
For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
General Description
The MAX9320/MAX9320A are low-skew, 1-to-2 differential drivers designed for clock and data distribution. The
input is reproduced at two differential outputs. The differential input can be adapted to accept single-ended
inputs by applying an external reference voltage.
The MAX9320/MAX9320A feature ultra-low propagation
delay (208ps), part-to-part skew (20ps), and output-tooutput skew (6ps) with 30mA maximum supply current,
making these devices ideal for clock distribution. For
interfacing to differential HSTL and LVPECL signals,
these devices operate over a +2.25V to +3.8V supply
range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply.
For differential LVECL operation, these devices operate
from a -2.25V to -3.8V supply.
The pinout is the only difference between the MAX9320
and MAX9320A. Multiple pinouts are provided to simplify
routing across a backplane to either side of a doublesided board.
These devices are offered in space-saving 8-pin SOT23,
µMAX, and SO packages.
Applications
Precision Clock Distribution
Low-Jitter Data Repeater
Protection Switching
Features
♦ Improved Second Source of the MC10LVEP11
(MAX9320)
♦ +2.25V to +3.8V Differential HSTL/LVPECL
Operation
♦ -2.25V to -3.8V LVECL Operation
♦ Low 22mA (typ) Supply Current
♦ 20ps (typ) Part-to-Part Skew
♦ 6ps (typ) Output-to-Output Skew
♦ 208ps (typ) Propagation Delay
♦ Minimum 300mV Output at 3GHz
♦ Outputs Low for Open Input
♦ ESD Protection >2kV (Human Body Model)
♦ Available in Thermally Enhanced Exposed-Pad
SO Package
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
________________________________________________________________ Maxim Integrated Products 1
Pin Configurations
19-2201; Rev 3; 11/04
Ordering Information
*Contact factory for availability.
PART
MAX9320EKA-T -40°C to +85°C 8 SOT23-8 AALJ
MAX9320ESA -40°C to +85°C 8 SO —
MAX9320XESA -40°C to +85°C 8 SO-EP* —
MAX9320EUA -40°C to +85°C 8 µMAX —
MAX9320AEKA-T -40°C to +85°C 8 SOT23-8 AAIW
TEMP
RANGE
PINPACKAGE
TOP
MARK
Q0
1
Q0
2
Q1
3
Q1
4
MAX9320
100kΩ
100kΩ
µMAX/SO
8
60kΩ
7
6
5
V
V
CC
D
D
V
EE
1
CC
V
2
EE
D
3
D
4
V
CC
60kΩ
100kΩ
MAX9320A
100kΩ
V
EE
SOT23
8
7
6
5
V
Q0
Q0
Q1
Q1
1
CC
V
2
EE
D
3
D
4
60kΩ
100kΩ
MAX9320
V
CC
V
EE
100kΩ
SOT23
Q0
8
Q0
7
Q1
6
Q1
5

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50Ω ±1% to VCC- 2V. Typical values are at VCC- VEE= +3.3V, V
IHD
= VCC-
1.0V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1, 2, 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
VCCto VEE..........................................................................+4.1V
D or D .................................................. V
EE
- 0.3V to VCC+ 0.3V
D to D .................................................................................±3.0V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
Junction-to-Ambient Thermal Resistance in Still Air
8-Pin SOT23.............................................................+112°C/W
8-Pin µMAX ..............................................................+221°C/W
8-Pin SO...................................................................+170°C/W
Junction-to-Ambient Thermal Resistance with 500
LFPM Airflow
8-Pin SOT23...............................................................+78°C/W
8-Pin µMAX ..............................................................+155°C/W
8-Pin SO.....................................................................+99°C/W
Junction-to-Case Thermal Resistance
8-Pin SOT23...............................................................+80°C/W
8-Pin µMAX ................................................................+39°C/W
8-Pin SO.....................................................................+40°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (D, D, Q_, Q_) .................................>2kV
Soldering Temperature (10s) ...........................................+300°C
PARAMETER SYM BOL CONDITIONS
DIFFERENTIAL INPUT (D, D)
High Voltage of
Differential
Input
Low Voltage of
Differential
Input
Differential
Input Voltage
Input High
Current
D Input Low
Current
D Input Low
Current
DIFFERENTIAL OUTPUTS (Q_, Q_)
Single-Ended
Output High
Voltage
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
+ 1.2
V
0.1
0.1 3.0 0.1 3.0 0.1 3.0
-10 100 -10 100 -10 100 µA
-150 +150 -150 +150 -150 +150 µA
V
- 1.135
- V
V
IHD
V
ILD
For VCC - V
ILD
< +3.0V
For VCC - V
V
IHD
EE
EE
≥ +3.0V
I
IH
I
ILD
I
ILD
V
OH
Figure 1
-40°C +25°C +85°C
EE
EE
CC
V
CC
V
CC
- 0.1
V
CC
- V
EE
V
EE
+ 1.2
V
EE
0.1
V
V
- 0.1
V
- V
CC
CC
CC
EE
V
EE
+ 1.2
V
EE
0.1
V
CC
V
CC
- 0.1
V
CC
- V
EE
150 150 150 µA
V
- 0.885
CC
V
CC
- 1.07
V
CC
- 0.82
V
CC
- 1.01
V
CC
- 0.76
UNITS
V
V
V
V

