MAXIM MAX9015, MAX9020 Technical data

General Description
The single MAX9015/MAX9016 and dual MAX9017– MAX9020 nanopower comparators in space-saving SOT23 packages feature Beyond-the-Rails™ inputs and are guaranteed to operate down to 1.8V. The A­grade packages feature an on-board 1.236V ±1% ref­erence, while the B-grade packages feature a 1.24V ±1.75% reference. An ultra-low supply current of 0.85µA (MAX9019/MAX9020), 1µA (MAX9015/MAX9016), or
1.2µA (MAX9017/MAX9018) makes the MAX9015– MAX9020 family of comparators ideal for all 2-cell bat­tery monitoring/management applications.
The unique design of the MAX9015–MAX9020 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks and sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 6mA. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that makes them suit­able for mixed-voltage system design. All devices are available in the ultra-small 8-pin SOT23 package.
Refer to the MAX9117–MAX9120 data sheet for similar single comparators with or without reference in a tiny SC70 package.
Applications
Features
Ultra-Low Total Supply Current
0.85µA (MAX9019/MAX9020)
1.0µA (MAX9015A/MAX9016A)
1.2µA (MAX9017/MAX9018)
Guaranteed Operation Down to 1.8V
Precision VOS< 5mV (max)
Internal 1.236V ±1% Reference (A Grade)
Input Voltage Range Extends 200mV
Beyond-the-Rails
CMOS Push-Pull Output with ±6mA Drive
Capability (MAX9015/MAX9017/MAX9019)
Open-Drain Output Versions Available
(MAX9016/MAX9018/MAX9020)
Crowbar-Current-Free Switching
Internal 4mV Hysteresis for Clean Switching
No Phase Reversal for Overdriven Inputs
Dual Versions in Space-Saving 8-Pin SOT23
Package
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-2874; Rev 2; 12/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ordering Information continued at end of data sheet.
Pin Configurations appear at end of data sheet.
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.
Selector Guide
2-Cell Battery Monitoring/Management
Ultra-Low Power Systems
Mobile Communications
Notebooks and PDAs
Threshold Detectors/ Discriminators
Window Detectors
Sensing at Ground or Supply Line
Telemetry and Remote Systems
Medical Instruments
PART TEMP RANGE
MAX9015AEKA-T -40°C to +85°C 8 SOT23 AEIW
MAX9016AEKA-T -40°C to +85°C 8 SOT23 AEIX
MAX9017AEKA-T -40°C to +85°C 8 SOT23 AEIQ
MAX9017BEKA-T -40°C to +85°C 8 SOT23 AEIS
PIN­PACKAGE
PART COMPARATOR(S) INTERNAL REFERENCE (V) OUTPUT TYPE SUPPLY CURRENT (µA)
MAX9015A 1 1.236 ±1% Push-pull 1
MAX9016A 1 1.236 ±1% Open drain 1
MAX9017A 2 1.236 ±1% Push-pull 1.2
MAX9017B 2 1.240 ±1.75% Push-pull 1.2
MAX9018A 2 1.236 ±1% Open drain 1.2
MAX9018B 2 1.240 ±1.75% Open drain 1.2
MAX9019 2 Push-pull 0.85
MAX9020 2 Open drain 0.85
TOP
MARK
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF)
(VCC= 5V, VEE= 0V, V
IN
-
= V
REF
, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCCto VEE)....................................................6V
IN+, IN-, INA+, INB+, INA-, INB-,
REF/INA-, REF..................................(VEE- 0.3V) to (VCC+ 0.3V)
Output Voltage (OUT_)
MAX9015A, MAX9017_, MAX9019....(V
EE
- 0.3V) to (VCC+ 0.3V)
MAX9016A, MAX9018_, MAX9020...................(VEE- 0.3V) to +6V
Output Current (REF, OUT_, REF/INA-)............................±50mA
Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s
Continuous Power Dissipation (T
A
= +70°C)
8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage Range V
Supply Current I
Input Common-Mode Voltage Range (MAX9015A/MAX9016A)
Inferred from the PSRR test 1.8 5.5 V
CC
MAX9015A/ MAX9016A
CC
MAX9017_/ MAX9018_
V
Inferred from VOS test VEE - 0.2 VCC + 0.2 V
CM
VCC = 1.8V, TA = +25°C 1.0 1.5
VCC = 5.0V, TA = +25°C 1.1 1.7
V
= 5.0V,
CC
T
= T
MIN
to T
MAX
A
2.0
VCC = 1.8V, TA = +25°C 1.2 1.9
VCC = 5.0V, TA = +25°C 1.4 2.3
= 5.0V,
V
CC
T
= T
MIN
to T
MAX
A
2.8
μA
IN+ Voltage Range (MAX9017_/MAX9018_)
Input Offset Voltage V
Input-Referred Hy steresis V
Input Bias Current (IN+, IN-, INA+, INB+, INB-)
Power-Supply Rejection Ratio
Output Voltage Swing High (MAX9015A/MAX9017_)
Output Voltage Swing Low (MAX9015A/MAX9016A/ MAX9017_/MAX9018_)
V
IN+
OS
HB
I
B
PSRR V
V
- V
CC
V
OL
Inferred from the output swing te st VEE - 0.2 VCC + 0.2 V
VEE - 0.2V < VCM < V
+ 0.2V (Note 2)
CC
TA = +25°C 0.15 5
T
= T
MIN
to T
A
10
MAX
VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV
TA = +25°C ±0.15 ±1
TA = T
VCC = 1.8V, I
OH
VCC = 5.0V, I
VCC = 1.8V, I
VCC = 5.0V, I
CC
SOURCE
SOURCE
SINK
SINK
MIN
to T
±2
MAX
= 1.8V to 5.5V 0.1 1 mV/V
TA = +25°C 100 200
= 1mA
T
= T
MIN
to T
A
300
MAX
TA = +25°C 250 350
= 6mA
T
= T
MIN
to T
A
450
MAX
TA = +25°C 105 200
= 1mA
T
= T
MIN
to T
A
300
MAX
TA = +25°C 285 350
= 6mA
T
= T
MIN
to T
A
450
MAX
mV
nA
mV
mV
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF) (continued)
(VCC= 5V, VEE= 0V, V
IN
-
= V
REF
, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output Leakage Current (MAX9016A/MAX9018_)
Output Short-Circuit Current I
High-to-Low Propagation Dela y (Note 4)
Low-to-High Propagation Dela y (Note 4)
Rise Time t
Fal l Time t
Power-Up Time t
Reference Voltage V
Reference Voltage Temperature Coeffic ient
Reference Output Voltage Noise
Reference Line Regulation
Reference Load Regulation
I
LEAK
SC
t
PD-
VCC = 5.5V, V
Sourcing, V
(MAX9015A/
V
EE
MAX9017_ on ly)
Sinking,
= V
V
OUT
CC
= 5.5V 0.001 1 μA
OUT
=
OUT
VCC = 1.8V 3
V
= 5.0V 35
CC
VCC = 1.8V 3
VCC = 5.0V 33
VCC = 1.8V 7
VCC = 5.0V 6
MAX9015A/MAX9017_ 11
t
TC
V
V
V
I
PD+
RISE
FALL
ON
REF
REF
E
N
REF
CC
REF
OUT
VCC = 1.8V
VCC = 5.0V
CL = 15pF (MAX9015A/MAX9017_) 1.6 μs
CL = 15pF 0.2 μs
1.2 ms
MAX901_A
MAX901_B
BW = 10Hz to 1kHz, C
BW = 10Hz to 6kHz, C
/
1.8V VCC 5.5V 0.5 mV/V
/
I
= 0 to 100nA 0.03 mV/nA
OUT
MAX9016A/MAX9018_, R
PULLUP
= 100k to V
CC
12
MAX9015A/MAX9017_ 28
MAX9016A/MAX9018_,
PULLUP
= 100k to V
R
CC
31
TA = +25°C, 1.0% 1.224 1.236 1.248
= T
MIN
to T
T
A
, 2.5% 1.205 1.267
MAX
TA = +25°C, 1.75% 1.218 1.240 1.262
= T
MIN
to T
T
A
, 4.5% 1.184 1.296
MAX
40 ppm/°C
= 1nF 29
REF
= 1nF 60
REF
μV
mA
μs
μs
V
RMS
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF)
(VCC= 5V, VEE= 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage Range V
Supply Current I
Input Common-Mode Voltage Range
CC
V
Input Offset Voltage V
Input-Referred Hy steresis V
Input Bias Current (INA-, INA+, INB+, INB-)
Power-Supply Rejection Ratio PSRR VCC = 1.8V to 5.5V 0.1 1 mV/V
Output Voltage Swing High (MAX9019 Only)
I
- V
V
CC
Output Voltage Swing Low V
Output Leakage Current (MAX9020 Only)
Output Short-Circuit Current I
High-to-Low Propagation Dela y (Note 4)
Low-to-High Propagation Dela y (Note 4)
I
LEAK
SC
t
PD-
t
PD+
Inferred from the PSRR test 1.8 5.5 V
CC
VCC = 1.8V, TA = +25°C 0.85 1.50
MAX9019/ MAX9020
Inferred from VOS test VEE - 0.2 VCC + 0.2 V
CM
VEE - 0.2V < VCM <
OS
HB
B
+ 0.2V (Note 2)
V
CC
VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV
TA = +25°C 0.15 1
TA = T
MIN
to T
MAX
VCC = 1.8V,
SOURCE
SOURCE
= 1mA
= 6mA
I
OH
VCC = 5.0V, I
VCC = 1.8V, I
= 1mA
OL
SINK
VCC = 5.0V, I
= 6mA
SINK
VCC = 5.5V, V
Sourcing, V V
EE
Sinking, V
OUT
(MAX9019 only)
OUT
OUT
= V
VCC = 5.0V, TA = +25°C 1.1 1.70
V
= 5.0V,
CC
= T
MIN
to T
MAX
T
A
2.0
TA = +25°C 1 5
T
= T
MIN
to T
A
10
MAX
2
TA = +25°C 55 200
T
= T
MIN
to T
A
300
MAX
TA = +25°C 190 350
T
= T
MIN
to T
A
450
MAX
TA = +25°C 55 200
T
= T
MIN
to T
A
300
MAX
TA = +25°C 190 350
T
= T
MIN
to T
A
450
MAX
= 5.5V 0.001 1 μA
VCC = 1.8V 3
=
V
= 5.0V 35
CC
VCC = 1.8V 3
CC
VCC = 5.0V 33
VCC = 1.8V 7
VCC = 5.0V 6
MAX9019 11
VCC = 1.8V
MAX9020, R 100k to V
CC
PULLUP
=
12
MAX9019 28
VCC = 5.0V
MAX9020, R 100k to V
CC
PULLUP
=
31
μA
mV
nA
mV
mV
mA
μs
μs
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________ 5
Note 1: All devices are 100% tested at TA= +25°C. Specifications over temperature (TA= T
MIN
to T
MAX
) are guaranteed by design,
not production tested.
Note 2: V
OS
is defined as the center of the hysteresis band at the input.
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of
the band (i.e., V
OS
) (Figure 1).
Note 4: Specified with an input overdrive (V
OVERDRIVE
) of 100mV, and a load capacitance of CL= 15pF. V
OVERDRIVE
is defined
above and beyond the offset voltage and hysteresis of the comparator input.
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (continued)
(VCC= 5V, VEE= 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Typical Operating Characteristics
(VCC= 5V, VEE= 0V, CL= 15pF, V
OVERDRIVE
= 100mV, TA= +25°C, unless otherwise noted.)
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9015/MAX9016
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.8
1.0
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
MAX9017/MAX9018
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc02
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9019/MAX9020
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc03
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9015/MAX9016
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc04
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
0.8
1.0
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
MAX9017/MAX9018
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc05
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9019/MAX9020
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc06
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Rise Time t
Fal l Time t
Power-Up Time t
RISE
FALL
ON
CL = 15pF (MAX9019 only) 1.6 μs
CL = 15pF 0.2 μs
1.2 ms
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, CL= 15pF, V
OVERDRIVE
= 100mV, TA= +25°C, unless otherwise noted.)
50
1 10 100 1k 10k 100k
40
45
30
35
20
25
10
15
0
5
MAX9015/MAX9016
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc07
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
35
1 10 100 1k 10k 100k
30
20
25
15
10
0
5
MAX9017/MAX9018
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc08
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
50
1 10 100 1k 10k 100k
45
30
35
40
25
20
0
15
5
10
MAX9019/MAX9020
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc09
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
150
200
100
50
300
350
250
500
400
450
550
600
700 650
750
023415679810
OUTPUT VOLTAGE LOW
vs. SINK CURRENT
MAX9015 toc10
SINK CURRENT (mA)
V
OL
(mV)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
100
200
400
300
500
600
0 2341 567 9810
OUTPUT VOLTAGE LOW
vs. SINK CURRENT AND TEMPERATURE
MAX9015 toc11
SINK CURRENT (mA)
V
OL
(mV)
TA = +85°C
TA = -40°C
TA = +25°C
0
0.1
0.2
0.5
0.3
0.4
0.6
0.7
0 2341 567 9810
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT
MAX9015 toc12
SOURCE CURRENT (mA)
V
CC
- V
OH
(V)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
0.1
0.2
0.5
0.3
0.4
0.6
023415679810
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT AND TEMPERATURE
MAX9015 toc13
SOURCE CURRENT (mA)
V
CC
- V
OH
(V)
TA = +85°C
TA = -40°C
TA = +25°C
0
5
10
30
35
25
15
20
40
-40 -15 10 35 60 85
SHORT-CIRCUIT TO VCC (SINK CURRENT)
vs. TEMPERATURE
MAX9015 toc14
TEMPERATURE (°C)
SINK CURRENT (mA)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
5
10
35
30
45
40
25
15
20
50
-40 -15 10 35 60 85
SHORT-CIRCUIT TO GND
(SOURCE CURRENT) vs.TEMPERATURE
MAX9015toc15
TEMPERATURE (°C)
SINK CURRENT (mA)
VCC = 3V
VCC = 1.8V
VCC = 5V
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________
7
REFERENCE VOLTAGE
REFERENCE
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, CL= 15pF, V
OVERDRIVE
= 100mV, TA= +25°C, unless otherwise noted.)
INPUT OFFSET VOLTAGE DISTRIBUTION
8
7
6
5
4
3
PERCENTAGE OF UNITS (%)
2
1
0
-1.5 1.5 VOS (mV)
HYSTERESIS VOLTAGE
vs. TEMPERATURE
5.0
4.5
4.0
(mV)
3.5
HB
V
3.0
2.5
MAX9015 toc16
1.20.9-1.2 -0.9 -0.6 0 0.3-0.3 0.6
MAX9015 toc19
OFFSET VOLTAGE vs. TEMPERATURE
2.0
1.6
1.2
0.8
0.4
(mV)
0
OS
V
-0.4
-0.8
-1.2
-1.6
-2.0
-40 85
VCC = 1.8V
VCC = 5V
TEMPERATURE (°C)
REFERENCE VOLTAGE
vs. TEMPERATURE
1.240
A GRADE
1.238
1.236
1.234
REFERENCE VOLTAGE (V)
1.232
VCC = 3V
VCC = 5V
603510-15
VCC = 1.8V
MAX9015 toc17
MAX9015 toc20
REFERENCE VOLTAGE DISTRIBUTION
30
A GRADE
25
20
15
10
PERCENTAGE OF UNITS (%)
5
0
1.232 1.240 V
REF
REFERENCE VOLTAGE vs. SUPPLY VOLTAGE
1.240
1.239
1.238
1.237
1.236
REFERENCE VOLTAGE (V)
1.235
1.2381.2361.234
(V)
MAX9015 toc18
MAX9015 toc21
2.0
-40 85
vs. REFERENCE SOURCE CURRENT
1.238
1.235
1.232
REFERENCE VOLTAGE (V)
1.229
1.226 08040 120 160 200
603510-15
TEMPERATURE (°C)
REFERENCE VOLTAGE
VCC = 1.8V
VCC = 3V
VCC = 5V
REFERENCE SOURCE CURRENT (nA)
1.230
-40 -15 10 35 60 85
1.248
1.246
MAX9015 toc22
1.244
1.242
1.240
1.238
1.236
REFERENCE VOLTAGE (V)
1.234
1.232 08040 120 160 200
TEMPERATURE (°C)
REFERENCE VOLTAGE
vs. REFERENCE SINK CURRENT
VCC = 1.8V
VCC = 5V
VCC = 3V
REFERENCE SINK CURRENT (nA)
1.234
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.255
1.250
MAX9015 toc23
1.245
1.240
1.235
REFERENCE VOLTAGE (V)
1.230
1.225 08040 120 160 200
SUPPLY VOLTAGE (V)
SINK CURRENT AND TEMPERATURE
VCC = 3V
TA = +85°C
TA = +25°C
TA = -40°C
REFERENCE SINK CURRENT (nA)
vs.
MAX9015 toc24
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
8 _______________________________________________________________________________________
(
)
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, CL= 15pF, V
OVERDRIVE
= 100mV, TA= +25°C, unless otherwise noted.)
INPUT BIAS CURRENT
vs. INPUT BIAS VOLTAGE
1.000 IN+ = 2.5V
0.600
0.200
-0.200
-0.600
INPUT BIAS CURRENT (IN-) (nA)
-1.000
-0.5 1.50.5 2.5 3.5 4.5 5.5 INPUT BIAS VOLTAGE (IN-) (V)
PROPAGATION DELAY (t
PD-
)
vs. TEMPERATURE
16
14
MAX9015 toc25
12
10
(μs)
8
PD-
t
6
4
2
0
-40 10-15 35 60 85
VCC = 1.8V
VCC = 3V
VCC = 5V
TEMPERATURE (°C)
MAX9015 toc26
PROPAGATION DELAY (t
50
40
30
(μs)
PD+
t
20
10
0
-40 10-15 35 60 85
PROPAGATION DELAY (t
vs. CAPACITIVE LOAD
180
160
140
120
100
(μs)
PD-
t
80
60
40
20
0
0.01 0.1 1 10 100 1000 CAPACITIVE LOAD (nF)
VCC = 1.8V
VCC = 3V
VCC = 5V
PD-
)
PROPAGATION DELAY (t
PD+
)
vs. CAPACITIVE LOAD
200
VCC = 5V
VCC = 1.8V
VCC = 3V
MAX9015 toc29
(μs)
PD-
t
MAX9015 toc28
180
160
140
120
μs
100
PD+
t
80
60
40
20
0
0.01 0.1 1 10 100 1000 CAPACITIVE LOAD (nF)
PROPAGATION DELAY (t
vs. INPUT OVERDRIVE
50
40
30
20
10
0
0
10 20 30 40 50
vs. TEMPERATURE
VCC = 5V
VCC = 3V
VCC = 1.8V
TEMPERATURE (°C)
VCC = 1.8V
VCC = 3V
INPUT OVERDRIVE (mV)
VCC = 5V
20
PD+
PD-
)
MAX9015 toc27
)
MAX9015 toc30
PROPAGATION DELAY (t
vs. INPUT OVERDRIVE
40
35
30
25
(μs)
20
PD+
t
15
10
5
0
02010 30 40 50
VCC = 5V
VCC = 3V
VCC = 1.8V
INPUT OVERDRIVE (mV)
PD+
)
10
MAX9015 toc31
(μs)
PD-
t
PROPAGATION DELAY (t
vs. PULLUP RESISTANCE
9
8
7
6
5
4
10k 10M1M100k
VCC = 1.8V
VCC = 5V
R
PULLUP
(Ω)
VCC = 3V
PD-
)
PROPAGATION DELAY (t
PD+
)
vs. PULLUP RESISTANCE
200
MAX9015 toc32
160
120
(μs)
PD+
t
80
40
0
10k 10M1M100k
R
PULLUP
VCC = 5V
VCC = 3V
VCC = 1.8V
(Ω)
MAX9015 toc33
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________
9
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, CL= 15pF, V
OVERDRIVE
= 100mV, TA= +25°C, unless otherwise noted.)
PROPAGATION DELAY (t
2μs/div
PROPAGATION DELAY (t
) (VCC = 5V)
PD-
) (VCC = 3V)
PD+
MAX9015 toc34
MAX9015 toc37
V
IN+
50mV/div
V
OUT
2V/div
V
IN+
50mV/div
PROPAGATION DELAY (t
10μs/div
PROPAGATION DELAY (t
) (VCC = 5V)
PD+
) (VCC = 1.8V)
PD-
MAX9015 toc35
MAX9015 toc38
V
IN+
50mV/div
V
OUT
2V/div
V
IN+
50mV/div
PROPAGATION DELAY (t
2μs/div
PROPAGATION DELAY (t
) (VCC = 3V)
PD-
) (VCC = 1.8V)
PD+
MAX9015 toc36
MAX9015 toc39
V
IN+
50mV/div
V
OUT
2V/div
V
IN+
50mV/div
10μs/div
1kHz RESPONSE (VCC = 5V)
200μs/div
MAX9015 toc40
V
OUT
2V/div
IN+ 50mV/div AC-COUPLED
OUT 2V/div
2μs/div
SLOW POWER-UP/DOWN RESPONSE
40μs/div
MAX9015 toc41
V
OUT
1V/div
V
CC
1V/div
V
OUT
1V/div
10μs/div
POWER-UP RESPONSE
20μs/div
MAX9015 toc42
V
OUT
1V/div
V
CC
2V/div
V
OUT
2V/div
V
REF
1V/div
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
10 ______________________________________________________________________________________
Pin Description
PIN
MAX9015/
MAX9016
MAX9017/
MAX9019/
MAX9020
NAME FUNCTION
1 REF 1.24V Reference Output
2 IN- Comparator Inverting Input
3 IN+ Comparator Noninverting Input
444V
EE
Negative Supply Voltage
5, 8 N.C. No Connection. Not internally connected.
6 OUT Comparator Output
788VCCPositive Supply Voltage
1 1 OUTA Comparator A Output
3 3 INA+ Comparator A Noninverting Input
5 5 INB+ Comparator B Noninverting Input
6 6 INB- Comparator B Inverting Input
7 7 OUTB Comparator B Output
2 INA- Comparator A Inverting Input
—2 —
REF/ INA-
1.24V Reference Output. Internally connected to the inverting input of comparator A (MAX9017/MAX9018 only).
MAX9015 MAX9016
IN+
OUT
V
CC
V
EE
IN-
REF
1.24V
6
7
REF
4
MAX9017 MAX9018
V
CC
8
INA+
OUTA
V
CC
V
EE
REF/INA-
REF
1.24V
1
8
INB+
4
INB-
OUTB 7
3
2
5
6
3
2
5
6
INA+
V
CC
8
MAX9019 MAX9020
1
7
OUTA
OUTB
INA-
INB+
INB-
V
EE
4
3
2
1
Functional Diagrams
MAX9018
Detailed Description
The MAX9015–MAX9018 feature an on-board 1.24V ±0.5% (±1.45% for the B grade) reference, yet draw an ultra-low supply current. The MAX9019/MAX9020 (duals without reference) consume just 850nA of supply current. All devices are guaranteed to operate down to
1.8V supply. Their common-mode input voltage range extends 200mV beyond-the-rails. An internal 4mV hys­teresis ensures clean output switching, even with slow­moving input signals. Large internal output drivers swing rail-to-rail with up to ±6mA loads (MAX9015/ MAX9017/MAX9019).
