MAXIM MAX9325 User Manual

General Description
The MAX9325 low-skew, 2:8 differential driver features extremely low output-to-output skew (50ps max) and part-to-part skew (225ps max). These features make the device ideal for clock and data distribution across a backplane or board. The device selects one of the two differential HSTL or LVECL/LVPECL inputs and repeats them at eight differential outputs. Outputs are compati­ble with LVECL and LVPECL, and can directly drive 50terminated transmission lines.
The differential inputs can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output volt­age V
BB.
All inputs have internal pulldown resistors to
V
EE.
The internal pulldowns and a fail-safe circuit ensure differential low default outputs when the inputs are left open or at VEE.
The MAX9325 operates over a 2.375V to 3.8V supply range for interfacing to differential HSTL and LVPECL signals. This allows high-performance clock or data dis­tribution in systems with a nominal +2.5V or +3.3V sup­ply. For LVECL operation, the device operates with a
-2.375V to -3.8V supply.
The MAX9325 is offered in 28-lead PLCC and space­saving 28-lead QFN packages. The MAX9325 is speci­fied for operation from -40°C to +85°C.
Applications
Precision Clock Distribution
Low-Jitter Data Repeaters
Features
50ps (max) Output-to-Output Skew
1.5ps
RMS
(max) Random Jitter
Guaranteed 300mV Differential Output at 700MHz
+2.375V to +3.8V Supplies for Differential
HSTL/LVPECL
-2.375V to -3.8V Supplies for Differential LVECL
Two Selectable Differential Inputs
On-Chip Reference for Single-Ended Inputs
Outputs Low for Inputs Open or at V
EE
Pin Compatible with MC100LVE310
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
________________________________________________________________ Maxim Integrated Products 1
28
27
26
25
24
23
22
Q0
Q0
Q1
VCCQ1
Q2
Q2
8
9
10
11
12
13
14
N.C.
Q7
V
CC
Q7
Q6
Q6
15
16
17
18
19
20
21
Q5
*CORNER PINS AND EXPOSED PAD ARE CONNECTED TO V
EE
.
Q5
Q4
V
CC
Q4
Q3
Q3
7
6
5
4
3
2
1
CLK1
V
BB
V
CC
CLKO
CLK_SEL
V
EE
MAX9325
QFN
Q0
Q1
V
CC
Q2
N.C.
V
CC
Q7
Q6
Q5
V
CC
Q4
Q3
CLK1
V
BB
V
CC
CLKO
CLK_SEL
V
EE
Q5
Q4
Q3
CLKO
CLKO
CLK1
CLK1
Q7
Q6
Q2
Q1
Q0
PLCC
TOP VIEW
567891011
22
232425 192021
12
13
14
15
16
17
18
26
27
28
1
2
3
4
MAX9325
*
*
*
*
CLK_SEL INPUT CLOCK
INPUT SELECT TRUTH TABLE
L
H
CLK0, CLK0 SELECTED
CLK1, CLK1 SELECTED
Pin Configurations
Ordering Information
19-2511; Rev 3; 11/04
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Functional Diagram appears at end of data sheet.
PART TEMP RANGE PIN-PACKAGE
MAX9325EQI -40°C to +85°C 28 PLCC
MAX9325EGI -40°C to +85°C 28 QFN 5mm x 5mm
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
((VCC- VEE) = 2.375V to 3.8V, RL= 50±1% to V
CC
- 2V. Typical values are at (VCC- VEE) = 3.3V, VIH= (VCC- 1V), VIL= (VCC- 1.5V).)
(Notes 1–4)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCC- VEE...............................................................-0.3V to +4.1V
Inputs (CLK_,
CLK_, CLK_SEL) to VEE......-0.3V to (V
CC
+ 0.3V)
CLK_ to CLK_ .....................................................................±3.0V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
V
BB
Sink/Source Current................................................±0.65mA
Continuous Power Dissipation (T
A
= +70°C)
28-Lead PLCC (derate 10.5mW/°C above +70°C) .....842mW
θ
JA
in Still Air .............................................................+95°C/W
θ
JC
.............................................................................+25°C/W
28-Lead QFN (derate 20.8mW/°C above +70°C) ....1667mW
θ
JA
in Still Air ............................................................+48°C/W
θ
JC
..............................................................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (CLK_, CLK_, Q_, Q_)....................2kV
Soldering Temperature (10s) ...........................................+300°C
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
SINGLE-ENDED INPUT (CLK_SEL)
Single-Ended Input High Voltage
V
IH
Figure 1
V
CC
V
CC
V
CC
V
CC
V
CC
V
Single-Ended Input Low Voltage
V
IL
Figure 1
V
CC
V
CC
V
CC
V
Input Current I
IN
VIH, V
IL
µA
DIFFERENTIAL INPUT (CLK_, CLK_)
Single-Ended Input High Voltage
V
IH
Figure 1
V
CC
V
CC
V
CC
V
Single-Ended Input Low Voltage
V
IL
Figure 1
V
CC
V
CC
VCC
V
Differential Input High Voltage
V
IHD
Figure 1
V
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
- 1.165
V
EE
CC
- 1.475
- 1.165
V
EE
- 1.475
- 1.165
V
EE
- 1.475
-10.0 +150 -10.0 +150 -10.0 +150
V
CC
- 1.475
V
CC
- 1.165
V
EE
V
EE
+ 1.2
- 1.165
V
EE
V
EE
+ 1.2
V
CC
- 1.165
V
- 1.475
V
CC
EE
V
EE
+ 1.2
V
CC
- 1.475
V
CC
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
((VCC- VEE) = 2.375V to 3.8V, RL= 50±1% to V
CC
- 2V. Typical values are at (VCC- VEE) = 3.3V, VIH= (VCC- 1V), VIL= (VCC- 1.5V).)
(Notes 1–4)
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
Differential Input Low Voltage
V
ILD
Figure 1
V
CC
V
CC
V
CC
V
(V
CC
- V
EE
) <
V
CC
V
CC
V
CC
Differential Input Voltage
V
IHD
-
V
ILD
(VCC - VEE)
3.0V, Figure 1
V
Input Current I
IN
V
IH, VIL
, V
IHD
,
V
ILD
µA
OUTPUT (Q_, Q_)
Single-Ended Output High Voltage
V
OH
Figure 2
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
Single-Ended Output Low Voltage
V
OL
Figure 2
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
Differential
Output Voltage
Figure 2
mV
REFERENCE VOLTAGE OUTPUT (VBB)
Reference
Voltage Output
V
BB
IBB = ±0.5mA (Note 5)
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
SUPPLY
Supply Current
I
EE
(Note 6) 35 50 39 55 42 65
mA
3.0V, Figure 1
VOH - V
OL
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
EE
0.095
- 0.095
- V
EE
0.095 3.0 0.095 3.0 0.095 3.0
-10.0 +150.0 -10.0 +150.0 -10.0 +150.0
- 1.085
- 1.810
- 0.977
- 1.695
- 0.880
- 1.620
535 718 595 749 595 769
V
EE
0.095
- 1.025
- 1.810
- 0.949
- 1.697
- 0.095
- V
EE
- 0.88
V
CC
- 1.62
V
EE
0.095
- 1.025
V
CC
- 1.810
- 0.929
- 1.698
- 0.095
- VEE
- 0.88
V
CC
- 1.62
V
CC
- 1.38
- 1.318
- 1.26
- 1.38
- 1.325
- 1.26
- 1.38
- 1.328
- 1.26
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS—PLCC Package
((VCC- VEE) = 2.375V to 3.8V, RL= 50±1% to V
CC
- 2V, fIN≤ 500MHz, input transition time = 125ps (20% to 80%). Typical values
are at (V
CC
- VEE) = 3.3V, VIH= (VCC- 1V), VIL= (VCC- 1.5V).) (Note 7)
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
