Maxim MAX4583EUE, MAX4583ESE, MAX4583EPE, MAX4583CSE, MAX4583CPE Datasheet

...
________________General Description
The MAX4581/MAX4582/MAX4583 are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4581), two 4-channel multiplexers (MAX4582), and three single-pole/double-throw (SPDT) switches (MAX4583).
These CMOS devices can operate continuously with ±2V to ±6V dual power supplies or a +2V to +12V sin­gle supply. Each switch can handle Rail-to-Rail®ana­log signals. The off-leakage current is only 1nA at +25°C or 5nA at +85°C.
All digital inputs have 0.8V to 2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5V or dual ±5V supplies.
________________________Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
Automotive
____________________________Features
Pin Compatible with Industry-Standard
74HC4051/74HC4052/74HC4053 and MAX4051/MAX4052/MAX4053
Offered in Automotive Temperature Range
(-40°C to +125°C)
Guaranteed On-Resistance:
80with ±5V Supplies 150with Single +5V Supply
Guaranteed On-Resistance Match Between
Channels
Guaranteed Low Off-Leakage Current:
1nA at +25°C
Guaranteed Low On-Leakage Current:
1nA at +25°C
+2V to +12V Single-Supply Operation
±2V to ±6V Dual-Supply Operation
TTL/CMOS-Logic CompatibleLow Distortion: < 0.02% (600)Low Crosstalk: < -96dB (50, MAX4582)High Off-Isolation: < -74dB (50)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
________________________________________________________________
Maxim Integrated Products
1
____________________________________Pin Configurations/Functional Diagrams
19-1328; Rev 1; 10/99
PART
MAX4581CPE
MAX4581CSE 0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
16 Plastic DIP 16 Narrow SO
_______________Ordering Information
Ordering Information continued at end of data sheet.
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
MAX4581CUE 0°C to +70°C 16 TSSOP
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
TOP VIEW
MAX4581
Y0
X4
1
X6
2
X
3
X7
4
X5
5
Enable
6
V
7
EE
GND
LOGIC
8
DIP/SO/QSOP/TSSOP
V
16
CC
X2
15
X1
14
X0
13
X3
12
11
A
10
B
9
C
1
Y2
2
Y
3
Y3
4
Y1
5
Enable
6
V
7
EE
GND
8
DIP/SO/QSOP/TSSOP
MAX4582
LOGIC
Enable
V
GND
Y1
Y0
Z1
Z
Z0
EE
V
16
CC
X2
15
X1
14
X
13
X0
12
11
X3
10
A
9
B
MAX4583
1
2
3
4
5
6
7
8
V
16
Y
15
X
14
X1
13
X0
12
11
A
10
B
9
C
DIP/SO/QSOP/TSSOP
CC
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC= 4.5V to 5.5V, VEE= -4.5V to -5.5V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Voltages Referenced to V
EE
VCC.........................................................................-0.3V to 13V
Voltage into Any Terminal (Note 1) ...(V
EE
- 0.3V) to (VCC+ 0.3V)
Continuous Current into Any Terminal..............................±20mA
Peak Current, X_, Y_, Z_
(pulsed at 1ms, 10% duty cycle) ...................................±40mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation (T
A
= +70°C)
Plastic DIP (derate 10.53mW/°C above +70°C)............842mW
Narrow SO (derate 8.70mW/°C above +70°C)..............696mW
QSOP (derate 8.3mW/°C above +70°C) .......................667mW
TSSOP (derate 6.7mW/°C above +70°C)......................457mW
Operating Temperature Ranges
MAX458_C_ .........................................................0°C to +70°C
MAX458_E_ ......................................................-40°C to +85°C
MAX458_A_.....................................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
+25°C
VC, E, AVX, VY, V
Z
Analog-Signal Range
C, E, A
R
ON
Switch On-Resistance
VCC= 4.5V; VEE= -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ= 3.5V
VCC= 4.5V; VEE= -4.5V; IX, IY, IZ= 1mA; VX, VY, VZ= 3.5V
+25°C
C, E, A
R
ON
Switch On-Resistance Match Between Channels (Note 3)
VCC= 5.5V; VEE= -5.5V; VX_, VY_, VZ_= ±4.5V; VX, VY, VZ= 4.5V
MAX4581
nA
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
X, Y, Z Off Leakage (Note 5)
MAX4582 MAX4583
+25°C
VCC= 5V; VEE= -5V; IX, IY, IZ= 1mA; VX, VY, VZ= 3V, 0V, -3V
+25°C
R
FLAT(ON)
Switch On-Resistance Flatness (Note 4)
+25°C
Note 1: Voltages exceeding VCCor VEEon any signal terminal are clamped by internal diodes. Limit forward-diode current to maxi-
mum current rating.
