Maxim MAX475MJD, MAX475ESD, MAX475EPD, MAX475CSD, MAX475CPD Datasheet

...
19-0260; Rev 1; 3/95
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
_______________General Description
The single MAX473, dual MAX474, and quad MAX475 are single-supply (2.7V to 5.25V), unity-gain-stable op amps with rail-to-rail output swing. Each op amp guar­antees a 10MHz unity-gain bandwidth, 15V/µs slew rate, and 600drive capability while typically consum­ing only 2mA supply current. In addition, the input range includes the negative supply rail and the output swings to within 50mV of each supply rail.
Single-supply operation makes these devices ideal for low-power and low-voltage portable applications. With their fast slew rate and settling time, they can replace higher-current op amps in large-signal applications. The MAX473/MAX474/MAX475 are available in DIP and SO packages in the industry-standard op-amp pin configurations. The MAX473 and MAX474 are also offered in the µMAX package, the smallest 8-pin SO.
________________________Applications
Portable Equipment Battery-Powered Instruments Signal Processing Discrete Filters Signal Conditioning Servo-Loops
__________Typical Operating Circuit
____________________________Features
15V/µs Min Slew Rate+3V Single-Supply OperationGuaranteed 10MHz Unity-Gain Bandwidth2mA Supply Current per AmplifierInput Range Includes Negative RailOutputs Short-Circuit ProtectedRail-to-Rail Output Swing (to within ±50mV)µMAX Package (the smallest 8-pin SO)
______________Ordering Information
PART
MAX473CPA
MAX473CSA MAX473CUA 0°C to +70°C 8 µMAX MAX473C/D 0°C to +70°C MAX473EPA -40°C to +85°C 8 Plastic DIP MAX473ESA -40°C to +85°C 8 SO MAX473MJA -55°C to +125°C 8 CERDIP
Ordering Information continued on last page.
* Dice are specified at T
TEMP. RANGE PIN-PACKAGE
0°C to +70°C 0°C to +70°C
= +25°C, DC parameters only.
A
8 Plastic DIP 8 SO
Dice*
_________________Pin Configurations
MAX473/MAX474/MAX475
V
IN
100mVp-p
9.9k
9.9k
1V
9.9k
82pF
3V
1/4 MAX475
1V
BANDPASS OUTPUT 1Vp-p at 190kHz
9.9k
127k
1V
82pF
3V
1/4 MAX475
fo = 190kHz Q = 10
9.9k
9.9k
3V
1/4 MAX475
BANDPASS FILTER
________________________________________________________________
TOP VIEW
1
NULL
IN+ V
OUTA
INA­INA+
IN-
EE
EE
MAX473
2 3 4
DIP/SO/µMAX
1 2
A
3 4
DIP/SO/µMAX
Pin Configurations continued on last page.
Maxim Integrated Products
Call toll free 1-800-998-8800 for free samples or literature.
MAX474
B
8
NULL
7
V
CC
OUT
6
N.C.
5
8
V
CC
OUTB
7
INB-
6
INB+V
5
1
Single/Dual/Quad, 10MHz Single-Supply Op Amps
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC- VEE)......................................................7V
Input Voltage (IN+, IN-, IN_+, IN_-).........................(V
Output Short-Circuit Duration.....................................Continuous
Continuous Power Dissipation (T
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C).............330mW
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)...800mW
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
= +70°C)
A
to (V
CC
EE
+ 0.3V)
- 0.3V)
ELECTRICAL CHARACTERISTICS
(+3V VCC≤ +5V, VEE= 0V, VCM= 0.5V, V
Input Offset Voltage ±0.70 ±2.0
Input Bias Current
MAX473/MAX474/MAX475
Input Offset Current Common-Mode Voltage
Input Noise-Voltage Density
Large-Signal Gain (Note 1)
Output Voltage
Unity-Gain Bandwidth (Note 2)
V
V
A
V
GBW
= 0.5V, TA= +25°C, unless otherwise noted.)
