MAXIM MAX9322 User Manual

General Description
The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input switching frequency in excess of 1.0GHz. The 15 outputs are arranged in four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.
The MAX9322 operates in LVPECL systems with a +2.375V to +3.8V supply or in LVECL systems with a
-2.375V to -3.8V supply. A VBBreference output pro­vides compatibility with single-ended clock input sig­nals and a master reset input provides a simultaneous reset on all outputs.
The MAX9322 is available in 52-pin TQFP and 68-pin QFN packages and is specified for operation over
-40°C to +85°C. For 1:10 clock drivers, refer to the MAX9311/MAX9313 data sheet. For 1:5 clock drivers, refer to the MAX9316 data sheet.
Applications
Precision Clock Distribution
Low-Jitter Data Repeaters
Central-Office Backplane Clock Distribution
DSLAM Backplane
Base Stations
ATE
Features
1.2ps (RMS) Maximum Random Jitter
300mV Differential Output at 1.0GHz
900ps Propagation Delay
Selectable Divide-by-1 or Divide-by-2 Frequency
Outputs
Multiplexed 2:1 Input Function
LVECL Operation from V
EE
= -2.375V to -3.8V
LVPECL Operation from V
CC
= +2.375V to +3.8V
ESD Protection: > 2kV Human Body Model
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
________________________________________________________________ Maxim Integrated Products 1
32
TQFP
TOP VIEW
27
52
VCCO51QA050QA049QA148QA147VCCO46QB045QB044QB143QB142QB241QB2
40
VCCO
VCCO
14
QD515QD5
16
QD417QD418QD319QD320QD221QD1
23
QD222QD124QD0
26
QD0
25
VCCO
28 N.C.
29 N.C.
30 VCCO
31 QC3
QC3
34 QC2
33 QC2
35 QC1
36 QC1
37 QC0
38 QC0
39 VCCO
FSELD 12
V
EE
13
FSELC 11
V
BB
10
CLK1 9
CLK1 8
CLK_SEL 7
CLK0 6
CLK0 5
FSELA
3
FSELB 4
MR
2
V
CC
1
MAX9322
Pin Configurations
Ordering Information
Typical Operating Circuit
19-2544; Rev 2; 2/07
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART
TEMP RANGE
PIN­PACKAGE
MAX9322ECY -40°C to +85°C 52 TQFP
MAX9322ETK* -40°C to +85°C 68 QFN
*Future product—contact factory for availability.
50 50
MAX9322
ZO = 50
Z
O
= 50
RECEIVER
Q_
Q_
VTT = VCC - 2.0V
Pin Configurations continued at end of data sheet.
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto VEE.............................................................................4.1V
Inputs and Outputs to V
EE
..........................-0.3V to (VCC+ 0.3V)
Differential Input Magnitude............Lower of (V
CC
- VEE) and 3V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
V
BB
Sink/Source Current ...............................................±0.65mA
Continuous Power Dissipation (T
A
= +70°C) Single-Layer PC Board
52-Pin TQFP (derate 15.4mW/°C above +70°C).....1230.8mW
68-Lead QFN (derate 27.8mW/°C above +70°C) ...2222.2mW Multilayer PC Board
52-Pin TQFP (derate 19.1mW/°C above +70°C).....1529.6mW
68-Lead QFN (derate 38.5mW/°C above +70°C) ...3076.9mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Layer PC Board
52-Pin TQFP...............................................................+65°C/W
68-Lead QFN .............................................................+36°C/W
Multilayer PC Board
52-Pin TQFP............................................................+52.3°C/W
68-Lead QFN .............................................................+26°C/W
Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow
Single-Layer PC Board