14
6
50 80
V
EE
V
CC
-1 1
100
410
-2 2
C, E, A -10 10
-1 1
VCC= 5.5V; V
EE
= -5.5V;
VX_, VY_, VZ_= ±4.5V; VX, VY, VZ= 4.5V
nA
+25°C
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
X_, Y_, Z_ Off Leakage (Note 5)
CONDITIONS
MIN TYP MAX
(Note 2)
UNITSTEMPSYMBOLPARAMETER
C, E, A -100 100
C, E, A -50 50
C, E, A
-1 1
-2 2
C, E, A -100 100
-50 50
VCC= 5.5V; VEE= -5.5V; VX, VY, VZ= ±4.5V
MAX4581
nA
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
X, Y, Z On Leakage (Note 5)
MAX4582 MAX4583
+25°C
+25°C
C, E, A 12
±
±
C, E, A 1.5 2.4 V
VAH, VBH,
V
CH
Logic Input Logic Threshold High
V
VAL, VBL,
V
CL
C, E, A 0.8 1.5
Logic Input Logic Threshold Low
ANALOG SWITCH
DIGITAL I/O
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(VCC= 4.5V to 5.5V, VEE= -4.5V to -5.5V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: R
ON
= R
ON(MAX)
- R
ON(MIN)
.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., V
X_
, VY_, VZ_= 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA= +25°C. Note 6: Guaranteed by design, not production tested.
C, E, A 200
TA= +25°C
Address Transition Time t
TRANS
ns
VX_, VY_, VZ_= ±3V; RL= 300; CL= 35pF; Figure 2
90 200
C, E, A 150
TA= +25°C
Inhibit Turn-Off Time t
(OFF)
ns
VX_, VY_, VZ_= 3V; RL= 300; CL= 35pF; Figure 3
40 100
C, E, A -10 10
C, E, A
TA= +25°C
200
TA= +25°C
Inhibit Turn-On Time t
(ON)
ns
VX_, VY_, VZ_= 3V; RL= 300; CL= 35pF; Figure 3
100 200
Power-Supply Current ICC, I
EE
µA
VCC= 5.5V, VEE= -5.5V, VA, VB, VC, V
Enable
= V+ or 0
-1 1
PARAMETER SYMBOL TEMP UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
TA= +25°CBreak-Before-Make Time
t
BBM
ns
VX_, VY_, VZ_= 3V; RL= 300; CL= 35pF; Figure 4
420
Charge Injection (Note 6)
Q pC
TA= +25°C
C = 1nF, RS = 0, VS= 0V 0.5 5
pF
Output Off Capacitance
C
X(OFF)
,
C
Y(OFF)
,
C
Z(OFF)
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz;
Figure 7
18
pF
Output On Capacitance
C
X(ON)
,
C
Y(ON)
,
C
Z(ON)
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz;
Figure 7
25
MAX4581
MAX4581
dB
Off Isolation
V
ISO
TA= +25°C
-73
10MAX4582
6MAX4583
17
12.5MAX4583
MAX4582
pF
Channel-to-Channel Crosstalk
V
CT
TA= +25°C
RL= 50, f = 1MHz, Figure 6
-96MAX4582
TA= +25°C
MAX4583
RL= 50, f = 1MHz, Figure 6
%
Total Harmonic Distortion
THD
TA= +25°C
RL= 600, 5Vp-p, f = 20Hz to 20kHz 0.02
-73
VPower-Supply Range VCC, V
EE
C, E, A ±2 ±6
C, E, AInput Current High
IAH, IBH,
I
CH
µAVA, VB, VC= 2.4V -1 1
