MAXIM MAX9320, MAX9320A User Manual

For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
General Description
The MAX9320/MAX9320A are low-skew, 1-to-2 differen­tial drivers designed for clock and data distribution. The input is reproduced at two differential outputs. The dif­ferential input can be adapted to accept single-ended inputs by applying an external reference voltage.
The MAX9320/MAX9320A feature ultra-low propagation delay (208ps), part-to-part skew (20ps), and output-to­output skew (6ps) with 30mA maximum supply current, making these devices ideal for clock distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distrib­ution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.
The pinout is the only difference between the MAX9320 and MAX9320A. Multiple pinouts are provided to simplify routing across a backplane to either side of a double­sided board.
These devices are offered in space-saving 8-pin SOT23, µMAX, and SO packages.
Applications
Precision Clock Distribution
Low-Jitter Data Repeater
Protection Switching
Features
Improved Second Source of the MC10LVEP11
(MAX9320)
+2.25V to +3.8V Differential HSTL/LVPECL
Operation
-2.25V to -3.8V LVECL Operation
Low 22mA (typ) Supply Current
20ps (typ) Part-to-Part Skew
6ps (typ) Output-to-Output Skew
208ps (typ) Propagation Delay
Minimum 300mV Output at 3GHz
Outputs Low for Open Input
ESD Protection >2kV (Human Body Model)
Available in Thermally Enhanced Exposed-Pad
SO Package
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
________________________________________________________________ Maxim Integrated Products 1
Pin Configurations
19-2201; Rev 3; 11/04
Ordering Information
*Contact factory for availability.
PART
MAX9320EKA-T -40°C to +85°C 8 SOT23-8 AALJ
MAX9320ESA -40°C to +85°C 8 SO
MAX9320XESA -40°C to +85°C 8 SO-EP*
MAX9320EUA -40°C to +85°C 8 µMAX
MAX9320AEKA-T -40°C to +85°C 8 SOT23-8 AAIW
TEMP
RANGE
PIN­PACKAGE
TOP MARK
Q0
1
Q0
2
Q1
3
Q1
4
MAX9320
100k
100k
µMAX/SO
8
60k
7
6
5
V
V
CC
D
D
V
EE
1
CC
V
2
EE
D
3
D
4
V
CC
60k
100k
MAX9320A
100k
V
EE
SOT23
8
7
6
5
V
Q0
Q0
Q1
Q1
1
CC
V
2
EE
D
3
D
4
60k
100k
MAX9320
V
CC
V
EE
100k
SOT23
Q0
8
Q0
7
Q1
6
Q1
5
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50±1% to VCC- 2V. Typical values are at VCC- VEE= +3.3V, V
IHD
= VCC-
1.0V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1, 2, 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto VEE..........................................................................+4.1V
D or D .................................................. V
EE
- 0.3V to VCC+ 0.3V
D to D .................................................................................±3.0V
Continuous Output Current .................................................50mA
Surge Output Current........................................................100mA
Junction-to-Ambient Thermal Resistance in Still Air
8-Pin SOT23.............................................................+112°C/W
8-Pin µMAX ..............................................................+221°C/W
8-Pin SO...................................................................+170°C/W
Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow
8-Pin SOT23...............................................................+78°C/W
8-Pin µMAX ..............................................................+155°C/W
8-Pin SO.....................................................................+99°C/W
Junction-to-Case Thermal Resistance
8-Pin SOT23...............................................................+80°C/W
8-Pin µMAX ................................................................+39°C/W
8-Pin SO.....................................................................+40°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