The output stage employs a unique design that mini­mizes supply-current surges while switching, which vir­tually eliminates the supply glitches typical of many other comparators. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks as well as sources current. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that can be pulled beyond V
CC
up to 5.5V above VEE. These open-drain versions are ideal for implementing wire-ORed output logic functions.
Input Stage Circuitry
The input common-mode voltage ranges extend from VEE- 0.2V to VCC+ 0.2V. These comparators operate at any differential input voltage within these limits. Input bias current is typically ±150pA at the trip point, if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input voltage exceeds the supply rails, these ESD pro­tection diodes become forward biased and begin to conduct increasing input bias current (see the Input Bias Current vs. Input Bias Voltage graph in the
Typical
Operating Characteristics
).
Output Stage Circuitry
The MAX9015–MAX9020 feature a unique break­before-make output stage capable of driving ±8mA loads rail-to-rail. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with the MAX9015– MAX9020 family of comparators, the supply-current change during an output transition is extremely small. In the
Typical Operating Characteristics
, the Supply Current vs. Output Transition Frequency graphs show the minimal supply-current increase as the output switching frequency approaches 1kHz. This character­istic reduces the need for power-supply filter capaci­tors to reduce glitches created by comparator switching currents. In battery-powered applications, this characteristic results in a substantial increase in battery life.
Reference (MAX9015–MAX9018)
The MAX9015–MAX9018s’ internal +1.24V reference has a typical temperature coefficient of 40ppm/°C over the full -40°C to +85°C temperature range. The refer­ence is a very-low-power bandgap cell, with a typical 35kΩ output impedance. REF can source and sink up to 100nA to external circuitry. For applications needing increased drive, buffer REF with a low input-bias cur­rent op amp such as the MAX4162. Most applications require no REF bypass capacitor. For noisy environ­ments or fast transients, connect a 1nF to 10nF ceramic capacitor from REF to GND.
Applications Information
Low-Voltage, Low-Power Operation
The MAX9015–MAX9020 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX9015–MAX9020, assuming nominal conditions.
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 11
Table 1. Battery Applications Using the MAX9015–MAX9020
BATTERY
TYPE
RECHARGEABLE
V
FRESH
(V)
V
END-OF-
CAPACITY,
AA SIZE
(mA-hr)
MAX9015A/
MAX9016A
TIME (hr)
MAX9017/
MAX9018
TIME (hr)
MAX9019/ MAX9020
OPERATING
TIME (hr)
Alkaline (2 cells) No 3.0 1.8 2000 2000k 1540k 1333k
Nickel-cadmium (2 cells)
Yes 2.4 1.8 750 750k 570k 500k
Nickel-metal-hydride
(2 cells)
Yes 2.4 1.8 1000 1000k 770k 660k
Lithium-ion (1 cell) Yes 3.6 2.9 1000 1000k 770k 660k
(V)
LIFE
OPERATING
OPERATING
MAX9015–MAX9020
Internal Hysteresis
Many comparators oscillate in the linear region of oper­ation because of noise or undesired parasitic feed­back. Oscillations can occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9015–MAX9020 have internal 4mV hys­teresis to counter parasitic effects and noise.
The hysteresis in a comparator creates two trip points: one for the rising input voltage (V
THR
) and one for the
falling input voltage (V
THF
) (Figure 1). The difference between the trip points is the hysteresis (VHB). When the comparator’s input voltages are equal, the hystere­sis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 1 illustrates the case in which the comparator’s inverting input has a fixed voltage applied, and the noninverting input is var­ied. If the inputs were reversed, the figure would be the same, except with an inverted output.
Additional Hysteresis
(MAX9015/MAX9017/MAX9019)
(Push-Pull Outputs)
The MAX9015/MAX9017/MAX9019 feature a built-in 4mV hysteresis band (VHB). Additional hysteresis can be generated with three resistors using positive feed­back (Figure 2). Use the following procedure to calcu­late resistor values:
1) Select R3. Input bias current at IN_+ is less than
2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias cur­rent. The current through R3 at the trip point is (V
REF
- V
OUT
)/R3. Considering the two possible out­put states in solving for R3 yields two formulas: R3 = V
REF
/IR3 or R3 = (VCC- V
REF
)/IR3. Use the small­er of the two resulting resistor values. For example, when using the MAX9017 (V
REF
= 1.24V) and V
CC
= 5V, and if we choose IR3= 0.2µA, then the two resistor values are 6.2MΩ and 19MΩ. Choose a
6.2MΩ standard value for R3.
2) Choose the hysteresis band required (VHB). For this example, choose 50mV.
3) Calculate R1 according to the following equation:
For this example, insert the values:
4) Choose the trip point for V
IN
rising (V
THR
) such that:
where V
THR
is the trip point for VINrising. This is the threshold voltage at which the comparator switches its output from low to high as VINrises above the trip point. For this example, choose 3V.