C, E, AInput Current Low
IAL, IBL,
I
CL
µAVA, VB, VC= 0.8V -1 1
Input Off Capacitance
C
X_(OFF)
,
C
Y_(OFF)
,
C
Z_(OFF)
pF
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz; Figure 7 4
POWER SUPPLY
SWITCH DYNAMIC CHARACTERISTICS
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(VCC= 4.5V to 5.5V, VEE= 0V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
CONDITIONS
MIN TYP MAX
(Note 2)
UNITS
C, E, A 200
90 150
VCC= 4.5V; IX, IY, IZ= 1mA; VX, VY, VZ= 3.5V
C, E, A
TEMPSYMBOL
TA= +25°C
R
ON
V
EE
V
CC
PARAMETER
Switch On-Resistance
-1 1
V
VCC= 5.5V; VX_, VY_, VZ_= 1V, 4.5V; VX, VY, VZ= 4.5V, 1V
nA
TA= +25°C
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
VX_, VY_, VZ_,
VX, VY, V
Z
Analog-Signal Range
X_, Y_, Z_ Off Leakage (Note 5)
-2 2
28
VCC= 5.5V; VX_, VY_, VZ_= 1V, 4.5V; VX, VY, VZ= 4.5V, 1V
MAX4581
nA
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
X, Y, Z Off Leakage (Note 5)
VCC= 4.5V; IX, IY, IZ= 1mA; V
X
, VY, VZ= 3.5V
TA= +25°C
TA= +25°C
R
ON
Switch On-Resistance Match Between Channels (Note 3)
10C, E, A
-100 100C, E, A
C, E, A -10 10
-1 1
TA= +25°C
-50 50C, E, A
-1 1
TA= +25°C
-50 50C, E, A
-2 2
VCC= 5.5V; VX, VY, VZ= 4.5V, 1V
MAX4581
nA
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
X, Y, Z On Leakage (Note 5)
TA= +25°C
-100 100C, E, A
-1 1VAL, VBL, VCL, V
EnableL
= 0.8V µA
IAL, IBL, ICL,
I
EnableL
Input Current Low C, E, A
0.8 1.5 V
VAL, VBL, VCL,
V
EnableL
Logic Input Logic Threshold Low
C, E, A
1.5 2.4 V
VAH, VBH, VCH,
V
EnableH
Logic Input Logic Threshold High
C, E, A
-1 1VAL, VBL, VCL, V
EnableL
= 2.4V µA
IAH, IBH, ICH,
I
EnableH
Input Current High C, E, A
100 200
VX_, VY_, VZ_= 3V, RL= 300, CL= 35pF, Figure 3
nst
(ON)
Enable Turn-On Time
TA= +25°C
250C, E, A
10 30
VX_, VY_, VZ_= 3V, RL= 300, CL= 35pF, Figure 4
nst
BBM
Break-Before-Make Time
TA= +25°C
0.8 5
C = 1nF, RS= 0, VS= 2.5V
pCQ
Charge Injection (Note 6)
TA= +25°C
40 100
VX_, VY_, VZ_= 3V, RL= 300, CL= 35pF, Figure 3
nst
(OFF)
Enable Turn-Off Time
TA= +25°C
150C, E, A
80 200
VX_, VY_, V
Z_
= 3V/0V, RL= 300,
C
L
= 35pF, Figure 2
nst
TRANS
Address Transition Time
TA= +25°C
250C, E, A
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: R
ON
= R
ON(MAX)
- R
ON(MIN)
.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., V
X_
, VY_, VZ_= 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T
A
= +25°C.
Note 6: Guaranteed by design, not production tested.