52-Pin TQFP...............................................................+50°C/W
68-Lead QFN .............................................................+27°C/W
Multilayer PC Board
52-Pin TQFP...............................................................+40°C/W
68-Lead QFN .............................................................+20°C/W
Junction-to-Case Thermal Resistance
52-Pin TQFP............................................................+12.9°C/W
68-Lead QFN ...............................................................+2°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (Q_ _,
Q_ _, CLK_SEL,
FSEL_, CLK_, CLK_, MR, V
BB
) ............................................±2kV
Soldering Temperature (10s) ...........................................+300°C
DC ELECTRICAL CHARACTERISTICS
((VCC- VEE) = 2.375V to 3.8V, outputs loaded with 50Ω ±1% to VCC- 2V; CLK_SEL, FSEL_ = high or low; MR = low; |VID| = 0.095V to the lower of (V
CC
- VEE) and 3V. Typical values are at (VCC- VEE) = 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V.) (Notes 1–4)
-40°C
+25°C
+85°C
PARAMETER
SYMBOL
CONDITIONS
UNITS
SINGLE-ENDED INPUT (MR, FSEL_, CLK_SEL)
Input High Voltage
Figure 1
V
CC
-
VCC -
0.88
VCC -
VCC -
VCC -
VCC -
V
Input Low Voltage V
IL1
Figure 1
V
CC
-
VCC -
VCC -
VCC -
VCC -
VCC -
V
Input Current I
IN1
MR, FSEL_, CLK_SEL = V
IL
or V
IH
µA
DIFFERENTIAL INPUT (CLK_, CLK_)
Single-Ended Input High Voltage
V
IH2
Figure 1
V
CC
-
VCC -
VCC -
VCC -
VCC -
VCC -
V
Single-Ended Input Low Voltage
V
IL2
Figure 1
V
CC
-
VCC -
VCC -
VCC -
VCC -
VCC -
V
High Voltage of Differential Input
V
IHD
V
Low Voltage of Differential Input
V
ILD
VCC -
VCC -
VCC -
V
V
IH1
MIN TYP MAX MIN TYP MAX MIN TYP MAX
1.155
1.81
-15 +150 -15 +150 -15 +150
1.155
1.81
VEE +
1.2
V
EE
1.505
0.88
1.505
V
CC
0.095
1.155
1.81
1.155
1.81
VEE +
1.2
V
EE
0.88
1.155
1.505
1.505
0.095
0.88
V
CC
1.81
1.155
1.81
VEE +
1.2
V
EE
0.88
1.505
0.88
1.505
V
CC
0.095
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
((VCC- VEE) = 2.375V to 3.8V, outputs loaded with 50Ω ±1% to VCC- 2V; CLK_SEL, FSEL_ = high or low; MR = low; |VID| = 0.095V to the lower of (V
CC
- VEE) and 3V. Typical values are at (VCC- VEE) = 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V.) (Notes 1–4)
PARAMETER
CONDITIONS
For VCC - V
EE
< 3.0V
VCC -
VCC -
VCC -
Differential Input Voltage
V
IHD
-
V
ILD
For VCC - V
EE
3.0V
V
Input Current
I
IN2
CLK_, CLK_ = V
IHD
or V
ILD
µA
OUTPUTS (Q_, Q_)
Single-Ended Output High Voltage
V
OH
Figure 1
V
CC
-
VCC -
VCC -
VCC -
VCC -
VCC -
V
Single-Ended Output Low Voltage
V
OL
Figure 1
V
CC
-
VCC -
VCC -
VCC -
VCC -
VCC -
V
Differential Output Voltage
VOH -
V
OL
Figure 1
mV
REFERENCE
Reference Voltage Output
V
BB
IBB = ±0.5mA (Note 5)
VCC -
VCC -
VCC -
VCC -
VCC -
VCC -
V
SUPPLY
Supply Current I
EE
(Note 6) 50 85 66
mA
SYMBOL
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.095
0.095 3.0 0.095 3.0 0.095 3.0
-150 +150 -150 +150 -150 +150
1.085
1.810
500 600 600
1.41
-40°C +25°C +85°C
V
EE
0.880
1.52
1.25
0.095
1.025
1.810
1.41
0.095
V
EE
0.880
1.025
1.620
1.810
1.25
1.41
V
EE
0.880
1.620
1.25
UNITS
115 80 130
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
4 _______________________________________________________________________________________
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: Single-ended CLK_, CLK_ input operation is limited to V
CC
- VEE= 3.0V to 3.8V.