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50Ω ±1% to VCC- 2V. Typical values are at VCC- VEE= +3.3V, V
IHD
= VCC-
1.0V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1, 2, 3)
AC ELECTRICAL CHARACTERISTICS
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50Ω ±1% to VCC- 2V, input frequency = 1.5GHz, input transition time = 125ps
(20% to 80%), V
IHD
= VEE+ 1.2V to VCC, V
ILD
= VEEto VCC- 0.15V, V
IHD
- V
ILD
= 0.15V to the smaller of 3V or VCC- VEE. Typical
values are at V
CC
- VEE= +3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS
Single-Ended
Output Low
Voltage
Differential
Output Voltage
POWER SUPPLY
Supply Current I
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
- 1.935
- V
V
OL
V
OH
EE
Figure 1
Figure 1 550 550 550 mV
OL
(Note 4) 20 28 22 28 23 30 mA
-40°C +25°C +85°C
CC
V
- 1.685
CC
V
CC
- 1.87
V
CC
- 1.62
- 1.81
V
CC
V
CC
- 1.56
UNITS
V
PARAMETER SYMBOL CONDITIONS
Differential
Input-toOutput Delay
,
t
PLHD
t
PHLD
Figure 1 145 203 265 155 208 265 160 220 270 ps
-40°C +25°C +85°C
MIN TYP MAX MIN TYP MAX MIN TYP MAX
UNITS
Output-toOutput Skew
Part-to-Part
Skew
Added
Random Jitter
(Note 8)
Added
Deterministic
Jitter
t
SKOO
t
SKPP
t
t
(Note 6) 6 30 6 30 6 30 ps
(Note 7) 20 120 20 110 20 110 ps
fIN = 1.5GHz, clock
pattern
RJ
fIN = 3.0GHz, clock
pattern
3.0Gbps
23
2
DJ
(Note 8)
-1 PRBS pattern
1.7 2.8 1.7 2.8 1.7 2.8
0.6 1.5 0.6 1.5 0.6 1.5
57 80 57 80 57 80
ps
(RMS)
ps
(p-p)

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters production tested at T
A
= +25°C. Guaranteed by design and characterization over the full operating temper-
ature range.
Note 4: All pins open except V
CC
and VEE.
Note 5: Guaranteed by design and characterization. Limits are set at ±6 sigma.
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge
transition.
Note 8: Device jitter added to the input signal.
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50Ω ±1% to VCC- 2V, input frequency = 1.5GHz, input transition time = 125ps
(20% to 80%), V
IHD
= VEE+ 1.2V to VCC, V
ILD
= VEEto VCC- 0.15V, V
IHD
- V
ILD
= 0.15V to the smaller of 3V or VCC- VEE. Typical
values are at V
CC
- VEE= +3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS
Switching
Frequency
Output
Rise/Fall Time
(20% to 80%)
VOH - VOL ≥ 300mV,
clock pattern,
f
MAX
t
R
Figure 1
VOH - VOL ≥ 550mV,
clock pattern,
Figure 1
, t
Figure 1 50 88 120 50 89 120 50 90 120 ps
F
-40°C +25°C +85°C
MIN TYP MAX MIN TYP MAX MIN TYP MAX
3.0 3.0 3.0
2.0 2.0 2.0
UNITS
GHz