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS
MAX4582 MAX4583
MAX4582 MAX4583
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS—Single +3V Supply
(VCC= 2.7V to 3.6V, VEE= 0V, V_H= 2.0V, V_L= 0.5V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
SWITCH DYNAMIC CHARACTERISTICS
C, E, A 400
TA= +25°C
Address Transition Time
t
TRANS
ns
VX_, VY_, VZ_= 1.5V/0V; RL= 300; C
L
= 35pF; Figure 2
130 300
C, E, A 300
TA= +25°C
Enable Turn-Off Time t
(OFF)
ns
VX_, VY_, VZ_= 1.5V; RL= 300; C
L
= 35pF; Figure 3
50 200
C, E, A
TA= +25°C
-10 10
Break-Before-Make Time
t
BBM
ns
C, E, A
VX_, VY_, VZ_= 1.5V; RL= 300; CL= 35pF
15 40
C, E, A
TA= +25°C
400
C, E, A
Logic Input Logic Threshold High
VAH, VBH, VCH,
V
EnableH
V1.0 2.0
C, E, AInput Current High
IAH, IBH, ICH,
I
EnableH
µAVA, VB, VC= V
Enable
= 2.0V
-100 100
-1 1
C, E, A
Logic Input Logic Threshold Low
VAL, VBL, VCL,
V
EnableL
V0.5 1.0
TA= +25°C
Enable Turn-On Time t
(ON)
ns
VX_, VY_, VZ_= 1.5V; RL= 300; C
L
= 35pF; Figure 3
170 300
C, E, A
C, E, AInput Current Low
TA= +25°C
IAL, IBL, ICL,
I
EnableL
X, Y, Z Off Leakage (Note 6)
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
nA
MAX4581
µA
VCC= 3.6V; VX_, VY_, VZ_= 1V, 3.0V; VX, VY, VZ= 3.0V, 1V
VA, VB, VC= V
Enable
= 0.5V
-100 100
TA= +25°C
-2 2
X, Y, Z On Leakage (Note 6)
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
nA
MAX4581
VCC= 3.6V; VX, VY, VZ= 3.0V, 1V
-2 2
C, E, A
C, E, A
X_, Y_, Z_ Off Leakage (Note 5)
Power-Supply Range VCC, V
EE
-50 50
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
TA= +25°C
nA
V
CC
= 3.6V; VX_, VY_, VZ_= 1V, 3V;
VX, VY, VZ= 3V, 1V
Power-Supply Current
V
ICC, I
EE
µA
-1 1
TA= +25°C
-50 50
TA= +25°C
-1 1
Switch On-Resistance
-1 1
-1 1
VCC= 3.6V, VA, VB, VC, V
Enable
= V+ or 0
-1 1
-10 10
PARAMETER
212
R
ON
TA= +25°C
SYMBOL TEMP
C, E, A
VCC= 2.7V; IX, IY, IZ= 0.1mA; VX, VY, VZ= 1.5V
190 450
C, E, A
550C, E, A
UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T
A
= +25°C.
Note 6: Guaranteed by design, not production tested.
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, V
Z
VV
EE
V
CC
C, E, A
Power-Supply Current ICC, I
EE
µA
-1 1
TA= +25°C
VCC= 3.6V; VA, VB, VC, V
Enable
= V+ or 0
-10 10C, E, A
POWER SUPPLY
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS
(Note 6)
POWER SUPPLY
MAX4582 MAX4583
MAX4582 MAX4583
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
6 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC= 5V, VEE= -5V, GND = 0V, TA= +25°C, unless otherwise noted.)
ON-RESISTANCE vs. VX, VY, V
Z
(DUAL SUPPLIES)
1000
V
= 1.2V,
CC
= -1.2V
V
EE
VCC = 2V,
= -2V
V
()
100
ON
R
EE
VCC = 5V,
V
= -5V
EE
10
-5 01234-4 -3 -2 -1 5 VX, VY, VZ (V)
VCC = 2.7V,
= -2.7V
V
EE
VCC = 3.3V,
= -3.3V
V
EE
MAX4581/2/3 toc01
(Ω) R
65
55
45
35
ON
25
15
5
-5 -1-2-4-3 012345
ON-RESISTANCE vs.
, VY, VZ AND TEMPERATURE
V
X
(SINGLE SUPPLY)
130
TA = +85°C
110
TA = +25°C
90
(Ω)
70
ON
R
50
TA = -40°C
30
10
0 2.01.50.5 1.0 2.5 3.0 3.5 4.0 4.5 5.0
VX, VY, VZ (V)
TA = +70°C
TA = 0°C
ON LEAKAGE vs.
TEMPERATURE
100,000
VCC = 5.5V
= -5.5V
V
10,000
ON LEAKAGE (pA)
EE
1,000
100
10
1
-50 12525-25 0 7550 100 TEMPERATURE (°C)
ON-RESISTANCE vs.
