. The select inputs accept signals between V
CC
and VEE. Internal 120kpulldowns to VEEensure a low default condition if the select inputs are left open, selecting the D0, D0 input.
The differential inputs D, D can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage
V
BB.
The reference output voltages, V
BB1
and V
BB2,
provide the reference voltage for single-ended opera­tion for each mux. A single-ended input of at least VBB_ ±100mV or a differential input of at least 100mV switches the outputs to the VOHand VOLlevels specified in the DC Electrical Characteristics. The maximum magnitude of the differential input from D to D is ±3.0V. This limit also applies to the difference between a single-ended input and any reference voltage input.
Specifications for the high and low voltages of a differ­ential input (V
IHD
and V
ILD
) and the differential input
voltage (V
IHD
- V
ILD
) apply simultaneously.
Single-Ended Operation
The recommended supply voltage for single-ended operation is 3.0V to 5.5V. The differential inputs (D, D) can be configured to accept single-ended inputs when operating at supply voltages greater than 2.725V. In single-ended mode operation, the unused complemen­tary input needs to be connected to the on-chip refer­ence voltage, VBB, as a reference. For example, the differential D, D input is converted to a noninverting, single-ended input by connecting VBBto D and con­necting the single-ended input to D. Similarly, an invert­ing input is obtained by connecting VBBto D and connecting the single-ended input to D. With a differen­tial input configured as single ended (using V
BB
), the
single-ended input can be driven to V
CC
or VEEor with
a single-ended LVPECL/LVECL signal.
In single-ended mode operation, a user must ensure that the supply voltage (VCC- VEE) is greater than
2.725V. This is because the input high minimum level must be at (V
EE
+ 1.2V) or higher for proper operation.
The reference voltage, VBB, must be at least (VEE+
1.2V) for the same reason because it becomes the high­level input when a single-ended input swings below it. The minimum VBBoutput for the MAX9386/MAX9387/ MAX9388 is (VCC- 1.38V). Substituting the minimum VBBoutput for (VBB= VEE+ 1.2V) results in a minimum supply (V
CC
- VEE) of 2.725V. Rounding up to standard supplies gives the recommended single-ended operat­ing supply ranges (VCC- VEE) of 3.0V to 5.5V.
When using the VBBreference output, bypass it with a
0.01µF ceramic capacitor to VCC. If not used, leave it open. The VBBreference can source or sink a total of
0.5mA (shared between V
BB1
and V
BB2
), which is suffi-
cient to drive five inputs.
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
10 ______________________________________________________________________________________
Table 1. Mux Select Input Truth Table for MAX9386/MAX9387
SEL2 SEL1 SEL0
DATA OUTPUT
L or open
D0*
L or open
HD1
L or open
H
D2
L or open
HH D3
HXX D4
*Default output when SEL0, SEL1, and SEL2 are left open.
SEL1 SEL0
DATA OUTPUT
L or open L or open D0*
L or open H D1
H L or open D2
HHD3
*Default output when SEL0 and SEL1 are left open.
Table 2. Mux Select Input Truth Table for MAX9388
L or open L or open
L or open
L or open
Applications Information
Output Termination
Terminate the outputs through 50to VCC- 2V or use equivalent Thevenin terminations. Terminate each Q and Q output with identical termination on each for min­imal distortion. When a single-ended signal is taken from the differential output, terminate both Q and Q.
Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the devices total thermal limits should be observed.
Supply Bypassing
Bypass VCCto VEEwith high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors. For PECL, bypass each VCCto VEE. For ECL, bypass each VEEto VCC. Place the capacitors as close to the device as possible with the 0.01µF capacitor closest to the device pins.
Use multiple vias when connecting the bypass capaci­tors to ground. When using the V
BB1
or V
BB2
reference outputs, bypass each one with a 0.01µF ceramic capacitor to VCC. If the V
BB1
or V
BB2
reference outputs
are not used, they can be left open.
Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reduc­ing signal reflections and skew, and increasing com­mon-mode noise immunity.
Signal reflections are caused by discontinuities in the 50characteristic impedance of the traces. Avoid dis­continuities by maintaining the distance between differ­ential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.
Chip Information
TRANSISTOR COUNT: 583
PROCESS: Bipolar
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
______________________________________________________________________________________ 11
V
BB1
V
BB2
V
CC
V
EE
V
CC
V
EE
MUX
150k
150k120k 150k
250k
D0
D0
D1
D1
D2
D2
D3
D3
D4**
SEL0
SEL1
SEL2**
D4**
Q0 (Q*)
Q0 (Q*)
MAX9386 (*) DOES NOT HAVE Q1 AND Q1 OUTPUTS, AND MAX9388 (**) DOES NOT HAVE D4, D4, AND SEL2 INPUTS.
Q1*
Q1*
D_
D_
MAX9386 MAX9387 MAX9388
V
EE
Functional Block Diagram
Ordering Information (continued)
PART
TEMP
RANGE
PIN-
SELECTION
MAX9387EUG
5:1 mux with 2
output buffers
M AX 9387E E G *
5:1 mux with 2
output buffers
MAX9388EUP
4:1 mux with 1 output buffer
MAX9388EEP*
4:1 mux with 1 output buffer
*Future product—contact factory for availability.
PACKAGE
-40°C to +85°C 24 TSSOP
-40°C to +85°C 24 QSOP
-40°C to +85°C 20 TSSOP
-40°C to +85°C 20 QSOP
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
12 ______________________________________________________________________________________
TOP VIEW
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
V
CC
SEL1
SEL0
V
CC
D1
D1
DO
V
CC
DO
Q
Q
V
CC
V
BB1
D3
D3
D2
D2
12
11
9
10
V
BB2
V
EE
V
EE
MAX9388
1
2
3
4
5
6
7
8
V
CC
SEL2
SEL1
SEL0
D1
D1
DO
DO
V
CC
Q0
Q0
V
CC
V
BB1
D3
D3
D2
D2
9
10
V
BB2
V
EE
D4
D4
MAX9387
TSSOP/QSOP
TSSOP/QSOP
Q1
Q1
14
13
11
12V
EE
24
23
22
21
20
19
18
17
16
15
Pin Configurations (continued)
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers
with Single/Dual Output Buffers
______________________________________________________________________________________ 13
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
TSSOP4.40mm.EPS
MAX9386/MAX9387/MAX9388
Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
QSOP.EPS
Loading...