Differential Input-to-Output Delay
t
PLHD
t
PHLD
Figure 2
ps
Single-Ended Input-to-Output Delay
t
PLH
t
PHL
ps
Output-to­Output Skew
(Note 9)
50 ps
Part-to-Part Skew
t
SKPP
(Note 10)
ps
Added Random Jitter
t
RJ
fIN = 0.5GHz clock pattern (Note 11)
ps
RMS
Added Deterministic Jitter
t
DJ
fIN = 1.0Gbps, 2E
23
- 1 PRBS
ps
P-P
Switching Frequency
f
MAX
VOH - V
OL
300mV clock pattern
GHz
Output Rise/Fall Time (20% to 80%)
t
R
, t
F
Figure 2
ps
MIN TYP MAX MIN TYP MAX MIN TYP MAX
525 725 550 750 575 775
Figure 3 (Note 8) 500 750 550 800 600 850
t
SKOO
Differential input
pattern (Note 11)
50 50
160 190 225
1.5 1.5 1.5
100 100 100
1.5 1.5 1.5
140 440 140 440 140 440
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
_______________________________________________________________________________________ 5
AC ELECTRICAL CHARACTERISTICS—QFN Package
((VCC- VEE) = 2.375V to 3.8V, RL= 50±1% to V
CC
- 2V, fIN≤ 500MHz, input transition time = 125ps (20% to 80%). Typical values
are at (V
CC
- VEE) = 3.3V, VIH= (VCC- 1V), VIL= (VCC- 1.5V).) (Note 7)
-40°C +25°C +85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
Differential Input-to-Output Delay
t
PLHD
t
PHLD
Figure 2
ps
Single-Ended Input-to-Output Delay
t
PLH
t
PHL
ps
Output-to­Output Skew
(Note 9)
50 ps
Part-to-Part Skew
t
SKPP
(Note 10)
ps
Added Random Jitter
t
RJ
fIN = 0.5GHz clock pattern (Note 11)
ps
RMS
Added Deterministic Jitter
t
DJ
fIN = 1.0Gbps, 2E
23
- 1 PRBS
95
ps
P-P
Switching Frequency
f
MAX
VOH - VOL 300mV clock pattern
GHz
Output Rise/Fall Time (20% to 80%)
t
R
, t
F
Figure 2
ps
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: DC parameters production tested at T
A
= +25°C and guaranteed by design over the full operating temperature range.
Note 4: Single-ended input operation using V
BB
is limited to (VCC- VEE) = 3.0V to 3.8V.
Note 5: Use V
BB
only for inputs that are on the same device as the V
BB
reference.
Note 6: All pins open except V
CC
and VEE.
Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma. Note 8: Measured from the 50% point of the input signal with the 50% point equal to VBB, to the 50% point of the output signal. Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Differential input signal. Note 10: Measured between outputs of different parts under identical condition for same-edge transition. Note 11: Device jitter added to the input signal. Differential input signal.
Figure 3 (Note 8) 253 581 310 586 324 606
t
SKOO
Differential input
pattern (Note 11)
MIN TYP MAX MIN TYP MAX MIN TYP MAX
250 575 298 553 309 576
50 50
192 215 218
1.5 1.5 1.5
95 95
1.5 1.5 1.5
97 411 104 210 111 232
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
6 _______________________________________________________________________________________
SUPPLY CURRENT (IEE)
vs. TEMPERATURE
MAX9325 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
25
30
35
40
45
50
20
-40 85
OUTPUT AMPLITUDE (VOH - VOL)
vs. FREQUENCY
MAX9325 toc02
FREQUENCY (MHz)
OUTPUT VOLTAGE (V)
1000 1500500
300
500
400
600
700
800
0
TRANSITION TIME vs. TEMPERATURE
TRANSITION TIME (ps)
160
240
200
280
320
360
400
MAX9325 toc03
TEMPERATURE (°C)
603510-15-40 85
t
F
t
R
PROPAGATION DELAY
vs. TEMPERATURE
MAX9325 toc05
TEMPERATURE (°C)
603510-15
550
650
750
450
-40 85
PROPAGATION DELAY (ps)
t
PLHD
t
PHLD
Typical Operating Characteristics
(PLCC package, typical values are at (VCC- VEE) = 3.3V, VIH= (VCC- 1V), VIL= (VCC- 1.5V), RL= 50±1% to V
CC
- 2V, fIN=
500MHz, input transition time = 125ps (20% to 80%).)