, VY, VZ AND TEMPERATURE
V
X
(DUAL SUPPLIES)
TA = +85°C
TA = +70°C
TA = -40°C
VX, VY, VZ (V)
MAX4581toc04
MAX4581/2/3-toc-6
TA = +25°C
TA = 0°C
ON-RESISTANCE vs. VX, VY, V
(SINGLE SUPPLY)
10,000
() R
ON
1000
100
10
VCC = 1.2V
VCC = 2V
VCC = 2.7V
VCC = 3.3V
010234567891
MAX4581toc02
OFF LEAKAGE vs.
TEMPERATURE
100
VCC = 5.5V V
= -5.5V
EE
10
1
OFF LEAKAGE (nA)
IX, IY, I
0.1
0.01
Z
-50 12525-25 0 7550 100 TEMPERATURE (°C)
IX_, IY_, I
CHARGE INJECTION vs. VX, VY, V
1.5
1.0
0.5
0
-0.5
Q (pC)
-1.0 VCC = 5V
-1.5
V
= -5V
EE
-2.0
-2.5
-5 -3 -2 -1 0-4 12345
VCC = 5V V
VX, VY, VZ (V)
= 0V
EE
VCC = 5V
VX, VY, VZ (V)
Z_
Z
MAX4581 toc03
VCC = 7.5V
VCC = 10V
MAX4581/2/3-05
Z
MAX4581-07
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________
7
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= -5V, GND = 0V, TA= +25°C, unless otherwise noted.)
SUPPLY CURRENT vs.
TEMPERATURE
100
VCC = 5V V
= -5V
EE
, VB,VC,V
V
A
10
(nA)
EE
1
, I
CC
I
0.1
0.01
-50 12525-25 0 7550 100
TOTAL HARMONIC DISTORTION
100
600 IN AND OUT
10
1
THD (%)
0.1
0.01 10 1k 10k100 100k
= 0V, 5V
Enable
I
CC
TEMPERATURE (°C)
vs. FREQUENCY
FREQUENCY (Hz)
MAX4581/2/3-08
I
EE
MAX4581-10
0
FREQUENCY RESPONSE
-10
ON LOSS
-20
-30
-40
-50
-60
LOSS (dB)
-70
-80
-90
-100
-110
-120
0.1 10 1001
V
CC
1
-1
10
-2
10
-3
10
-4
10
-5
10
(A)
CC
-6
I
10
-7
10
-8
10
-9
10
-10
10
-11
10
02314657891110 12
OFF LOSS
FREQUENCY (MHz)
CURRENT vs. LOGIC LEVEL
(V
, VB, VC, V
A
V
V
= 5V
CC
VA, VB, VC, V
ON PHASE
Enable
= 12V
CC
Enable
MAX4581-09
120 100
80 60
PHASE (DEGREES)
40 20 0
-20
-40
-60
-80
-110
-120
)
MAX4581-11
LOGIC-LEVEL THRESHOLD vs. V
3.0
2.5
(V)
2.0
Enable
, V
1.5
C
, V
B
, V
A
1.0
V
0.5
0
0 2341576 8 9 101112
VCC (V)
CC
MAX4581toc12
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
8 _______________________________________________________________________________________
__________Applications Information
Power-Supply Considerations
Overview
The MAX4581/MAX4582/MAX4583 construction is typi­cal of most CMOS analog switches. They have three supply pins: VCC, VEE, and GND. VCCand VEEare used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD­protection diodes are internally connected between each analog-signal pin and both VCCand VEE. If any analog signal exceeds VCCor VEE, one of these diodes will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only cur­rent drawn from VCCor VEE.
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V
CC
or VEEand the analog signal. This means their
leakages will vary as the signal varies. The
difference
in the two diode leakages to the VCCand VEEpins consti­tutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage cur­rents of either the same or opposite polarity.
There is no connection between the analog-signal paths and GND.
Pin Description
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well
in both directions.