OUT
CONDITIONS UNITSMIN TYP MAXSYMBOLPARAMETER
MAX473 MAX474
OS
MAX475 Current flows out of terminals
B
OS
High
CM
Low VEE≤ VCM≤ (VCC- 1.9V) VCC= 2.7V to 6.0V f = 10kHz
n
0.3V V (VCC- 0.5V)
VOL
Sinking 5mA
Sourcing 5mA
+ - VIN- = +1V, RL= no load
V
IN
OH
VIN+ - VIN- = -1V, RL= no load VEE+ 0.05
OL
VCC= 5V, RL= 10k, CL= 20pF, VIN+ - VIN- = +1V step
3V VCC≤ 5V 10 12 VCC= 2.7V 10
OUT
14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW
14-Pin CERDIP (derate 9.09mW/°C above +70°C)......727mW
Operating Temperature Ranges
MAX47_C_ _ ......................................................0°C to +70°C
MAX47_E_ _.....................................................-40°C to +85°C
MAX47_MJ_...................................................-55°C to +125°C
Junction Temperatures
MAX47_C_ _/E_ _........................................................ +150°C
MAX47_MJ_................................................................ +175°C
Storage Temperature Range.............................-65°C to +160°C
Lead Temperature (soldering, 10sec).............................+300°C
±0.70 ±2.0
±0.80 ±2.5
VCC- 1.9 VCC- 1.7
RL= no load RL= 10k RL= 600 VCC= 5V VCC= 3V VCC= 5V VCC= 3V
VEE- 0.1 V
40e
110 94 105 82 90
76
100
76 90
VCC- 0.05V
15 17Slew Rate SR
EE
nV/Hz
V/µs
MHz
mV
nA0 80 150I nA±10 ±30I
V
dB80 90CMRRCommon-Mode Rejection Ratio dB80 90PSRRPower-Supply Rejection Ratio
dB
V
2 _______________________________________________________________________________________
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
ELECTRICAL CHARACTERISTICS (continued)
(+3V VCC≤ +5V, VEE= 0V, VCM= 0.5V, V
Settling Time Power-Up Time
Overshoot
Phase Margin
Gain Margin Supply Current
Operating Supply-Voltage Range
= 0.5V, TA= +25°C, unless otherwise noted.)
OUT
CONDITIONS
To 0.1%, CL= 20pF
S
AV= +1, VIN= 1/2 VCCstep, see
PU
Operating Characteristics
CL= 150pF CL= 20pF
VCC= 5V VCC= 3V VCC= 5V VCC= 3V
S
RL= 10k, CL= 20pF
RL= 10k, CL= 20pF
Per amplifier Single supply Dual supplies
Typical
10
5 63 58 10 12
2.7 5.25
±1.35 ±2.625
ELECTRICAL CHARACTERISTICS
(+3V VCC≤ +5V, VEE= 0V, VCM= 0.5V, V
Input Offset Voltage ±2.0
Input Bias Current Input Offset Current
Large-Signal Gain (Note 1)
Output Voltage
Supply Current Operating Supply-Voltage
Range
V
A
V V
= 0.5V, TA= 0°C to +70°C, unless otherwise noted.)
OUT
CONDITIONS
MAX473 MAX474
OS
MAX475 Current flows out of terminals
B
OS
VEE≤ VCM≤ (VCC- 1.9V) VCC= 2.7V to 6.0V
0.4V V
VOL
(VCC- 0.6V) VIN+ - VIN- = +1V, RL= no load
OH
VIN+ - VIN- = -1V, RL= no load
OL
VCC= 5V, RL= 10k, CL= 20pF, VIN+ - VIN- = +1V step
Per amplifier
S
Single supply Dual supplies
OUT
RL= 10k RL= 600
94 80
VCC- 0.07
VEE+ 0.07
12
2.7 5.25
±1.35 ±2.625
MAX473/MAX474/MAX475
UNITSMIN TYP MAXSYMBOLPARAMETER
ns400t ns700t
%
degrees
dB
mA2.0 3.0I
V
UNITSMIN TYP MAXSYMBOLPARAMETER
±2.0
mV
±3.0
nA0 175I nA±35I dB78CMRRCommon-Mode Rejection Ratio dB78PSRRPower-Supply Rejection Ratio
dB
V
V/µsSRSlew Rate
mA3.3I
V
_______________________________________________________________________________________ 3
Single/Dual/Quad, 10MHz Single-Supply Op Amps
ELECTRICAL CHARACTERISTICS
(+3V VCC≤ +5V, VEE= 0V, VCM= 0.5V, V
Input Offset Voltage ±2.3
Input Bias Current Input Offset Current
Large-Signal Gain (Note 1)
Output Voltage
Supply Current Operating Supply-Voltage
Range
V
A
V
V
= 0.5V, TA= -40°C to +85°C, unless otherwise noted.)