Note 4: DC parameters are production tested at T
A
= +25°C and guaranteed by design over the full operating temperature range.
Note 5: Use V
BB
as a reference for inputs of the same device only.
Note 6: All pins open except V
CC
and VEE.
Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma. Note 8: Measured between outputs of the same parts at the signal crossing points under identical conditions for a same-edge transition. Note 9: Device jitter added to a jitter-free input signal.
AC ELECTRICAL CHARACTERISTICS
((VCC- VEE) = 2.375V to 3.8V; outputs loaded with 50±1% to VCC- 2V; input frequency 1000MHz; input transition time = 125ps (20% to 80%); CLK_SEL, FSEL_ = high or low, MR = low; V
IHD
= VEE+ 1.2V to VCC; V
ILD
= VEEto VCC- 0.4V; V
IHD
- V
ILD
= 0.4V to
1V. Typical values are at (V
CC
- VEE) = 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V.) (Note 7)
PARAMETER
CONDITION
UNITS
Differential Input-to­Output Delay
t
PLHD
,
Figure 2
ps
Single-Ended CLK_/CLK_ to Output Delay
t
PHLS
,
Figure 1
ps
MR to Output Delay
t
PD
Figure 3
ps
Output-to-Output Skew
(Note 8)
ps
Added Random Jitter
t
RJ
fIN = 1.0GHz clock pattern (Note 9)
ps
(RMS)
Added Deterministic Jitter
t
DJ
1Gbps 223 - 1 PRBS pattern (Note 9)
ps
P-P
Switching Frequency
f
MAX
VOD > 300mV
GHz
Differential Output Rise and Fall Time (20% to 80%)
Figure 2
ps
SYMBOL
-40°C +25°C +85°C
MIN TYP MAX MIN TYP MAX MIN TYP MAX
t
PHLD
t
PLHS
t
SKOO
tR, t
F
700 900 1150 725 900 1180 750 950 1225
700 900 1170 700 900 1175 725 950 1250
450 930 450 930 450 930
85 56 50
1.2 1.2 1.2
61 61 61
1.0 1.0 1.0
200 260 400 200 260 400 200 240 400
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
_______________________________________________________________________________________ 5
MAX9322 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
603510-15
45
55
65
75
85
35
-40 85
SUPPLY CURRENT, IEE
vs. TEMPERATURE
MAX9322 toc02
FREQUENCY (MHz)
OUTPUT AMPLITUDE (mV)
800600400 140012001000200
100
200
300
400
500
600
700
800
0
0 1600
OUTPUT AMPLITUDE, V
OH - VOL
vs. FREQUENCY
TRANSITION TIME vs. TEMPERATURE
MAX9322 toc03
TEMPERATURE (°C)
TRANSITION TIME (ps)
603510-15
210
220
230
240
250
260
270
200
-40 85
t
F
t
R
MAX9322 toc04
V
IHD
- VEE (V)
PROPAGATION DELAY (ps)
3.02.72.42.11.81.5
885
890
895
900
905
910
880
1.2 3.3
PROPAGATION DELAY vs. HIGH VOLTAGE
OF DIFFERENTIAL INPUT, V
IHD
MAX9322 toc05
TEMPERATURE (°C)
PROPAGATION DELAY (ps)
603510-15
940
960
980
880
900
920
1000
1020
860
-40 85
PROPAGATION DELAY vs. TEMPERATURE
SINGLE-ENDED CLOCK
DIFFERENTIAL CLOCK
V
IH2
= VCC = 1.15V
V
IL2
= VCC = 1.48V
750
790
830
870
910
950
01.00.5 1.5 2.0 2.5 3.0
PROPAGATION DELAY
vs. DIFFERENTIAL INPUT VOLTAGE
MAX9322 toc06
DIFFERENTIAL INPUT VOLTAGE (VIHD - VILD) (V)
PROPAGATION DELAY (ps)
Typical Operating Characteristics
(VCC- VEE= 3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, VID= 500mV, CLK_SEL = 0, FSEL_ = 0, fIN= 600MHz, TA= +25°C, unless
otherwise noted.)