PIN
16 V
CC
16 16 Positive Analog and Digital Supply Voltage Input
MAX4583MAX4582
MAX4581
15 Y
Y0, Y1, Y2, Y3
9 C
4 Z
3 Z1
5 Z0
NAME
X0–X7
X — X0, X1, X2, X3 14 X
2 Y0
1 Y1
12 X0
13 X1
10 B
11 A
8 GND
7 V
EE
6 Enable
3 Analog Switch “Y” Output
1, 5, 2, 4 Analog Switch “Y” Inputs 0–3
9 Digital Address “C” Input
Analog Switch “Z” Output
Analog Switch “Z” Normally Open Input
Analog Switch “Z” Normally Closed Input
FUNCTION
13, 14, 15,
12, 1, 5, 2, 4
Analog Switch Inputs 0–7
3 Analog Switch Output — 12, 14, 15, 11 Analog Switch “X” Inputs 0–3 — 13 Analog Switch “X” Output
Analog Switch “Y” Normally Closed Input
Analog Switch “Y” Normally Open Input
Analog Switch “X” Normally Closed Input
Analog Switch “X” Normally Open Input
10 9 Digital Address “B” Input
11 10 Digital Address “A” Input
8 8
Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to VCCand VEE.)
7 7
Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation.
6 6
Digital Enable Input. Normally connect to GND. Can be driven to logic high to set all switches off.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 9
XH
Table 1. Truth Table/Switch Programming
X X All switches open All switches open All switches open
L L X–X0
X–X0,
Y–Y0
X–X0, Y–Y0,
Z–Z0
LL
L H X–X1
X–X1,
Y–Y1
X–X1, Y–Y0,
Z–Z0
LL
H H X–X3
X–X3,
Y–Y3
X–X1, Y–Y1,
Z–Z0
H L X–X2
X–X2,
Y–Y2
X–X0, Y–Y1,
Z–Z0
LL
LL
L H X–X5
X–X1,
Y–Y1
X–X1, Y–Y0,
Z–Z1
L L X–X4
X–X0,
Y–Y0
X–X0, Y–Y0,
Z–Z1
HL
HL
H H X–X7
X–X3,
Y–Y3
X–X1, Y–Y1,
Z–Z1
H L X–X6
X–X2,
Y–Y2
X–X0, Y–Y1,
Z–Z1
HL
HL
X = Don’t care
*
C not present on MAX4582.
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally
well in either direction.
ON SWITCHESSELECT INPUTS
B A MAX4581 MAX4582 MAX4583C*
ENABLE
INPUT
VCCand GND power the internal logic and logic-level translators, and set the input logic limits. The logic-level translators convert the logic levels into switched V
CC
and VEEsignals to drive the gates of the analog sig­nals. This drive signal is the only connection between the logic supplies and signals and the analog supplies. VCCand VEEhave ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible when VCCis +5V. As VCCrises, the threshold increases slightly, so when VCCreaches +12V the threshold is about 3.1V (above the TTL-guaranteed high-level mini­mum of 2.8V, but still compatible with CMOS outputs).
Bipolar Supplies
These devices operate with bipolar supplies between ±2V and ±5V. The VCCand VEEsupplies need not be symmetrical, but their sum cannot exceed the +13V absolute maximum rating
Single Supply
These devices operate from a single supply between +2V and +12V when VEEis connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually “work” with a single supply near or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high.
MAX4581/MAX4582/MAX4583
Overvoltage Protection
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi­mum ratings because stresses beyond the listed rat­ings can cause permanent damage to the devices. Always sequence VCCon first, then VEE, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog-signal range to one diode drop below VCCand one diode drop above VEE, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between VCCand V
EE
should not exceed 13V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground.
High-Frequency Performance
In 50systems, signal response is reasonably flat up to 50MHz (see
Typical Operating Characteristics
). Above 20MHz, the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The off­state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isola­tion is about -50dB in 50systems, becoming worse (approximately 20dB per decade) as frequency in­creases. Higher circuit impedances also degrade off isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.
Pin Nomenclature
The MAX4581/MAX4582/MAX4583 are pin-compatible with the industry-standard 74HC4051/74HC4052/ 74HC4053 and the MAX4051/MAX4052/MAX4053. They function identically and have identical logic dia­grams, although these parts differ electrically.
The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications pub­lished by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations as found all other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim’s standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4581/MAX4582/MAX4583.