ESD Protection
Human Body Model (D, D, Q_, Q_) .................................>2kV
Soldering Temperature (10s) ...........................................+300°C
PARAMETER SYM BOL CONDITIONS
DIFFERENTIAL INPUT (D, D)
High Voltage of Differential Input
Low Voltage of Differential Input
Differential Input Voltage
Input High Current
D Input Low Current
D Input Low Current
DIFFERENTIAL OUTPUTS (Q_, Q_)
Single-Ended Output High Voltage
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
+ 1.2
V
0.1
0.1 3.0 0.1 3.0 0.1 3.0
-10 100 -10 100 -10 100 µA
-150 +150 -150 +150 -150 +150 µA
V
- 1.135
- V
V
IHD
V
ILD
For VCC - V
ILD
< +3.0V
For VCC - V
V
IHD
EE
EE
+3.0V
I
IH
I
ILD
I
ILD
V
OH
Figure 1
-40°C +25°C +85°C
EE
EE
CC
V
CC
V
CC
- 0.1
V
CC
- V
EE
V
EE
+ 1.2
V
EE
0.1
V
V
- 0.1
V
- V
CC
CC
CC
EE
V
EE
+ 1.2
V
EE
0.1
V
CC
V
CC
- 0.1
V
CC
- V
EE
150 150 150 µA
V
- 0.885
CC
V
CC
- 1.07
V
CC
- 0.82
V
CC
- 1.01
V
CC
- 0.76
UNITS
V
V
V
V
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50±1% to VCC- 2V. Typical values are at VCC- VEE= +3.3V, V
IHD
= VCC-
1.0V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Notes 1, 2, 3)
AC ELECTRICAL CHARACTERISTICS
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50±1% to VCC- 2V, input frequency = 1.5GHz, input transition time = 125ps (20% to 80%), V
IHD
= VEE+ 1.2V to VCC, V
ILD
= VEEto VCC- 0.15V, V
IHD
- V
ILD
= 0.15V to the smaller of 3V or VCC- VEE. Typical
values are at V
CC
- VEE= +3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS
Single-Ended Output Low Voltage
Differential Output Voltage
POWER SUPPLY
Supply Current I
MIN TYP MAX MIN TYP MAX MIN TYP MAX
V
- 1.935
- V
V
OL
V
OH
EE
Figure 1
Figure 1 550 550 550 mV
OL
(Note 4) 20 28 22 28 23 30 mA
-40°C +25°C +85°C
CC
V
- 1.685
CC
V
CC
- 1.87
V
CC
- 1.62
- 1.81
V
CC
V
CC
- 1.56
UNITS
V
PARAMETER SYMBOL CONDITIONS
Differential Input-to­Output Delay
,
t
PLHD
t
PHLD
Figure 1 145 203 265 155 208 265 160 220 270 ps
-40°C +25°C +85°C
MIN TYP MAX MIN TYP MAX MIN TYP MAX
UNITS
Output-to­Output Skew
Part-to-Part Skew
Added Random Jitter (Note 8)
Added Deterministic Jitter
t
SKOO
t
SKPP
t
t
(Note 6) 6 30 6 30 6 30 ps
(Note 7) 20 120 20 110 20 110 ps
fIN = 1.5GHz, clock pattern
RJ
fIN = 3.0GHz, clock pattern
3.0Gbps
23
2
DJ
(Note 8)
-1 PRBS pattern
1.7 2.8 1.7 2.8 1.7 2.8
0.6 1.5 0.6 1.5 0.6 1.5
57 80 57 80 57 80
ps
(RMS)
ps
(p-p)
Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: DC parameters production tested at T
A
= +25°C. Guaranteed by design and characterization over the full operating temper-
ature range.
Note 4: All pins open except V
CC
and VEE.
Note 5: Guaranteed by design and characterization. Limits are set at ±6 sigma. Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge
transition.
Note 8: Device jitter added to the input signal.
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC- VEE= +2.25V to +3.8V, outputs loaded with 50±1% to VCC- 2V, input frequency = 1.5GHz, input transition time = 125ps (20% to 80%), V
IHD
= VEE+ 1.2V to VCC, V
ILD
= VEEto VCC- 0.15V, V
IHD
- V
ILD
= 0.15V to the smaller of 3V or VCC- VEE. Typical
values are at V
CC
- VEE= +3.3V, V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS
Switching Frequency
Output Rise/Fall Time (20% to 80%)
VOH - VOL 300mV, clock pattern,
f
MAX
t
R
Figure 1
VOH - VOL 550mV, clock pattern, Figure 1
, t
Figure 1 50 88 120 50 89 120 50 90 120 ps
F
-40°C +25°C +85°C
MIN TYP MAX MIN TYP MAX MIN TYP MAX
3.0 3.0 3.0
2.0 2.0 2.0
UNITS
GHz
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(VCC= +3.3V, VEE= 0, input transition time = 125ps (20% to 80%), V
IHD
= VCC- 1V, V
ILD
= VCC- 1.5V, fIN= 1.5GHz, outputs loaded
with 50to V
CC
- 2V, TA= +25°C, unless otherwise noted.)