OUT
CONDITIONS
MAX473 MAX474
OS
MAX475 Current flows out of terminals
B
OS
VEE≤ VCM≤ (VCC- 2.0V) VCC= 2.7V to 6.0V
0.4V V
VOL
(VCC- 0.6V) VIN+ - VIN- = +1V, RL= no load
OH
VIN+ - VIN- = - 1V, RL= no load
OL
VCC= 5V, RL= 10k, CL= 20pF, VIN+ - VIN- = +1V step
Per amplifier
S
Single supply Dual supplies
OUT
RL= 10k RL= 600
94 72
VCC- 0.08
10
2.7 5.25
±1.35 ±2.625
MAX473/MAX474/MAX475
ELECTRICAL CHARACTERISTICS
(+3V VCC≤ +5V, VEE= 0V, VCM= 0.5V, V
Input Offset Voltage ±2.8
Input Bias Current Input Offset Current
Large-Signal Gain (Note 1)
Output Voltage
Supply Current
Operating Supply-Voltage Range
Note 1: Gain decreases to zero as the output swings beyond the specified limits. Note 2: Guaranteed by correlation to slew rate.
V
A
V
= 0.5V, TA= -55°C to +125°C, unless otherwise noted.)
OUT
CONDITIONS
MAX473 MAX474
OS
MAX475 Current flows out of terminals
B
OS
VEE≤ VCM≤ (VCC- 2.15V) VCC= 2.7V to 6.0V
0.5V V
VOL
(VCC- 0.6V) VIN+ - VIN- = +1V, RL= no load
OH
VIN+ - VIN- = -1V, RL= no loadV
OL
VCC= 5V, RL= 10k, CL= 20pF, VIN+ - VIN- = +1V step
Per amplifier
S
Single supply Dual supplies
OUT
RL= 10k RL= 600
90 70
VCC- 0.1
9
2.7 5.25
±1.35 ±2.625
±2.3
±3.3
VEE+ 0.08
±2.8
±4.0
VEE+ 0.1
UNITSMIN TYP MAXSYMBOLPARAMETER
mV
nA0 200I
nA±50I dB72CMRRCommon-Mode Rejection Ratio dB72PSRRPower-Supply Rejection Ratio
dB
V
V/µsSRSlew Rate
mA3.4I
V
UNITSMIN TYP MAXSYMBOLPARAMETER
mV
nA0 225I
nA±60I dB70CMRRCommon-Mode Rejection Ratio dB70PSRRPower-Supply Rejection Ratio
dB
V
V/µsSRSlew Rate
mA3.6I
V
4 _______________________________________________________________________________________
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
__________________________________________Typical Operating Characteristics
(VCC= 5V, VEE= 0V, TA = +25°C, unless otherwise noted.)