Low-Voltage, CMOS Analog Multiplexers/Switches
10 ______________________________________________________________________________________
Figure 1. Overvoltage Protection Using External Blocking Diodes
V
CC
D1 EXTERNAL BLOCKING DIODE
V
CC
*
X, Y, Z X_, Y_, Z_
*
V
EE
V
EE
*
*
D2 EXTERNAL BLOCKING DIODE
*INTERNAL PROTECTION DIODES
MAX4581 MAX4582 MAX4583
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 11
Figure 2. Address Transition Times
______________________________________________Test Circuits/Timing Diagrams
V
VA, VB, VC
50
V
, V
A
B
50
A
B
C
Enable
A
B
Enable
CC
V
CC
MAX4581
GND
V
CC
V
CC
X1, X2, Y1, Y2
MAX4582
GND
V
V
V
V
X1–X6
EE
EE
X
X3, Y3
EE
EE
0
X, Y
VA, VB, V
X0
X7
X
V
CC
V
EE
V
OUT
35pF
300
VA, V
, Y
0
300
V
CC
V
EE
V
OUT
35pF
V
CC
C
50%
0V
V
X0
90%
0V
V
OUT
V
X7
t
TRANS
V
CC
B
50%
90%
t
TRANS
0V
V
,
X0
V
Y0
90%
0V
V
OUT
,
V
X3
V
Y3
t
TRANS
90%
t
TRANS
V
CC
V
V
, VB, V
A
C
A, B, C
CC
50
MAX4583
Enable
GND
V
= 0V FOR SINGLE-SUPPLY OPERATION.
EE
TEST EACH SECTION INDIVIDUALLY.
X1, Y1, Z1
X2, Y2, Z2
X, Y, Z
V
EE
V
EE
300
V
OUT
CC
C
50%
0V
V
,
X0
,
V
Y0
V
Z0
90%
0V
,
V
X1
,
V
Y1
V
Z1
t
TRANS
90%
t
TRANS
VA, VB, V
V
EE
V
CC
V
OUT
35pF
V
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
12 ______________________________________________________________________________________
Figure 3. Inhibit Switching Times
_________________________________Test Circuits/Timing Diagrams (continued)
V
V
Enable
V
Enable
50
50
A
B
C
Enable
A
B
Enable
CC
V
CC
MAX4581
GND
V
CC
V
CC
X1–X3, Y1–Y3
MAX4582
GND
V
V
V
V
X1–X7
EE
EE
X0, Y0
EE
EE
X, Y
X0
X
V
CC
V
OUT
35pF
300
V
CC
V
OUT
300
35pF
V
V
Enable
Enable
V
CC
50%
0V
V
X0
90%
V
OUT
90%
0V
t
ON
V
CC
50%
t
OFF
0V
,
V
X0
V
Y0
V
OUT
90%
90%
0V
t
ON
t
OFF
V
V
Enable
50
A B C
Enable
CC
V
CC
MAX4583
GND
X1, Y1, Z1
X0, Y0, Z0
X, Y, Z
V
EE
V
EE
300
V
CC
V
EE
V
OUT
35pF
V
Enable
V
OUT
V
VX0, V
V
VX1, V
V
CC
50%
0V
,
Y0
Z0
90%
90%
,
Y1
Z1
t
ON
t
OFF
VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 13
Figure 4. Break-Before-Make Interval
Figure 5. Charge Injection
_________________________________Test Circuits/Timing Diagrams (continued)
V
CC
VA, VB, V
50
C
A
B
C
V
CC
MAX4581
Enable
GND
V
V
V
CC
VA, VB, V
50
C
A, B, C
V
CC
X0, X1, Y0,
Y1, Z0, Z1
MAX4583
Enable
GND
V
V
VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY.
X0–X7
EE
EE
X, Y, Z
EE
EE
X
300
300
VA, V
V
CC
V
OUT
35pF
V
CC
35pF
VA, VB, V
V
OUT
B
50
V+
C
0V
, VY, V
V
X
Z
V
OUT
0V
A
B
Enable
V
V
MAX4582
GND
50%
t
BBM
CC
CC
X0–X3,
Y0–Y3
V
EE
V
EE
X, Y
80%
300
t
R
t
F
< 20ns < 20ns
V
CC
V
OUT
35pF
V
CC
V
CC
CHANNEL
SELECT
V
Enable
V
= 0V FOR SINGLE-SUPPLY OPERATION.
EE
TEST EACH SECTION INDIVIDUALLY.