SUPPLY CURRENT, IEE vs. TEMPERATURE
25
24
23
22
21
20
19
18
SUPPLY CURRENT (mA)
17
16
15
0.9
0.8
MAX9320 toc01
0.7
0.6
0.5
0.4
0.3
OUTPUT AMPLITUDE (V)
0.2
0.1
3510-15-40 60 85
TEMPERATURE (°C)
OUTPUT AMPLITUDE, VOH - V
vs. FREQUENCY
0
500 25002000150010000 3000 3500
FREQUENCY (MHz)
PROPAGATION DELAY vs.
HIGH VOLTAGE OF DIFFERENTIAL INPUT, V
225
220
215
210
205
PROPAGATION DELAY (ps)
200
195
V
- V
= 0.5V
IHD
ILD
t
PLHD
t
PHLD
1.41.0 3.43.02.62.21.8 3.8 V
(V)
IHD
IHD
MAX9320 toc04
PROPAGATION DELAY vs. TEMPERATURE
240
230
220
210
200
190
PROPAGATION DELAY (ps)
180
170
160
OL
TRANSITION TIME vs. TEMPERATURE
91
90
MAX9320 toc02
89
88
87
TRANSITION TIME (ps)
86
85
10-15-40 6035 85
TEMPERATURE (°C)
t
PLHD
t
F
10-15-40 6035 85
TEMPERATURE (°C)
MAX9320 toc05
t
PHLD
t
R
MAX9320 toc03
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
6 _______________________________________________________________________________________
Pin Description (MAX9320)
Pin Description (MAX9320A)
PIN
µMAX/SO SOT23
18Q0 Noninverting Q0 Output. Typically terminate with 50 resistor to VCC - 2V. 27Q0 Inverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
36Q1 Noninverting Q1 Output. Typically terminate with 50 resistor to VCC - 2V. 45Q1 Inverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
52VEENegative Supply Voltage 64D Inverting Differential Input. 60kΩ pullup to VCC and 100k pulldown to VEE.
73DNoninverting Differential Input. 100k pulldown to VEE.
81V
NAME FUNCTION
Positive Supply Voltage. Bypass from VCC to VEE with 0.1µF and 0.01µF ceramic
CC
capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
PIN
SOT23
1V
2V 3 D Inverting Differential Input. 60k pullup to VCC and 100k pulldown to VEE.
4DNoninverting Differential Input. 100k pulldown to VEE. 5 Q1 Inverting Q1 Output. Typically terminate with 50 resistor to VCC - 2V.
6Q1Noninverting Q1 Output. Typically terminate with 50 resistor to VCC - 2V. 7 Q0 Inverting Q0 Output. Typically terminate with 50 resistor to VCC - 2V.
8Q0Noninverting Q0 Output. Typically terminate with 50 resistor to VCC - 2V.
NAME FUNCTION
Positive Supply Voltage. Bypass from VCC to VEE with 0.1µF and 0.01µF ceramic
CC
EE
capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
Negative Supply Voltage
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 7
Detailed Description
The MAX9320/MAX9320A low-skew, 1-to-2 differential drivers are designed for clock and data distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock and data distri­bution in systems with a nominal +2.5V or +3.3V sup­ply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.
Inputs
The maximum magnitude of the differential input from D to D is VCC- VEEor 3.0V, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input.
The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting input, D, is biased with a 60kpullup to VCCand a 100kpulldown to VEE. The noninverting input, D, is biased with a 100kpulldown to VEE.
Specifications for the high and low voltages of the dif­ferential input (V
IHD
and V
ILD
) and the differential input
voltage (V
IHD
- V
ILD
) apply simultaneously (V
ILD
cannot
be higher than V
IHD
).
Outputs
Output levels are referenced to VCCand are consid­ered LVPECL or LVECL, depending on the level of the VCCsupply. With VCCconnected to a positive supply and VEEconnected to GND, the outputs are LVPECL. The outputs are LVECL when V
CC
is connected to GND
and V
EE
is connected to a negative supply.