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
6 _______________________________________________________________________________________
Pin Description
PIN
TQFP QFN
FUNCTION
1 2, 3 V
CC
Positive Power Supply. Powers input circuitry. Bypass each VCC to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
24MR
Single-Ended Master Reset. A high on MR sets all outputs to differential zero. A low on MR enables all outputs. MR is pulled to V
EE
through a 75k resistor.
35
Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to V
EE
through a 75k resistor.
46
Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to VEE through a 75k resistor.
5 7 CLK0 Noninverting Clock 0 Input. CLK0 is pulled to VEE through 75k resistors. 68CLK0 Inverting Clock 0 Input. CLK0 is pulled to VCC and to VEE through a 75k resistor.
79
Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL is pulled to V
EE
through a 75k resistor.
8 10 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75k resistor. 911CLK1 Inverting Clock 1 Input. CLK1 is pulled to VCC and to VEE through 75k resistors.
10 12 V
BB
Reference Voltage Output. Connect V
BB
to CLK_ or CLK_ to provide a reference for
single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V
CC
;
otherwise leave open.
11 13
Single-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75k resistor.
12 14
Single-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to V
EE
through a 75k resistor.
13 15, 16 V
EE
Negative Power-Supply Input
14, 27, 30, 39, 40, 47,
52
19, 20, 33, 36, 37, 40, 49, 50, 53,
V
CCO
Output Driver Positive Power Supply. Powers device output drivers. Bypass each V
CCO
to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15 21 QD5 Inverting QD5 Output. Typically terminate with 50 resistor to VCC - 2V.
16 22 QD5 Noninverting QD5 Output. Typically terminate with 50 resistor to VCC - 2V. 17 23 QD4 Inverting QD4 Output. Typically terminate with 50 resistor to VCC - 2V.
18 24 QD4 Noninverting QD4 Output. Typically terminate with 50 resistor to VCC - 2V.
NAME
FSELA
54, 61, 66, 67
FSELB
CLK_SEL
FSELC
FSELD
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
_______________________________________________________________________________________ 7
Pin Description (continued)
PIN
TQFP QFN
FUNCTION
19 25 QD3 Inverting QD3 Output. Typically terminate with 50 resistor to VCC - 2V.
20 26 QD3 Noninverting QD3 Output. Typically terminate with 50 resistor to VCC - 2V. 21 27 QD2 Inverting QD2 Output. Typically terminate with 50 resistor to VCC - 2V.
22 28 QD2 Noninverting QD2 Output. Typically terminate with 50 resistor to VCC - 2V. 23 29 QD1 Inverting QD1 Output. Typically terminate with 50 resistor to VCC - 2V.
24 30 QD1 Noninverting QD1 Output. Typically terminate with 50 resistor to VCC - 2V. 25 31 QD0 Inverting QD0 Output. Typically terminate with 50 resistor to VCC - 2V.
26 32 QD0 Noninverting QD0 Output. Typically terminate with 50 resistor to VCC - 2V.
28, 29
1, 17, 18, 34,
35, 38, 39,
51, 52, 68
N.C. No Connection. Not internally connected.
31 41 QC3 Inverting QC3 Output. Typically terminate with 50 resistor to VCC - 2V.
32 42 QC3 Noninverting QC3 Output. Typically terminate with 50 resistor to VCC - 2V. 33 43 QC2 Inverting QC2 Output. Typically terminate with 50 resistor to VCC - 2V.