A
B
C
Enable
50
X_, Y_, Z_
MAX4581 MAX4582 MAX4583
GND
V
V
X, Y, Z
EE
EE
C
= 1000pF
L
V
V
Enable
V
OUT
CC
0V
V
OUT
V
IS THE MEASURED VOLTAGE DUE TO CHARGE
OUT
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
Q = V
X C
OUT
L
V
OUT
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
14 ______________________________________________________________________________________
Figure 6. Off Isolation, On Loss, and Crosstalk
Figure 7. Capacitance
_________________________________Test Circuits/Timing Diagrams (continued)
V
10nF
CC
NETWORK
V
IN
CHANNEL
SELECT
A
B
C
V
CC
MAX4581
X_, Y_, Z_
MAX4582
V
MAX4583
Enable
GND
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
10nF
V
V
X, Y, Z
EE
EE
OUT
50
MEAS.
ANALYZER
50
50 50
REF.
OFF ISOLATION = 20log
ON LOSS = 20log
CROSSTALK = 20log
V
OUT
V
IN
V
OUT
V
IN
V
OUT
V
IN
V
CC
V
CC
CHANNEL
SELECT
A
B
C
Enable
X_, Y_, Z_
MAX4581 MAX4582 MAX4583
GND
V
V
X, Y, Z
EE
EE
1MHz
CAPACITANCE
ANALYZER
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 15
16 Narrow SO-40°C to +85°CMAX4582ESE
16 Plastic DIP
Dice*0°C to +70°C
-40°C to +85°CMAX4582EPE
MAX4582C/D
16 QSOP
16 Narrow SO
16 Plastic DIP0°C to +70°C
0°C to +70°C
0°C to +70°CMAX4582CEE
MAX4582CSE
MAX4582CPE
16 QSOP
Dice*0°C to +70°C
-40°C to +85°CMAX4581EEE
MAX4581C/D
16 QSOP
PIN-PACKAGETEMP. RANGE
0°C to +70°CMAX4581CEE
PART
*
Contact factory for availability.
__________________________________________________________Chip Topographies
TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+.
MAX4581
_Ordering Information (continued)
TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+.
MAX4582
N.C. = NO CONNECTION
16 QSOP-40°C to +85°CMAX4583EEE
16 Narrow SO-40°C to +85°CMAX4583ESE
Dice*
16 QSOP0°C to +70°C
0°C to +70°CMAX4583C/D
MAX4583CEE
16 Narrow SO
16 Plastic DIP0°C to +70°C
0°C to +70°CMAX4583CSE
MAX4583CPE
16 Plastic DIP-40°C to +85°CMAX4583EPE
16 TSSOP-40°C to +125°CMAX4582AUE
16 Narrow SO-40°C to +125°CMAX4582ASE
16 QSOP
16 TSSOP-40°C to +85°C
-40°C to +85°CMAX4582EEE
MAX4582EUE
PIN-PACKAGETEMP. RANGEPART
16 Narrow SO-40°C to +85°CMAX4581ESE
16 Plastic DIP-40°C to +85°CMAX4581EPE
16 TSSOP-40°C to +85°CMAX4581EUE
16 Narrow SO-40°C to +125°CMAX4581ASE 16 TSSOP-40°C to +125°CMAX4581AUE
16 TSSOP0°C to +70°CMAX4582CUE
16 TSSOP-40°C to +125°CMAX4583AUE
16 Narrow SO-40°C to +125°CMAX4583ASE
16 TSSOP-40°C to +85°CMAX4583EUE
16 TSSOP0°C to +70°CMAX4583CUE
X4X6 X2
V
CC
Y0Y2 X2
V
CC
X
X7
X5
Enable
VEEGND C B
0.053"
(1.35mm)
X1
N.C.
X0
X3
0.069"
(1.75mm)
A
Y
Y3
Y1
Enable
VEEGND B N.C.
0.053"
(1.35mm)
X1
X
X0
X3
0.069"
(1.75mm)
A
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
____Chip Topographies (continued)
TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+.
MAX4583
N.C. = NO CONNECTION
________________________________________________________Package Information
Y1Y0 Y
V
CC
X
Z1
Z
Z0
Enable
VEEGND C B
0.053"
(1.35mm)
N.C.
X1
X0
0.069"
(1.75mm)
A
TSSOP.EPS
Loading...