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
_______________________________________________________________________________________ 7
Pin Description
PIN
PLCC QFN
NAME FUNCTION
1, 8, 15, 22
V
CC
Positive Supply Voltage. Bypass each VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible, with the smaller value capacitor closest to the device.
25CLK0 Inverting Differential Clock Input 0. Internal 105kΩ pulldown to VEE.
36V
BB
Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass V
BB
to VCC with a
0.01µF ceramic capacitor. Otherwise leave open.
47CLK1 Noninverting Differential Clock Input 1. Internal 105k pulldown to VEE. 58CLK1 Inverting Differential Clock Input 1. Internal 105kΩ pulldown to VEE.
69N.C. Not Connected 710Q7 Inverting Q7 Output. Typically terminate with 50 resistor to VCC - 2V.
912Q7Noninverting Q7 Output. Typically terminate with 50 resistor to VCC - 2V.
10 13 Q6 Inverting Q6 Output. Typically terminate with 50 resistor to VCC - 2V.
11 14 Q6 Noninverting Q6 Output. Typically terminate with 50 resistor to VCC - 2V. 12 15 Q5 Inverting Q5 Output. Typically terminate with 50 resistor to VCC - 2V.
13 16 Q5 Noninverting Q5 Output. Typically terminate with 50 resistor to VCC - 2V. 14 17 Q4 Inverting Q4 Output. Typically terminate with 50 resistor to VCC - 2V.
16 19 Q4 Noninverting Q4 Output. Typically terminate with 50 resistor to VCC - 2V. 17 20 Q3 Inverting Q3 Output. Typically terminate with 50 resistor to VCC - 2V.
18 21 Q3 Noninverting Q3 Output. Typically terminate with 50 resistor to VCC - 2V. 19 22 Q2 Inverting Q2 Output. Typically terminate with 50 resistor to VCC - 2V.
20 23 Q2 Noninverting Q2 Output. Typically terminate with 50 resistor to VCC - 2V. 21 24 Q1 Inverting Q1 Output. Typically terminate with 50 resistor to VCC - 2V.
23 26 Q1 Noninverting Q1 Output. Typically terminate with 50 resistor to VCC - 2V. 24 27 Q0 Inverting Q0 Output. Typically terminate with 50 resistor to VCC - 2V.
25 28 Q0 Noninverting Q0 Output. Typically terminate with 50 resistor to VCC - 2V.
26 1 V
EE
Negative Supply Voltage
27 2
Clock Select Input. When driven low, the CLK0 input is selected. Drive high to select
the CLK1 Input. The CLK_SEL threshold is equal to VBB. Internal 75kΩ pulldown to VEE.
28 3 CLK0 Noninverting Differential Clock Input 0. Internal 105kΩ pulldown to VEE.
Exposed
Exposed
Pad
—Internally Connected to V
EE
4, 11, 18, 25
CLK_SEL
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
8 _______________________________________________________________________________________
DIFFERENTIAL INPUT VOLTAGE DEFINITION
V
CC
V
CC
V
ILD
(MAX)
V
IHD
(MAX)
V
ILD
(MIN)
V
IHD
(MIN)
V
EE
V
EE
V
BB
V
IH
V
IL
V
IHD
- V
ILD
SINGLE-ENDED INPUT VOLTAGE DEFINITION
V
IHD
- V
ILD
Figure 1. Input Voltage Definitions
CLK
CLK
Q_
Q_
Q_ - Q_
20%
20%
80%
80%
V
IHD
- V
ILD
V
OH
- V
OL
V
OH
- V
OL
V
OH
- V
OL
DIFFERENTIAL OUTPUT WAVEFORM
0V (DIFFERENTIAL)
V
IHD
V
ILD
V
OH
V
OL
t
PLHD
t
R
t
F
t
PHLD
Figure 2. Differential Input (CLK_,
CLK
_) to Output (Q_, Q_) Delay Timing Diagram
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
_______________________________________________________________________________________ 9
Detailed Description
The MAX9325 low-skew, 2:8 differential driver features extremely low output-to-output skew (50ps max) and part-to-part skew (225ps max). These features make the device ideal for clock and data distribution across a backplane or board. The device selects one of the two differential HSTL or LVECL/LVPECL inputs, and repeats them at eight differential outputs. Outputs are compati­ble with LVECL and LVPECL, and can directly drive 50 terminated transmission lines.