34 44 QC2 Noninverting QC2 Output. Typically terminate with 50 resistor to VCC - 2V. 35 45 QC1 Inverting QC1 Output. Typically terminate with 50 resistor to VCC - 2V.
36 46 QC1 Noninverting QC1 Output. Typically terminate with 50 resistor to VCC - 2V. 37 47 QC0 Inverting QC0 Output. Typically terminate with 50 resistor to VCC - 2V.
38 48 QC0 Noninverting QC0 Output. Typically terminate with 50 resistor to VCC - 2V. 41 55 QB2 Inverting QB2 Output. Typically terminate with 50 resistor to VCC - 2V.
42 56 QB2 Noninverting QB2 Output. Typically terminate with 50 resistor to VCC - 2V. 43 57 QB1 Inverting QB1 Output. Typically terminate with 50 resistor to VCC - 2V.
44 58 QB1 Noninverting QB1 Output. Typically terminate with 50 resistor to VCC - 2V. 45 59 QB0 Inverting QB0 Output. Typically terminate with 50 resistor to V
C
C
- 2V.
46 60 QB0 Noninverting QB0 Output. Typically terminate with 50 resistor to VCC - 2V. 48 62 QA1 Inverting QA1 Output. Typically terminate with 50 resistor to VCC - 2V.
49 63 QA1 Noninverting QA1 Output. Typically terminate with 50 resistor to VCC - 2V. 50 64 QA0 Inverting QA0 Output. Typically terminate with 50 resistor to VCC - 2V.
51 65 QA0 Noninverting QA0 Output. Typically terminate with 50 resistor to VCC - 2V.
—EPV
EE
The exposed pad of the QFN package is internally connected to VEE. Refer to Application Note HFAN-08.1.
NAME
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
8 _______________________________________________________________________________________
CLK_
CLK_
Q_
V
OH
V
OL
V
IH2
V
IL2
V
BB
VOH - V
OL
t
PHLS
t
PLHS
MR, FSEL_, CLK_SEL
V
IH1
V
IL1
V
BB
(CLK_ IS CONNECTED TO VBB)
Q_
Figure 1. Timing Diagram for Single-Ended Inputs
CLK_
CLK_
Q_
t
PLHD
t
PHLD
V
IHD
- V
ILD
V
IHD
V
ILD
0V (DIFFERENTIAL) 0V (DIFFERENTIAL)
20%
80%
20%
80%
t
R
t
F
V
OL
V
OH
VOH - V
OL
Q_
Q_ - Q_
V
OH
- V
OL
Figure 2. Timing Diagram for Differential Inputs
Detailed Description
The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input frequen­cy operation in excess of 1.0GHz. The 15 outputs are arranged into four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually program­mable to provide a divide-by-1 or divide-by-2 frequen­cy function.
LVECL/LVPECL Operation
Output levels are referenced to VCCand are LVPECL or LVECL, depending on the level of the V
CC
supply. With VCCconnected to a positive supply and VEEconnected to ground, the outputs are LVPECL. The outputs are LVECL when VCCis connected to ground and VEEis connected to a negative supply. When interfacing to differential LVPECL signals, the VCCrange is 2.375V to
3.8V (VEE= 0), allowing high-performance clock distri­bution in systems with nominal 2.5V and 3.3V supplies. When interfacing to differential LVECL, the VEErange is
-2.375V to -3.8V (V
CC
= 0).
Control Inputs (FSEL_, CLK_SEL, MR)
The MAX9322 provides four output banks: A, B, C, and D. Bank A consists of two differential output pairs. Bank B consists of three differential output pairs. Bank C consists of four differential output pairs. Bank D con­sists of six differential output pairs. FSEL_ selects the output clock frequency for a bank. A low on FSEL_ selects divide-by-1 frequency operation while a high on FSEL_ selects divide-by-2 operation. CLK_SEL selects CLK0 or CLK1 as the input signal. A low on CLK_SEL selects CLK0 while a high selects CLK1.