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(VCC= +3.3V, VEE= 0, input transition time = 125ps (20% to 80%), V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, fIN= 1.5GHz, outputs loaded
with 50Ω to V
CC
- 2V, TA= +25°C, unless otherwise noted.)
SUPPLY CURRENT, IEE vs. TEMPERATURE
25
24
23
22
21
20
19
18
SUPPLY CURRENT (mA)
17
16
15
0.9
0.8
MAX9320 toc01
0.7
0.6
0.5
0.4
0.3
OUTPUT AMPLITUDE (V)
0.2
0.1
3510-15-40 60 85
TEMPERATURE (°C)
OUTPUT AMPLITUDE, VOH - V
vs. FREQUENCY
0
500 25002000150010000 3000 3500
FREQUENCY (MHz)
PROPAGATION DELAY vs.
HIGH VOLTAGE OF DIFFERENTIAL INPUT, V
225
220
215
210
205
PROPAGATION DELAY (ps)
200
195
V
- V
= 0.5V
IHD
ILD
t
PLHD
t
PHLD
1.41.0 3.43.02.62.21.8 3.8
V
(V)
IHD
IHD
MAX9320 toc04
PROPAGATION DELAY vs. TEMPERATURE
240
230
220
210
200
190
PROPAGATION DELAY (ps)
180
170
160
OL
TRANSITION TIME vs. TEMPERATURE
91
90
MAX9320 toc02
89
88
87
TRANSITION TIME (ps)
86
85
10-15-40 6035 85
TEMPERATURE (°C)
t
PLHD
t
F
10-15-40 6035 85
TEMPERATURE (°C)
MAX9320 toc05
t
PHLD
t
R
MAX9320 toc03

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
6 _______________________________________________________________________________________
Pin Description (MAX9320)
Pin Description (MAX9320A)
PIN
µMAX/SO SOT23
18Q0 Noninverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
27Q0 Inverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
36Q1 Noninverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
45Q1 Inverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
52VEENegative Supply Voltage
64D Inverting Differential Input. 60kΩ pullup to VCC and 100kΩ pulldown to VEE.
73DNoninverting Differential Input. 100kΩ pulldown to VEE.
81V
NAME FUNCTION
Positive Supply Voltage. Bypass from VCC to VEE with 0.1µF and 0.01µF ceramic
CC
capacitors. Place the capacitors as close to the device as possible with the smaller
value capacitor closest to the device.
PIN
SOT23
1V
2V
3 D Inverting Differential Input. 60kΩ pullup to VCC and 100kΩ pulldown to VEE.
4DNoninverting Differential Input. 100kΩ pulldown to VEE.
5 Q1 Inverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
6Q1Noninverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
7 Q0 Inverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
8Q0Noninverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
NAME FUNCTION
Positive Supply Voltage. Bypass from VCC to VEE with 0.1µF and 0.01µF ceramic
CC
EE
capacitors. Place the capacitors as close to the device as possible with the smaller value
capacitor closest to the device.
Negative Supply Voltage