A 2:1 mux selects between the two differential inputs, CLK0, CLK0 and CLK1, CLK1. The 2:1 mux is switched by the single-ended CLK_SEL input. A logic low selects the CLK0, CLK0 input. A logic high selects the CLK1, CLK1 input. The logic threshold for CLK_SEL is set by an internal V
BB
voltage reference. The selected input is reproduced at eight differential outputs at speeds up to 700MHz.
The differential inputs can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output volt­age (V
BB
). A single-ended input of at least VBB±95mV or a differential input of at least 95mV switches the out­puts to the VOHand VOLlevels specified in the DC Electrical Characteristics. The maximum magnitude of the differential input from CLK_ to CLK_ is ±3.0V or
±(VCC- VEE), whichever is less. This limit also applies to the difference between a single-ended input and any reference voltage input.
The single-ended CLK_SEL input has a 75kpulldown to VEEthat selects the default input, CLK0, CLK0, when CLK_SEL is left open or at VEE. All the differential inputs have 105kpulldowns to VEE. Internal pulldowns and a fail-safe circuit ensure differential low default outputs when the inputs are left open or at VEE.
Specifications for the high and low voltages of a differ­ential input (V
IHD
and V
ILD
) and the differential input
voltage (V
IHD
- V
ILD
) apply simultaneously.
For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.375V to +3.8V supply range, allowing high-performance clock or data distrib­ution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.375V to -3.8V supply.
Single-Ended Operation
CLK_SEL is a single-ended input with the input threshold internally set to VBB, and can be driven to VCCor VEEor by a single-ended LVPECL/LVECL signal. The CLK_, CLK_ are differential inputs but can be configured to accept single-ended inputs when operating at supply voltages greater than 2.58V. The recommended supply voltage for single-ended operation is 3.0V to 3.8V. A dif-
OR
V
BB
V
BB
V
BB
V
BB
t
PLH
t
PHL
VOH - V
OL
Q_
Q_
CLK_ WHEN CLK_ = V
BB
V
OH
V
IL
V
IL
V
IH
V
IH
V
OL
CLK_ WHEN CLK_ = V
BB
Figure 3. Single-Ended Input (CLK_, CLK_) to Output (Q_, Q_) Delay Timing Diagram
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
10 ______________________________________________________________________________________
ferential input is configured for single-ended operation by connecting the on-chip reference voltage, VBB, to an unused complementary input as a reference. For exam­ple, the differential CLK0, CLK0 input is converted to a noninverting, single-ended input by connecting VBBto CLK0 and connecting the single-ended input to CLK0. Similarly, an inverting input is obtained by connecting VBBto CLK0 and connecting the single-ended input to CLK0. With a differential input configured as single­ended (using VBB), the single-ended input can be driven to VCCor VEEor with a single-ended LVPECL/LVECL signal.
When configuring a differential input as a single-ended input, a user must ensure that the supply voltage (VCC­VEE) is greater than 2.58V. This is because the input high minimum level must be at (VEE+ 1.2V) or higher for proper operation. The reference voltage VBBmust be at least (VEE+ 1.2V) or higher for the same reason because it becomes the high-level input when the other single-ended input swings below it. The minimum V
BB
output for the MAX9325 is (VCC- 1.38V). Substituting the minimum VBBoutput for (VBB= VEE+ 1.2V) results in a minimum supply (V
CC
- VEE) of 2.58V. Rounding up to standard supplies gives the single-ended operating supply ranges (VCC- VEE) of 3.0V to 3.8V for the MAX9325.
When using the V
BB
reference output, bypass it with a
0.01µF ceramic capacitor to V
CC
. If not used, leave it open. The VBBreference can source or sink 0.5mA, which is sufficient to drive two inputs.
Applications Information
Output Termination
Terminate the outputs through 50to (VCC- 2V) or use equivalent Thevenin terminations. Terminate each Q and Q output with identical termination on each for low output distortion. When a single-ended signal is taken from the differential output, terminate both Q_ and Q_.
Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device’s total thermal limits should be observed.
Supply Bypassing
Bypass each VCCto VEEwith high-frequency surface­mount ceramic 0.1µF and 0.01µF capacitors. Place the capacitors as close to the device as possible with the
0.01µF capacitor closest to the device pins.
Use multiple vias when connecting the bypass capaci­tors to ground. When using the VBBreference output, bypass it with a 0.01µF ceramic capacitor to VCC. If the VBBreference is not used, it can be left open.
Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reduc­ing signal reflections and skew, and increasing com­mon-mode noise immunity.
Signal reflections are caused by discontinuities in the 50characteristic impedance of the traces. Avoid dis­continuities by maintaining the distance between differ­ential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.
Exposed-Pad Package
The 28-lead QFN package (MAX9325EGI) has the exposed paddle on the bottom of the package that pro­vides the primary heat removal path from the IC to the PC board, as well as excellent electrical grounding to the PC board. The MAX9325EGI’s exposed pad is
internally connected to VEE. Do not connect the exposed pad to a separate circuit ground plane unless VEEand the circuit ground are the same.
Chip Information
TRANSISTOR COUNT: 1030
PROCESS: Bipolar
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
Q4
Q4
Q5
0
1
Q5
Q6
Q6
Q7
Q7
V
EE
V
EE
CLK1
CLK_SEL
CLK1
105k
75k
V
EE
CLK0
CLK0
105k
MAX9325
Functional Diagram
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and
Data Driver
______________________________________________________________________________________ 11
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
PLCC.EPS
FAMILY PACKAGE OUTLINE: 20L, 28L, 44L, 52L, 68L PLCC
1
1
21-0049
D
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
D1
D
C
A2
B1
B
A1
A
A3
D2
e
D3D1D
D3
N
22.61
20.320.800D3
D2 0.890 0.930
REF REF
23.62
4.20
2.29
3.69
0.51
0.33
0.66
0.23
9.78
8.89
7.37
5.08
12.32
11.43
9.91
7.62
17.40
16.51
14.99
12.70
MIN
MIN
24.13
25.02
0.1200.090A1
REFD3 0.200
0.485
0.300
0.685
0.500
0.985
D D1 D2 D3
D1
D
0.650
0.590
0.950
D D1 D2 D3
0.450
0.390
0.695
0.656
0.630
0.958
0.995
REF
0.495
0.456
0.430 REF
0.050
0.385
INCHES
D D1D20.350
0.290
MIN
A2 A3
B
B1
C e
0.145
0.020
0.013
0.026
0.009
0.395
0.356
0.330
MAX
0.156
0.021
0.032
---
0.011
INCHES
A 0.165
MIN
0.180
MAX
3.04
REF
28
44
68
17.65
16.66
16.00
REF
24.33
25.27
12.57
11.58
10.92
REF
AC
AE
AB
10.03
9.04
8.38
MAX
N
20
3.96
---
0.53
0.81
0.28
1.27
AA
4.57
MAX
NOTES:
1. D1 DOES NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .20mm (.008") PER SIDE.
3. LEADS TO BE COPLANAR WITHIN .10mm.
4. CONTROLLING DIMENSION: MILLIMETER
5. MEETS JEDEC MO047-XX AS SHOWN IN TABLE.
6. N = NUMBER OF PINS.
REFREFD3 0.600 15.24
17.53
19.05
19.94 D1 D2
D
0.750
0.690
0.785
0.756
0.795
0.730
52
19.20
20.19
18.54
AD
MAX9325
2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
32L QFN.EPS
Loading...