SUPPLY CURRENT PER AMPLIFIER
3.0
2.5
2.0
(mA)
S
I
1.5
1.0
16
15
14
GBW (MHz)
13
12
vs. SUPPLY VOLTAGE
3 456
2
A
 
 
-60
VCC-VEE (V)
GAIN-BANDWIDTH PRODUCT
vs. TEMPERATURE
VCL = 40dB
-20 20 60 100 140
TEMPERATURE (°C)
MAX (V)
OUT
V
3.0
473 TOC-01
2.5
2.0
1.5
(mA)
S
I
1.0
0.5
0
20
473 TOC-04
17
14
SLEW RATE (V/µs)
11
8
MAXIMUM OUTPUT VOLTAGE
3.1
3.0
2.9
2.8
2.7
vs. LOAD RESISTANCE
VCC = 3V
V
1V
0.1 1 10 100 1000 LOAD RESISTANCE (k)
SUPPLY CURRENT vs. TEMPERATURE
-60
-20 20 60 100 140
SLEW RATE vs. TEMPERATURE
 
 
-60
-20 20 60 100 140
CC
R
L
VCC = 5V
VCC = 3V
TEMPERATURE (°C)
VCC = 5V
VCC = 3V
TEMPERATURE (°C)
473 TOC-07
MIN (V)
OUT
V
INPUT BIAS CURRENT
120
473 TOC-02
100
80
60
(nA)
B
I
40
20
0
-60
-20 20 60 100 140
MAXIMUM OUTPUT VOLTAGE
5.2
473 TOC-05
5.1
5.0
MAX (V)
OUT
4.9
V
4.8
4.7
MINIMUM OUTPUT VOLTAGE
0.5
0.4
0.3
0.2
0.1
0
vs. LOAD RESISTANCE
VCC = 5V
VCC = 3V
0.1 1 10 100 1000 10,000 LOAD RESISTANCE (k)
vs. LOAD RESISTANCE
VCC = 5V
0.1 1 10 100 1000 LOAD RESISTANCE (k)
V
CC
1V
vs. TEMPERATURE
TEMPERATURE (°C)
1V
473 TOC-08
R
L
V
CC
R
L
MAX473/MAX474/MAX475
473 TOC-03
473 TOC-06
_______________________________________________________________________________________
5
Single/Dual/Quad, 10MHz Single-Supply Op Amps
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, TA = +25°C, unless otherwise noted.)
MINIMUM OUTPUT VOLTAGE
50
40
(mV)
I
OUT
30
-V
EE
V
I
20
MIN,
OUT
V
10
0
130
MAX473/MAX474/MAX475
110
90
70
50
OPEN-LOOP GAIN (dB)
30
10
vs. TEMPERATURE
V
1V
-60
-60
CC
VCC = 5V
VCC = 3V
-20 20 60 100 140
TEMPERATURE (°C)
OPEN-LOOP GAIN vs. TEMPERATURE
-20 20 60 100 140
RL = 10k
RL = 600
TEMPERATURE (°C)
100
INPUT REFERRED
CURRENT-NOISE DENSITY
vs. FREQUENCY
473 TOC-09
473 TOC-12
MAXIMUM OUTPUT VOLTAGE
20
15
(mV)
OUT
-V
CC
10
MAX, V
OUT
V
5
0
vs. TEMPERATURE
VCC = 5V
VCC = 3V
-60
-20 20 60 100 140
TEMPERATURE (°C)
OVERSHOOT vs. CAPACITIVE LOAD
40
RL = NO LOAD
30
20
OVERSHOOT (%)
10
0
1 10 1000
VCC = 3V
0.5V STEP
CAPACITIVE LOAD (pF)
473 TOC-15
OPEN-LOOP VOLTAGE GAIN
125
473 TOC-10
115
105
1V
V
CC
95
OPEN-LOOP VOLTAGE GAIN (dB)
85
1000
473 TOC-13
100
VCC = 5V
1.0V STEP
100
-60
-65
AV = +1 V
VOLTAGE-NOISE DENSITY (nV/Hz)
10
TOTAL HARMONIC DISTORTION
AND NOISE vs. FREQUENCY
= 1.5Vp-p
IN
vs. LOAD RESISTANCE
VCC = 3V
VCC = 5V
0.1 1 10 100 1000 10,000 LOAD RESISTANCE (k)
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
INPUT REFERRED
10 100 1k 10k 100k
FREQUENCY (Hz)
473 TOC-17
473 TOC-11
473 TOC-14
-70
-75
THD + NOISE (dB)
-80
CURRENT-NOISE DENSITY (pA/Hz)
10
10 100 1k 10k 100k
FREQUENCY (Hz)
-85
-90 10 100 1k 10k 100k
FREQUENCY (Hz)
6 _______________________________________________________________________________________
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, TA = +25°C, unless otherwise noted.)