5) Calculate R2 as follows:
For this example, choose a 44.2kΩ standard value.
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
12 ______________________________________________________________________________________
Figure 1. Threshold Hysteresis Band
Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis
RR
13=
⎛ ⎜
V
HB
⎟ ⎠
V
CC
THRESHOLDS
HYSTERESIS
BAND
OUT
IN+
IN-
V
THR
V
HB
V
THF
V
CC
R3
V
R1
IN
V
CC
R2
V
REF
V
OUT
EE
MAX9015 MAX9017 MAX9019
VV
>+
THR REF
1
⎜ ⎝
V
HB
⎟ ⎠
V
CC
R
2
=
V
VXRRR
REF
THR
1
1
1
1
1
3
mV
50
RM
⎛ ⎜
12
.
⎟ ⎠
V
5
R
2
=
(. ) .
k162
V
30
.
VX k k M
124 62
1
1
Ω
62
⎟ ⎠
Ω
⎜ ⎝
⎛ ⎜
62
k
43 99
.
1
⎟ ⎠
Ω
6) Verify the trip voltages and hysteresis as follows:
VINrising: = 2.992V, which is equivalent to REF times R1 divided by the parallel combination of R1, R2:
and R3.
VINfalling: = 2.942V:
Hysteresis = V
THR
- V
THF
= 50mV.
Additional Hysteresis
(MAX9016/MAX9018/MAX9020)
(Open-Drain Outputs)
The MAX9016/MAX9018/MAX9020 feature a built-in 4mV hysteresis band. These devices have open-drain outputs and require an external pullup resistor (Figure 3). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX9015/MAX9017/MAX9019. Use the following procedure to calculate resistor values:
1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias cur­rent. The current through R3 at the trip point is (V
REF
- V
OUT
)/R3. Considering the two possible out­put states in solving for R3 yields two formulas: R3 = V
REF/IR3
or R3 = [(VCC- V
REF
)/IR3] - R4. Use the smaller of the two resulting resistor values. For example, when using the MAX9018 (V
REF
= 1.24V)
and V
CC
= 5V, and if we choose IR3= 0.2µA, and R4 = 1MΩ, then the two resistor values are 6.2MΩ and 18MΩ. Choose a 6.2MΩ standard value for R3.
2) Choose the hysteresis band required (VHB).
3) Calculate R1 according to the following equation. For this example, insert the values:
4) Choose the trip point for VINrising (V
THR
) such that:
(V
THR
is the trip point for VINrising). This is the threshold voltage at which the comparator switches its output from low to high as VINrises above the trip point. For this example, choose 3V:
5) Calculate R2 as follows:
For this example, choose a 49.9kΩ standard value.
6) Verify the trip voltages and hysteresis as follows:
Hysteresis = V
THR
- V
THF
= 50mV.
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 13
Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis
1
VVxR
=
THR REF
1
RR R
1
⎞ ⎟
1
+
+
2
1
3
VV
THF THR
⎛ ⎜
=−
CC
⎟ ⎠
R
3
RxV
1
RMM
V
RRR
134=+
()
HB
V
CC
mV
50
⎛ ⎜
⎞ ⎟
V
5
k162 1
(. )
72+Ω
V
HB
1
⎜ ⎝
V
CC
VV
>+
THR REF
⎞ ⎟
R
2
=
V
THR
VxR R R
REF
R
30
⎢ ⎢
.
Vx k k M
124 72
..
V
Ω
1
1
1
1
1
⎜ ⎝
Ω
72
1
62
1
3
51 1=
1
⎟ ⎠
Ω
VrigV V xR
sin :
IN
.
V falling V V x R
IN THF REF
.
R1
V
IN
=
=
=
R2
3 043
V
REF
RR
REF
THR
:
1
V
1
R
1
+
34
R3
V
1
⎛ ⎜
RR R
1
1
⎛ ⎜
RR R
1
xV V
CC
V
CC
V
CC
EE
MAX9016 MAX9018 MAX9020
1
+
+
=
2 993
OUT
+
2
1
+
2
R4
k2
.
1
⎞ ⎟
3
1
⎞ ⎟
3
MAX9015–MAX9020
Board Layout and Bypassing
The MAX9015–MAX9020 ultra-low supply current typi­cally requires no power-supply bypass capacitors. However, when the supply has high output impedance, long lead lengths or excessive noise, or fast transients, bypass V
CC
to VEEwith a 0.1µF capacitor placed as
close to the V
CC
pin as possible. Minimize signal trace lengths to reduce stray capacitance. Use a ground plane and surface-mount components for best perfor­mance. If REF is decoupled, use a low-leakage ceram­ic capacitor.