A single-ended input of ±100mV around a reference voltage or a differential input of at least ±100mV switch­es the outputs to the V
OH
and VOLlevels specified in
the DC Electrical Characteristics table.
Applications Information
Supply Bypassing
Bypass VCCto VEEwith high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors in parallel as close to the device as possible, with the 0.01µF value capacitor closest to the device. Use multiple parallel vias for low inductance.
Traces
Input and output trace characteristics affect the perfor­mance of the MAX9320/MAX9320A. Connect each signal of a differential input or output to a 50charac­teristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflec­tions by maintaining the 50characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.
The exposed-pad (EP) SO package can be soldered to the PC board for enhanced thermal performance. If the EP is not soldered to the PC board, the thermal resis­tance is the same as the regular SO package. The EP is connected to the chip VEEsupply. Be sure that the pad does not touch signal lines or other supplies.
Contact the Maxim Packaging department for guide­lines on the use of EP packages.
Output Termination
Terminate outputs through 50to VCC- 2V or use an equivalent Thevenin termination. Terminate both out­puts and use the same termination on each for the low­est output-to-output skew. When a single-ended signal is taken from a differential output, terminate both out­puts. For example, if Q0 is used as a single-ended out­put, terminate both Q0 and Q0.
Chip Information
TRANSISTOR COUNT: 182
Figure 1. Differential Transition Time and Propagation Delay Timing Diagram
D
D
t
PLHD
Q_
Q
(Q_) - (Q_)
20%
V
IHD -VILD
80%
0 (DIFFERENTIAL)
t
R
V
OH -VOL
t
PHLD
80%
0 (DIFFERENTIAL)
t
F
20%
V
IHD
V
ILD
V
OH
V
OL
SOT23, 8L .EPS
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
3.002.60E
C
E1
E
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.
8. MEETS JEDEC MO178.
8
0.60
1.75
0.30
L2
0
e1
e
L
1.50E1
0.65 BSC.
1.95 REF.
0.25 BSC.
GAUGE PLANE
SEATING PLANE C
C
L
PIN 1
I.D. DOT
(SEE NOTE 6)
L
C
L
C
A2
e1
D
DETAIL "A"
5. COPLANARITY 4 MILS. MAX.
NOTE:
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD
6. PIN 1 I.D. DOT IS 0.3 MM ÿ MIN. LOCATED ABOVE PIN 1.
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF
1. ALL DIMENSIONS ARE IN MILLIMETERS.
L2
L
A1
A
0.45
1.30
0.15
1.45
MAX
0.28b
0.90A2
0.00A1
0.90
A
MIN
SYMBOL
3.00
0.20
2.80D
0.09
C
SEE DETAIL "A"
L
C
b
e
D
1
21-0078
1
PACKAGE OUTLINE, SOT-23, 8L BODY
0
0
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
8 _______________________________________________________________________________________
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL
Clock and Data Drivers
_______________________________________________________________________________________ 9
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
8L, SOIC EXP. PAD.EPS
PACKAGE OUTLINE 8L SOIC, .150" EXPOSED PAD
21-0111
1
B
1
MAX9320/MAX9320A
1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
SOICN .EPS
PACKAGE OUTLINE, .150" SOIC
1
1
21-0041
B
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
TOP VIEW
FRONT VIEW
MAX
0.010
0.069
0.019
0.157
0.010
INCHES
0.150
0.007
E
C
DIM
0.014
0.004
B
A1
MIN
0.053A
0.19
3.80 4.00
0.25
MILLIMETERS
0.10
0.35
1.35
MIN
0.49
0.25
MAX
1.75
0.050
0.016L
0.40 1.27
0.3940.386D
D
MINDIM
D
INCHES
MAX
9.80 10.00
MILLIMETERS
MIN
MAX
16
AC
0.337 0.344 AB8.758.55 14
0.189 0.197 AA5.004.80 8
N MS012
N
SIDE VIEW
H 0.2440.228 5.80 6.20
e 0.050 BSC 1.27 BSC
C
HE
e
B
A1
A
D
0∞-8
L
1
VARIATIONS:
Loading...