Master reset (MR) enables all outputs. CLK_SEL and FSEL_ are asynchronous. Changes to the control inputs (CLK_SEL, FSEL_) or on power-up cause indeterminate output states requiring a MR assertion to resynchronize any divide-by-2 outputs (Figure 4). A low on MR activates
all outputs for normal operation. A high on MR resets all outputs to differential low condition. See Table 1.
Input Termination Resistors
Differential inputs CLK_ and CLK_ are biased to guar- antee a known state (differential low) if the inputs are left open. CLK_ is internally pulled to VEEthrough a 75kresistor. CLK_ is internally pulled to VCCand to VEEthrough 75kresistors.
Single-ended inputs FSEL_, MR, and CLK_SEL are internally pulled to VEEthrough a 75kresistor.
Differential Clock Input
The MAX9322 accepts two differential or single-ended clock inputs, CLK0/CLK0 and CLK1/CLK1. CLK_SEL selects between CLK0/CLK0 and CLK1/CLK1. A low on CLK_SEL selects CLK0/CLK0. A high on CLK_SEL selects CLK1/CLK1. See Table 1.
Differential CLK_ inputs must be at least VBB±95mV to switch the outputs to the VOHand VOLlevels specified in the DC Electrical Characteristics table. The maximum magnitude of the differential signal applied to the differ­ential clock input is the lower of (VCC- VEE) and 3.0V. This limit also applies to the difference between any ref­erence voltage input and a single-ended input. Specifications for the high and low voltages of a differ­ential input (V
IHD
and V
ILD
) and the differential input
voltage (V
IHD
- V
ILD
) apply simultaneously.
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
MR
Q_
Q_
t
PD
V
IH
V
IL
V
OL
V
OH
V
BB
Table 1. Function Table
*A master reset is required following power-up or changes to input functions to prevent indeterminant output states.
Figure 3. Timing Diagram for MR
_______________________________________________________________________________________ 9
PIN
FSEL_ Divide-by-1 Divide-by-2
CLK_SEL CLK0 CLK1
MR* Active Reset
FUNCTION
LOW OR OPEN HIGH
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
10 ______________________________________________________________________________________
CLK_
MR
Q_(÷1)
Q_(÷2)
Figure 4. Timing Diagram for MR Resynchronization
Single-Ended Inputs and V
BB
The differential clock input can be configured to accept a single-ended input when operating at VCC- VEE=
3.0V to 3.8V. Connect VBBto the inverting or noninvert­ing input of the differential input as a reference for sin­gle-ended operation. The differential CLK_ input is converted to a noninverting, single-ended input by con­necting VBBto CLK_ and connecting the single-ended input signal to CLK. Similarly, an inverting configuration is obtained by connecting VBBto CLK_ and connecting the single-ended input to CLK_.
The single-ended inputs FSEL_, CLK_SEL, and MR are internally referenced to VBB. All single-ended inputs (FSEL_, CLK_SEL, MR, and any CLK_ in single-ended mode) can be driven to VCCand VEEor with a single­ended LVPECL/LVECL signal. The single-ended input must be at least VBB±95mV to switch the outputs to the VOHand VOLlevels specified in the DC Electrical Characteristics table. When using the VBBreference output, bypass VBBwith a 0.01µF ceramic capacitor to VCC. Leave VBBopen when not used. The VBBrefer­ence can source or sink 0.5mA. Use VBBas a refer­ence for the same device only.
Applications Information
Supply Bypassing
Bypass each V
CC
and V
CCO
to VEEwith high-frequency surface-mount ceramic 0.01µF and 0.1µF capacitors in parallel as close to the device as possible, with the
0.01µF capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the VBBreference output, bypass VBBto V
CC
with a 0.01µF ceramic capacitor.