POWER-SUPPLY REJECTION RATIO
80
70
60
50
PSRR (dB)
40
30
20
1 10 100 1000
vs. FREQUENCY
V
= 3V ± 300mV
CC
V
= 5V ± 250mV
CC
FREQUENCY (kHz)
GAIN AND PHASE vs. FREQUENCY
VCC = 3V
40
GAIN
20
PHASE
0
GAIN (dB)
-20
-40
1k 10k 100k 1M 10M
10k
100
473 TOC-23
GAIN (dB)
10k
20pF
FREQUENCY (Hz)
UNITY-GAIN FOLLOWER 
FREQUENCY RESPONSE
VCC = 3V
1
= 10k
L
GAIN
20pF
II
FREQUENCY (Hz)
180 144
473 TOC-21
108
PHASE (DEGREES)
72 36 0
-36
-72
-108
-144
-180
R
0
-1 PHASE
-2
-3
1k 10k 100k 1M 10M
180 144
473 TOC-19
108
PHASE (DEGREES)
72 36 0
-36
-72
-108
-144
-180
GAIN AND PHASE vs. FREQUENCY
VCC = 5V
40
GAIN
20
PHASE
0
GAIN (dB)
-20
-40
100
1k 10k 100k 1M 10M
GAIN (dB)
10k
10k
20pF
FREQUENCY (Hz)
-1
-2
-3
-4
UNITY-GAIN FOLLOWER 
FREQUENCY RESPONSE
1
VCC = 5V
= 10k
L
20pF
II
FREQUENCY (Hz)
180 144
473 TOC-22
108
PHASE (DEGREES)
72 36 0
-36
-72
-108
-144
-180
R
0
GAIN
PHASE
1k 10k 100k 1M 10M
MAX473/MAX474/MAX475
180 144
473 TOC-20
108
PHASE (DEGREES)
72 36 0
-36
-72
-108
-144
-180
0.1Hz to 10Hz VOLTAGE NOISE
1k
1k
POWER-UP TIME
100k
10pF
INPUT REFERRED VOLTAGE (2µV/div)
500ns/div
1sec/div
A : VCC, 5V/div B : V
, 1V/div
OUT
_______________________________________________________________________________________
A
B
7
Single/Dual/Quad, 10MHz Single-Supply Op Amps
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0V, TA = +25°C, unless otherwise noted.)
SMALL-SIGNAL TRANSIENT RESPONSE
(V
= 5V)
CC
A 
0.5V
B 
0.5V
200ns/div
VCC = 5V, AV = +1, RL = 10k, CL = 220pF A : V
, 50mV/div
IN
B : V
, 50mV/div
OUT
MAX473/MAX474/MAX475
LARGE-SIGNAL TRANSIENT RESPONSE
A 
0.5V
B  
0.5V
200ns/div
= 5V, AV = +1, RL = 10k, CL = 220pF
V
CC
A : V
, 1V/div
IN
B : V
, 500mV/div
OUT
SMALL-SIGNAL TRANSIENT RESPONSE
(V
= 3V)
CC
200ns/div
VCC = 3V, AV = +1, RL = 10k, CL = 100pF A : V
, 50mV/div
IN
B : V
, 50mV/div
OUT
OVERDRIVING THE OUTPUT
200ns/div
VCC = 5V, VIN- = 2.0V, RL = 10k, CL = 33pF A : V
+, 1V/div
IN
B : V
, 1V/div
OUT
A 
0.5V
B 
0.5V
A
1.5V
B
0V
8 _______________________________________________________________________________________
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
______________________________________________________________Pin Description
MAX473
PIN
MAX474
1, 8
MAX475
1
2
3 11 —
5 —
6
7
4
NAME
NULL
OUTA
IN-
INA-
IN+
INA+
V
EE
N.C.
INB+
OUT INB-
OUTB
V
CC
FUNCTION
Offset Null Input. Connect to one end of 2kpotentiometer for offset voltage trimming. Connect wiper to VEE. See Figure 1.