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 7
Detailed Description
The MAX9320/MAX9320A low-skew, 1-to-2 differential
drivers are designed for clock and data distribution. For
interfacing to differential HSTL and LVPECL signals,
these devices operate over a +2.25V to +3.8V supply
range, allowing high-performance clock and data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices
operate from a -2.25V to -3.8V supply.
Inputs
The maximum magnitude of the differential input from D
to D is VCC- VEEor 3.0V, whichever is less. This limit
also applies to the difference between any reference
voltage input and a single-ended input.
The differential inputs have bias resistors that drive the
outputs to a differential low when the inputs are open.
The inverting input, D, is biased with a 60kΩ pullup to
VCCand a 100kΩ pulldown to VEE. The noninverting
input, D, is biased with a 100kΩ pulldown to VEE.
Specifications for the high and low voltages of the differential input (V
IHD
and V
ILD
) and the differential input
voltage (V
IHD
- V
ILD
) apply simultaneously (V
ILD
cannot
be higher than V
IHD
).
Outputs
Output levels are referenced to VCCand are considered LVPECL or LVECL, depending on the level of the
VCCsupply. With VCCconnected to a positive supply
and VEEconnected to GND, the outputs are LVPECL.
The outputs are LVECL when V
CC
is connected to GND
and V
EE
is connected to a negative supply.
A single-ended input of ±100mV around a reference
voltage or a differential input of at least ±100mV switches the outputs to the V
OH
and VOLlevels specified in
the DC Electrical Characteristics table.
Applications Information
Supply Bypassing
Bypass VCCto VEEwith high-frequency surface-mount
ceramic 0.1µF and 0.01µF capacitors in parallel as
close to the device as possible, with the 0.01µF value
capacitor closest to the device. Use multiple parallel
vias for low inductance.
Traces
Input and output trace characteristics affect the performance of the MAX9320/MAX9320A. Connect each
signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias
to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance
through connectors and across cables. Reduce skew
within a differential pair by matching the electrical
length of the traces.
The exposed-pad (EP) SO package can be soldered to
the PC board for enhanced thermal performance. If the
EP is not soldered to the PC board, the thermal resistance is the same as the regular SO package. The EP
is connected to the chip VEEsupply. Be sure that the
pad does not touch signal lines or other supplies.
Contact the Maxim Packaging department for guidelines on the use of EP packages.
Output Termination
Terminate outputs through 50Ω to VCC- 2V or use an
equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal
is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and Q0.
Chip Information
TRANSISTOR COUNT: 182
Figure 1. Differential Transition Time and Propagation Delay
Timing Diagram
D
D
t
PLHD
Q_
Q
(Q_) - (Q_)
20%
V
IHD -VILD
80%
0 (DIFFERENTIAL)
t
R
V
OH -VOL
t
PHLD
80%
0 (DIFFERENTIAL)
t
F
20%
V
IHD
V
ILD
V
OH
V
OL

SOT23, 8L .EPS
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
3.002.60E
C
E1
E
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.
8. MEETS JEDEC MO178.
8∞
0.60
1.75
0.30
L2
0∞
e1
e
L
1.50E1
0.65 BSC.
1.95 REF.
0.25 BSC.
GAUGE PLANE
SEATING PLANE C
C
L
PIN 1
I.D. DOT
(SEE NOTE 6)
L
C
L
C
A2
e1
D
DETAIL "A"
5. COPLANARITY 4 MILS. MAX.
NOTE:
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD
6. PIN 1 I.D. DOT IS 0.3 MM ÿ MIN. LOCATED ABOVE PIN 1.
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF
1. ALL DIMENSIONS ARE IN MILLIMETERS.
L2
L
A1
A
0.45
1.30
0.15
1.45
MAX
0.28b
0.90A2
0.00A1
0.90
A
MIN
SYMBOL
3.00
0.20
2.80D
0.09
C
SEE DETAIL "A"
L
C
b
e
D
1
21-0078
1
PACKAGE OUTLINE, SOT-23, 8L BODY
0
0
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
8 _______________________________________________________________________________________
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 9
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
8L, SOIC EXP. PAD.EPS
PACKAGE OUTLINE
8L SOIC, .150" EXPOSED PAD
21-0111
1
B
1

MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
SOICN .EPS
PACKAGE OUTLINE, .150" SOIC
1
1
21-0041
B
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
TOP VIEW
FRONT VIEW
MAX
0.010
0.069
0.019
0.157
0.010
INCHES
0.150
0.007
E
C
DIM
0.014
0.004
B
A1
MIN
0.053A
0.19
3.80 4.00
0.25
MILLIMETERS
0.10
0.35
1.35
MIN
0.49
0.25
MAX
1.75
0.050
0.016L
0.40 1.27
0.3940.386D
D
MINDIM
D
INCHES
MAX
9.80 10.00
MILLIMETERS
MIN
MAX
16
AC
0.337 0.344 AB8.758.55 14
0.189 0.197 AA5.004.80 8
N MS012
N
SIDE VIEW
H 0.2440.228 5.80 6.20
e 0.050 BSC 1.27 BSC
C
HE
e
B
A1
A
D
0∞-8∞
L
1
VARIATIONS: