MAXIM MAX4581, MAX4582, MAX4583 Technical data

For pricing delivery, and ordering information please contact Maxim Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
________________General Description
The MAX4581/MAX4582/MAX4583 are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4581), two 4-channel multiplexers (MAX4582), and three single-pole/double-throw (SPDT) switches (MAX4583).
These CMOS devices can operate continuously with ±2V to ±6V dual power supplies or a +2V to +12V sin­gle supply. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at +25°C or 5nA at +85°C.
All digital inputs have 0.8V to 2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5V or dual ±5V supplies.
________________________Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
Automotive
____________________________Features
o MAX4582 Available in AEC-Q100 Qualified
Version
o Offered in Automotive Temperature Range
(-40°C to +125°C)
o Guaranteed On-Resistance
80Ω with ±5V Supplies 150Ωwith Single +5V Supply
o Guaranteed On-Resistance Match Between
Channels
o Guaranteed Low Off-Leakage Current
1nA at +25°C
o Guaranteed Low On-Leakage Current
1nA at +25°C
o +2V to +12V Single-Supply Operation
±2V to ±6V Dual-Supply Operation
o TTL/CMOS-Logic Compatible o Low Distortion: < 0.02% (600Ω) o Low Crosstalk: < -96dB (50Ω, MAX4582) o High Off-Isolation: < -74dB (50Ω)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
________________________________________________________________
Maxim Integrated Products
1
____________________________________Pin Configurations/Functional Diagrams
19-1328; Rev 6; 3/12
Ordering Information continued at end of data sheet.
Ordering Information
Pin Configurations continued at end of data sheet.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
PART TEMP RANGE
PIN­PACKAGE
MAX4581CPE+ 0°C to +70°C 16 PDIP
MAX4581CSE+ 0°C to +70°C 16 Narrow SO
MAX4581CUE+ 0°C to +70°C 16 TSSOP
TOP
MARK
TOP VIEW
MAX4581
++
X4
1
X6
2
X
3
X7
4
X5
5
ENABLE
6
V
GND
7
EE
8
LOGIC
PDIP/SO/QSOP/TSSOP
ENABLE
V
GND
Y0
Y2
Y
Y3
Y1
EE
V
16
CC
X2
15
X1
14
X0
13
X3
12
11
A
10
B
9
C
MAX4582
1
2
3
4
5
6
7
8
LOGIC
16
15
14
13
12
11
10
9
PDIP/SO/QSOP/TSSOP
ENABLE
V
GND
Y1
Y0
Z1
Z
Z0
EE
V
CC
X2
X1
X
X0
X3
A
B
PDIP/SO/QSOP/TSSOP
MAX4583
+
1
2
3
4
5
6
7
8
V
16
CC
Y
15
X
14
X1
13
X0
12
11
A
10
B
9
C
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC= 4.5V to 5.5V, VEE= -4.5V to -5.5V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Voltages Referenced to V
EE
VCC.........................................................................-0.3V to 13V
Voltage into Any Terminal (Note 1) ...(V
EE
- 0.3V) to (VCC+ 0.3V)
Continuous Current into Any Terminal..............................±20mA
Peak Current, X_, Y_, Z_
(pulsed at 1ms, 10% duty cycle) ...................................±40mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation (T
A
= +70°C)
16-Pin PDIP (derate 10.53mW/°C above +70°C).............842mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) .....696mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)...............667mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .............755mW
16-Pin TQFN (derate 14.7mW/°C above +70°C) ...........1177mW
Operating Temperature Ranges
MAX458_C_ .........................................................0°C to +70°C
MAX458_E_ ......................................................-40°C to +85°C
MAX458_A_.....................................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
+25°C
VC, E, AVX, VY, V
Z
Analog-Signal Range
C, E, A
R
ON
Switch On-Resistance
VCC= 4.5V; VEE= -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ= 3.5V
VCC= 4.5V; VEE= -4.5V; IX, IY, IZ= 1mA; VX, VY, VZ= 3.5V
+25°C
C, E, A
R
ON
Switch On-Resistance Match Between Channels (Note 3)
VCC= 5.5V; VEE= -5.5V; V
X_
, VY_, VZ_= ±4.5V;
VX, VY, VZ= 4.5V
MAX4581
nA
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
X, Y, Z Off-Leakage (Note 5)
MAX4582 MAX4583
+25°C
VCC= 5V; VEE= -5V; IX, IY, IZ= 1mA; VX, VY, VZ= 3V, 0V, -3V
+25°C
R
FLAT(ON)
Switch On-Resistance Flatness (Note 4)
+25°C
Note 1: Voltages exceeding VCCor VEEon any signal terminal are clamped by internal diodes. Limit forward-diode current to maxi-
mum current rating.
14
6
50 80
V
EE
V
CC
-1 +1
100
410
-2 +2
C, E, A -10 +10
-1 +1
VCC= 5.5V; V
EE
= -5.5V;
VX_, VY_, VZ_= ±4.5V; VX, VY, VZ= 4.5V
nA
+25°C
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
X_, Y_, Z_ Off-Leakage (Note 5)
CONDITIONS
MIN TYP MAX
(Note 2)
UNITSTEMPSYMBOLPARAMETER
C, E, A -100 +100
C, E, A -50 +50
C, E, A
-1 +1
-2 +2
C, E, A -100 +100
-50 +50
VCC= 5.5V; VEE= -5.5V; VX, VY, VZ= ±4.5V
MAX4581
nA
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
X, Y, Z On-Leakage (Note 5)
MAX4582 MAX4583
+25°C
+25°C
C, E, A 12
±
±
C, E, A 1.5 2.4 V
VAH, VBH,
V
CH
Logic Input Logic Threshold High
V
VAL, VBL,
V
CL
C, E, A 0.8 1.5
Logic Input Logic Threshold Low
ANALOG SWITCH
DIGITAL I/O
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(VCC= 4.5V to 5.5V, VEE= -4.5V to -5.5V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
C, E, A 200
TA= +25°C
Address Transition Time t
TRANS
ns
VX_, VY_, VZ_= ±3V; RL= 300; CL= 35pF; Figure 2
90 200
C, E, A 150
TA= +25°C
Inhibit Turn-Off Time t
(OFF)
ns
VX_, VY_, VZ_= 3V; RL= 300Ω; CL= 35pF; Figure 3
40 100
C, E, A -10 +10
C, E, A
TA= +25°C
200
TA= +25°C
Inhibit Turn-On Time t
(ON)
ns
VX_, VY_, VZ_= 3V; RL= 300Ω; CL= 35pF; Figure 3
100 200
Power-Supply Current ICC, I
EE
µA
VCC= 5.5V, VEE= -5.5V, VA, VB, VC, V
Enable
= V+ or 0V
-1 +1
PARAMETER SYMBOL TEMP UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
TA= +25°CBreak-Before-Make Time
t
BBM
ns
VX_, VY_, VZ_= 3V; RL= 300; CL= 35pF; Figure 4
420
Charge Injection (Note 6)
Q pC
TA= +25°C
C = 1nF, RS = 0, VS= 0V 0.5 5
pF
Output Off-Capacitance
C
X(OFF)
,
C
Y(OFF)
,
C
Z(OFF)
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz;
Figure 7
18
pF
Output On-Capacitance
C
X(ON)
,
C
Y(ON)
,
C
Z(ON)
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz;
Figure 7
25
MAX4581
MAX4581
dB
Off-Isolation
V
ISO
TA= +25°C
-74
10MAX4582
6MAX4583
17
12.5MAX4583
MAX4582
pF
Channel-to-Channel Crosstalk
V
CT
TA= +25°C
RL= 50, f = 1MHz, Figure 6
-96
MAX4582
dB
TA= +25°C
-78MAX4581
TA= +25°C
MAX4583
RL= 50, f = 1MHz, Figure 6
%
Total Harmonic Distortion
THD
TA= +25°C
RL= 600, 5Vp-p, f = 20Hz to 20kHz
0.02
-73
VPower-Supply Range VCC, V
EE
C, E, A ±2 ±6
C, E, AInput-Current High
IAH, IBH,
I
CH
µAVA, VB, VC= 2.4V -1 +1
C, E, AInput-Current Low
IAL, IBL,
I
CL
µAVA, VB, VC= 0.8V -1 +1
Input Off-Capacitance
C
X_(OFF)
,
C
Y_(OFF)
,
C
Z_(OFF)
pF
TA= +25°C
VX_, VY_, V
Z_
= 0V; f = 1MHz; Figure 7 4
POWER SUPPLY
SWITCH DYNAMIC CHARACTERISTICS
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(VCC= 4.5V to 5.5V, VEE= 0V, V_H= 2.4V, V_L= 0.8V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
CONDITIONS
MIN TYP MAX
(Note 2)
UNITS
C, E, A 200
90 150
VCC= 4.5V; IX, IY, IZ= 1mA; V
X
, VY, VZ= 3.5V
C, E, A
TEMPSYMBOL
TA= +25°C
R
ON
V
EE
V
CC
PARAMETER
Switch On-Resistance
-1 +1
V
VCC= 5.5V; VX_, VY_, VZ_= 1V, 4.5V; VX, VY, VZ= 4.5V, 1V
nA
TA= +25°C
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
VX_, VY_, VZ_,
V
X
, VY, V
Z
Analog-Signal Range
X_, Y_, Z Off-Leakage (Note 5)
-2 +2
28
VCC= 5.5V; V
X_
, VY_, VZ_= 1V, 4.5V;
VX, VY, VZ= 4.5V, 1V
MAX4581
nA
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
X, Y, Z Off-Leakage (Note 5)
VCC= 4.5V; IX, IY, IZ= 1mA; V
X
, VY, VZ= 3.5V
TA= +25°C
TA= +25°C
R
ON
Switch On-Resistance Match Between Channels (Note 3)
10C, E, A
-100 +100C, E, A
C, E, A -10 +10
-1 +1
TA= +25°C
-50 +50C, E, A
-1 +1
TA= +25°C
-50 +50C, E, A
-2 +2
VCC= 5.5V; V
X
, VY, VZ= 4.5V, 1V
MAX4581
nA
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
X, Y, Z On-Leakage (Note 5)
TA= +25°C
-100 +100C, E, A
-1 +1VAL, VBL, VCL, V
EnableL
= 0.8V µA
IAL, IBL, ICL,
I
ENABLEL
Input-Current Low C, E, A
0.8 1.5 V
VAL, VBL, VCL,
V
ENABLEL
Logic Input Logic Threshold Low
C, E, A
1.5 2.4 V
VAH, VBH, VCH,
V
ENABLEH
Logic Input Logic Threshold High
C, E, A
-1 +1VAL, VBL, VCL, V
EnableL
= 2.4V µA
IAH, IBH, ICH,
I
ENABLEH
Input-Current High C, E, A
100 200
VX_, VY_, VZ_= 3V, RL= 300Ω, CL= 35pF, Figure 3
nst
(ON)
Enable Turn-On Time
TA= +25°C
250C, E, A
10 30
VX_, VY_, VZ_= 3V, RL= 300Ω, CL= 35pF, Figure 4
nst
BBM
Break-Before-Make Time
TA= +25°C
0.8 5C = 1nF, RS= 0, VS= 2.5V pCQ
Charge Injection (Note 6)
TA= +25°C
40 100
VX_, VY_, VZ_= 3V, RL= 300Ω, CL= 35pF, Figure 3
nst
(OFF)
Enable Turn-Off Time
TA= +25°C
150C, E, A
80 200
VX_, VY_, V
Z_
= 3V/0V, RL= 300Ω,
C
L
= 35pF, Figure 2
nst
TRANS
Address Transition Time
TA= +25°C
250C, E, A
Power-Supply Range VCC, V
EE
V212C, E, A
Power-Supply Current ICC, I
EE
µA
-1 +1
TA= +25°C
VCC= 3.6V; VA, VB, VC, V
Enable
= V+ or 0V
-10 +10C, E, A
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS
MAX4582 MAX4583
MAX4582 MAX4583
POWER SUPPLY
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS—Single +3V Supply
(VCC= 2.7V to 3.6V, VEE= 0V, V_H= 2.0V, V_L= 0.5V, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
SWITCH DYNAMIC CHARACTERISTICS
C, E, A 400
TA= +25°C
Address Transition Time
t
TRANS
ns
VX_, VY_, VZ_= 1.5V/0V; RL= 300; C
L
= 35pF; Figure 2
130 300
C, E, A 300
TA= +25°C
Enable Turn-Off Time t
(OFF)
ns
VX_, VY_, VZ_= 1.5V; RL= 300Ω; C
L
= 35pF; Figure 3
50 200
C, E, A
TA= +25°C
-10 +10
Break-Before-Make Time
t
BBM
ns
C, E, A
VX_, VY_, VZ_= 1.5V; RL= 300Ω; CL= 35pF 15 40
C, E, A
TA= +25°C
400
C, E, A
Logic Input Logic Threshold High
VAH, VBH, VCH,