Amplifier A Output1— Inverting Input2 Amplifier A Inverting Input2— Noninverting Input3 Amplifier A Noninverting Input3— Negative Power-Supply Pin. Connect to ground or a negative voltage.44 No Connect—not internally connected5 Amplifier B Noninverting Input5— Amplifier Output 6 Amplifier B Inverting Input6— Amplifier B Output7— Positive Power-Supply Pin. Connect to (+) terminal of power supply.87 Amplifier C OutputOUTC8— Amplifier C Inverting InputINC-9— Amplifier C Noninverting InputINC+10— Amplifier D Noninverting InputIND+12— Amplifier D Inverting InputIND-13— Amplifier D OutputOUTD14
MAX473/MAX474/MAX475
__________Applications Information
Power Supplies
The MAX473/MAX474/MAX475 operate from a single
2.7V to 5.25V power supply, or from dual supplies of ±1.35V to ±2.625V. For single-supply operation, bypass the power supply with 0.1µF. If operating from dual supplies, bypass each supply to ground. With
0.1µF bypass capacitance, channel separation (MAX474/MAX475) is typically better than 120dB with signal frequencies up to 300kHz. Increasing the bypass capacitance (e.g. 10µF || 0.1µF) maintains channel separation at higher frequencies.
Minimizing Offsets
The MAX473’s maximum offset voltage is ±2mV (TA= +25°C). If additional offset adjustment is required, connect a 2ktrim potentiometer between pins 1, 8, and 4 (Figure 1). Input offset voltage for the dual MAX474 and quad MAX475 cannot be externally trimmed.
_______________________________________________________________________________________ 9
The MAX473/MAX474/MAX475 are bipolar op amps with low input bias currents. The bias currents at both inputs flow out of the device. Matching the resistance at the op amp’s inputs significantly reduces the offset error caused by the bias currents. Place a resistor (R3) from the noninverting input to ground when using the inverting configuration (Figure 2a); place R3 in series with the noninverting input when using the noninverting configuration (Figure 2b). Select R3 such that the paral­lel combination of R2 and R1 equals R3. Adding R3 will slightly increase the op amp’s voltage noise.
Output Loading and Stability
The MAX473/MAX474/MAX475 op amps are unity-gain stable. Any op amp’s stability depends on the configu­ration, closed-loop gain, and load capacitance. The unity-gain, noninverting buffer is the most sensitive gain configuration, and driving capacitive loads decreases stability.
Single/Dual/Quad, 10MHz Single-Supply Op Amps
R2
2k
1
NULL
MAX473
4
V
EE
Figure 1. Offset Null Circuit
The MAX473/MAX474/MAX475 have excellent phase
MAX473/MAX474/MAX475
margin (the difference between 180° and the unity-gain
NULL
8
phase angle). It is typically 63° with a load of 10kin parallel with 20pF. Generally, higher phase margins indicate greater stability.
Capacitive loads form an RC network with the op amp’s output resistance, causing additional phase shift that reduces the phase margin. Figure 3 shows the MAX473/MAX474/MAX475 output response when dri­ving a 390pF load in parallel with 10k.
When driving large capacitive loads, add an output iso­lation resistor, as shown in Figure 4. This resistor improves the phase margin by isolating the load capacitance from the amplifier output. Figure 5 shows the MAX473/MAX474/MAX475 driving a capacitive load of 1000pF using the circuit of Figure 4.
Feedback Resistors
The feedback resistors appear as a resistance network to the op amp’s feedback input (Figure 2). This resis­tance, combined with the op amp’s input and stray capacitance (total input capacitance), forms a pole that adds unwanted phase shift when either the total input capacitance or feedback resistance is too large. For example, using the noninverting configuration with a gain of 10, if the total capacitance at the negative input is 10pF and the effective resistance (R1 ||R2) is 9k, this RC network introduces a pole at fo= 1.8MHz. At
IN
V
IN
R3 = R2R1
R1
V
OUT
R3
R3 = R2R1
R3
V
OUT
R2
R1
, the pole introduces addi-
o
V
Figure 2a. Reducing Offset Error Due to Bias Current: Inverting Configuration
Figure 2b. Reducing Offset Error Due to Bias Current: Noninverting Configuration
input frequencies above f tional phase shift, which reduces the overall bandwidth and adversely affects stability. Choose feedback resis­tors small enough so they do not adversely affect the op amp’s operation at the frequencies of interest.
Overdriving the Outputs
The output voltage swing for specified operation is from (VEE+ 0.3V) to (VCC- 0.5V) (
see Electrical Characteristics
Exercising the outputs beyond these limits drives the out­put transistors toward saturation, resulting in bandwidth degradation, response-time increase, and gain decrease (which affects linearity). Operation in this region causes a slight distortion in the output waveform, but does not adversely affect the op amp.
).
10 ______________________________________________________________________________________
Driving 390pF in parallel with 10k,
= 5V, buffer configuration
V
CC
Single/Dual/Quad, 10MHz
Single-Supply Op Amps
MAX473/MAX474/MAX475
Figure 3. MAX474 Driving 390pF
MAX473/MAX474/
MAX475
RL
10
V
IN
Figure 4. Capacitive-Load Driving Circuit
V
OUT
C
L
Full-Power Bandwidth
The MAX473/MAX474/MAX475’s fast 15V/µs slew rate maximizes full-power bandwidth (FPBW). The FPBW is given by:
FPBW (Hz) = —————————————
π [V
SR
peak-to-peak(max)]
OUT
where the slew rate (SR) is 15V/µs min. Figure 6 shows the full-power bandwidth as a function of the peak-to­peak AC output voltage.
Figure 5. The MAX473 easily drives 1000pF using the Capacitive-Load Driving Circuit (Figure 4).
100
SMALL-SIGNAL 
10
1
FULL-POWER BANDWIDTH (MHz)
0.1
Figure 6. Full-Power Bandwidth vs. Peak-to-Peak AC Voltage
FULL-POWER
BANDWIDTH
01 342
OUTPUT VOLTAGE SWING (Vp-p)
GAIN BANDWIDTH
MAX473-FIG6
Layout
A good layout improves performance by decreasing the amount of stray capacitance at the amplifier’s inputs and output. Since stray capacitance might be unavoidable, minimize trace lengths and resistor leads, and place external components as close to the pins as possible.
______________________________________________________________________________________ 11
Single/Dual/Quad, 10MHz Single-Supply Op Amps
_Ordering Information (continued)
PART
MAX474CPA
MAX474CSA MAX474CUA 0°C to +70°C 8 µMAX MAX474C/D 0°C to +70°C MAX474EPA -40°C to +85°C 8 Plastic DIP MAX474ESA -40°C to +85°C 8 SO MAX474MJA -55°C to +125°C 8 CERDIP MAX475CPD MAX475CSD 0°C to +70°C 14 SO MAX475EPD -40°C to +85°C 14 Plastic DIP MAX475ESD -40°C to +85°C 14 SO MAX475MJD -55°C to +125°C 14 CERDIP
* Dice are specified at TA= +25°C, DC parameters only.
TEMP. RANGE PIN-PACKAGE
0°C to +70°C 0°C to +70°C
8 Plastic DIP 8 SO
Dice*
0°C to +70°C 14 Plastic DIP
____Pin Configurations (continued)
MAX473/MAX474/MAX475
TOP VIEW
OUTA
INA­INA+
V INB+ INB-
OUTB
1 2
A
3
CC
4
MAX475
5
B
6 7
OUTD
14
IND-
13
D
IND+
12
V
11
EE
INC+
10
C
INC-
9
OUTC
8
_________________Chip Topographies
MAX473
NULL
IN-
IN+
V
EE
0.052"
(1.321mm)
TRANSISTOR COUNT: 185 SUBSTRATE CONNECTED TO V
MAX474
V
CC
OUTA
INA-
INA+
EE
NULL
V
CC
0.065"
(1.651mm)
OUT
OUTB
INB-
0.084"
(2.134mm)
INB+
DIP/SO
VEE
0.058"
(1.473mm)
TRANSISTOR COUNT: 355 SUBSTRATE CONNECTED TO V
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12
__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
EE
Loading...