Controlled-Impedance Traces
Input and output trace characteristics affect the perfor­mance of the MAX9322. Connect input and output sig­nals with 50characteristic impedance traces. Minimize the number of vias to prevent impedance dis­continuities. Reduce reflections by maintaining the 50 characteristic impedance through cables and connec­tors. Reduce skew within a differential pair by matching the electrical length of the traces.
Output Termination
Terminate outputs with 50to VCC- 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if QA0 is used as a single-ended output, terminate both QA0 and QA0.
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
______________________________________________________________________________________ 11
0
1
0
1
0
1
0
1
÷1
÷2
75k
75k
75k
V
EE
V
CC
V
EE
75k
75k
75k
V
EE
V
CC
V
EE
75k
V
EE
75k
V
EE
75k
V
EE
75k
V
EE
75k
V
EE
75k
V
EE
FSELA
CLK0
CLK0
CLK1
CLK1
CLK_SEL
MR
FSELB
FSELC
FSELD
V
BB
BANK A
BANK B
BANK C
BANK D
QA0 QA0
QA1 QA1
QB0 QB0
QB1 QB1
QB2 QB2
QC0 QC0
QC1 QC1
QC2 QC2
QC3 QC3
QD0 QD0
QD1 QD1
QD2 QD2
QD3 QD3
QD4 QD4
QD5 QD5
MAX9322
Functional Diagram
MAX9322
LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver
12 ______________________________________________________________________________________
5859606162 5455565763
38
39
40
41
42
43
44
45
46
47
CLK1
VCCO
QA1
QFN*
TOP VIEW
QA1
VCCO
QB0
QB0
QB1
QB1
QB2
QB2
VCCO
5253
VCCO
N.C.
N.C.
QD5
VCCO
QD4
QD5
QD3
QD4
QD2
QD3
QD1
QD2
QD0
QD1
QD0
QC0
QC1
QC1
QC2
QC2
QC3
QC3
VCCO
N.C.
N.C.
35
36
37
VCCO
VCCO
N.C.
CLK1
CLK_SEL
CLK0
CLK0
FSELB
V
EE
V
EE
FSELD
FSELC
V
BB
FSELA
MR
V
CC
V
CC
48 QC0
N.C.
64
QA0
656667
VCCO
VCCO
QA0
68
N.C.
2322212019 2726252418 2928 323130
VCCO
N.C.
3433
49
50
VCCO
VCCO
51 N.C.
11
10
9
8
7
6
5
4
3
2
16
15
14
13
12
1
N.C. 17
MAX9322
THE EXPOSED PAD OF THE QFN PACKAGE MUST BE SOLDERED TO V
EE
FOR PROPER THERMAL AND ELECTRICAL OPERATION OF THE MAX9322.
Pin Configurations (continued)
Chip Information
TRANSISTOR COUNT: 2063
PROCESS: Bipolar
MAX9322
LVECL/LVPECL 1:15 Differential
Divide-by-1/Divide-by-2 Clock Driver
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
© 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
PACKAGE OUTLINE 52L TQFP, 10x10x1.0 MM
1
1
21-0146
A
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
TOP VIEW
0.65 BSC
NOM
0.10
-
-
0.32
12.00
10.00 BSC
10.00 BSC
0.60
12.00
e
0.45L
11.80E
E1
D1
DIM
11.80
0.09
0.05
c D
A1
b
MIN
-A
0.75
12.20
0.15
0.20
12.20
1.20
MAX
A2
0.95 1.00 1.05
SEATING PLANE
E1
A1
A2
SEE DETAIL "A"
52
c
A
1
SEE
4
E1
b
e
4
D1
D1
D
GAGE PLANE
1.00 REF
DETAIL A
L
0-7
0.25
0 MIN.
E
0.22 0.38
NOTE 2
52L TQFP.EPS
Revision History
Pages changed at Rev 2: 1, 5, 13
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages
.)
Loading...