Window Detector
The MAX9018 is ideal for window detectors (undervolt­age/overvoltage detectors). Figure 4 shows a window detector circuit for a single-cell Li+ battery with a 2.9V end-of-life charge, a peak charge of 4.2V, and a nomi­nal value of 3.6V. Choose different thresholds by changing the values of R1, R2, and R3. OUTA provides an active-low undervoltage indication, and OUTB pro­vides an active-low overvoltage indication. ANDing the two open-drain outputs provides an active-high, power­good signal.
The design procedure is as follows:
1) Select R1. The input bias current into INB- is nor-
mally less than 2nA, so the current through R1 should exceed 100nA for the thresholds to be accu­rate. In this example, choose R1 = 1.24MΩ (1.24V/1µA).
2) Calculate R2 + R3. The overvoltage threshold
should be 4.2V when VINis rising. The design equation is as follows:
=2.95MΩ
3) Calculate R2. The undervoltage threshold should
be 2.9V when VINis falling. The design equation is as follows:
= 546kΩ
For this example, choose a 499kΩ standard value 1% resistor.
4) Calculate R3:
R3 = (R2 + R3) - R2
= 2.95MΩ - 546kΩ
= 240MΩ
5) Verify the resistor values. The equations are as fol­lows, evaluated for the above example:
Overvoltage threshold:
Undervoltage threshold:
where the internal hysteresis band, V
HB
, is 4mV.
Zero-Crossing Detector
Figure 5 shows a zero-crossing detector application. The MAX9015/MAX9016/MAX9019/MAX9020s’ invert­ing input is connected to ground, and its noninverting input is connected to a 100mV
P-P
signal source. As the signal at the noninverting input crosses zero, the com­parator’s output changes state.
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
14 ______________________________________________________________________________________
Figure 4. Window Detector Circuit
V
RRRx
231 1+=
124
Mx
OTH
⎜ ⎝
+
VV
REF
HB
1 24 0 004
..
V
RRRRx
2123 1=++
−Ω(. . )
VV
REF
V
UTH
(. )
1 236
⎛ ⎜
29
⎟ ⎠
42
.
V
+
HB
⎟ ⎠
124MMx M
.
⎤ ⎥ ⎥
()
V
IN
V
= 4.2V
OTH
= 2.9V
V
UTH
R3
INA+
REF/INA-
REF
INB+
INB-
1.24V
V
EE
R2
R1
5V
V
V
CC
CC
OUTA
MAX9018
OUTB
V
EE
POWER­GOOD
RRR
++
()
VVVx
=+
1.
⎟ ⎠
OTH REF
HB
123
R
1
=()
.
420
V
RRR
++
()
VVVx
=−
UTH REF
R
HB
123
RR
+
()
12
=()
.
297
V
.124 295
Logic-Level Translator
The open-drain comparators can be used to convert 5V logic to 3V logic levels. The MAX9020 can be powered by the 5V supply voltage, and the pullup resistor for the MAX9020’s open-drain output is connected to the 3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translations, connect the 3V supply voltage to VCCand the 5V supply voltage to the pullup resistor.
Chip Information
TRANSISTOR COUNT: 349
PROCESS: BiCMOS
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 15
Figure 5. Zero-Crossing Detector
MAX9017
V
CC
INA+
OUTA
V
CC
V
EE
REF/INA-
REF
1.24V
INB+
INB-
OUTB
V
EE
V
IN
V
OTH
= 4.2V
V
UTH
= 2.9V
R3
R2R1
5V
UNDERVOLTAGE
OVERVOLTAGE
Typical Application Circuit
Ordering Information (continued)
Pin Configurations
V
CC
V
100mV
P-P
IN+
IN-
CC
OUT
MAX9015 MAX9016 MAX9019
V
MAX9020
EE
PART TEMP RANGE
PIN­PACKAGE
MAX9018AEKA-T -40°C to +85°C 8 SOT23 AEIR
MAX9018BEKA-T -40°C to +85°C 8 SOT23 AEIT
MAX9019EKA-T -40°C to +85°C 8 SOT23 AEIU
MAX9020EKA-T -40°C to +85°C 8 SOT23 AEIV
TOP
MARK
TOP VIEW
1
REF
2
IN-
IN+
EE
MAX9015 MAX9016
3
4
SOT23
87N.C.
6
5
V
OUT
N.C.V
1
OUTA
INA+
2
MAX9017 MAX9018
3
4
EE
CC
SOT23
87V
6
5
OUTBREF/INA-
INB-
INB+V
1
CC
OUTA
2
87V
CC
OUTBINA-
MAX9019
INA+
MAX9020
3
4
EE
INB-
6
INB+V
5
SOT23
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
16 ______________________________________________________________________________________
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
8 SOT23 K8-5
21-0078
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
17
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
2 12/09 Updated EC table parameters after final test changes 2, 4
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Loading...