V
ENABLEH
V1.0 2.0
C, E, AInput-Current High
IAH, IBH, ICH,
I
ENABLEH
µAVA, VB, VC= V
Enable
= 2.0V
-100 +100
-1 +1
C, E, A
Logic Input Logic Threshold Low
VAL, VBL, VCL,
V
ENABLEL
V0.5 1.0
TA= +25°C
Enable Turn-On Time t
(ON)
ns
VX_, VY_, VZ_= 1.5V; RL= 300Ω; C
L
= 35pF; Figure 3
170 300
C, E, A
C, E, AInput-Current Low
TA= +25°C
IAL, IBL, ICL,
I
ENABLEL
X, Y, Z Off-Leakage (Note 6)
I
X(OFF)
,
I
Y(OFF)
,
I
Z(OFF)
nA
MAX4581
µA
VCC= 3.6V; VX_, VY_, VZ_= 1V, 3.0V; V
X
, VY, VZ= 3.0V, 1V
VA, VB, VC= V
Enable
= 0.5V
-100 +100
TA= +25°C
-2 +2
X, Y, Z On-Leakage (Note 6)
I
X(ON)
,
I
Y(ON)
,
I
Z(ON)
nA
MAX4581
VCC= 3.6V; VX, VY, VZ= 3.0V, 1V
-2 +2
C, E, A
C, E, A
X_, Y_, Z_ Off-Leakage (Note 5)
-50 +50
I
X_(OFF)
,
I
Y_(OFF)
,
I
Z_(OFF)
TA= +25°C
nA
V
CC
= 3.6V; VX_, VY_, VZ_= 1V, 3V;
VX, VY, VZ= 3V, 1V
Power-Supply Current ICC, I
EE
µA
-1 +1
TA= +25°C
-50 +50
TA= +25°C
-1 +1
Switch On-Resistance
-1 +1
-1 +1
VCC= 3.6V, VA, VB, VC, V
Enable
= V+ or 0V
-1 +1
-10 +10
PARAMETER
R
ON
TA= +25°C
SYMBOL TEMP
VCC= 2.7V; IX, IY, IZ= 0.1mA; V
X
, VY, VZ= 1.5V
190 450
C, E, A
550C, E, A
UNITS
MIN TYP MAX
(Note 2)
CONDITIONS
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, V
Z
VV
EE
V
CC
C, E, A
MAX4582 MAX4583
MAX4582 MAX4583
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: R
ON
= R
ON(MAX)
- R
ON(MIN)
.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., V
X_
, VY_, VZ_= 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T
A
= +25°C.
Note 6: Guaranteed by design, not production tested.
ANALOG SWITCH
DIGITAL I/O
SWITCH DYNAMIC CHARACTERISTICS
(Note 6)
POWER SUPPLY
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
6 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC= 5V, VEE= -5V, V
GND
= 0V, TA= +25°C, unless otherwise noted.)
ON-RESISTANCE vs. VX, VY, V
(DUAL SUPPLIES)
1000
V
CC
V
EE
VCC = 2V,
= -2V
V
()
100
ON
R
EE
VCC = 5V,
= -5V
V
EE
10
-5 01234-4 -3 -2 -1 5 VX, VY, VZ (V)
130
110
90
(Ω)
70
ON
R
50
30
10
02.01.50.5 1.0 2.5 3.0 3.5 4.0 4.5 5.0
vs. V
65
55
45
(Ω)
35
ON
R
25
TA = -40°C
15
5
-5 -1-2-4-3 012345
= 1.2V,
= -1.2V
Z
VCC = 2.7V,
= -2.7V
V
EE
VCC = 3.3V,
= -3.3V
V
EE
MAX4581/2/3 toc01
ON-RESISTANCE
, VY, VZ AND TEMPERATURE
vs. V
X
(SINGLE SUPPLY)
TA = +85°C
TA = +25°C
TA = -40°C
VX, VY, VZ (V)
TA = +70°C
MAX4581toc04
TA = 0°C
ON-RESISTANCE
, VY, VZ AND TEMPERATURE
X
(DUAL SUPPLIES)
TA = +85°C
TA = +70°C
TA = +25°C
TA = 0°C
VX, VY, VZ (V)
ON-RESISTANCE vs. VX, VY, V
10,000
() R
ON
1000
100
10
VCC = 1.2V
010234567891
MAX4581toc02
OFF-LEAKAGE
vs. TEMPERATURE
100
VCC = 5.5V
= -5.5V
V
EE
10
1
OFF LEAKAGE (nA)
IX, IY, I
0.1
0.01
Z
-50 12525-25 0 7550 100 TEMPERATURE (°C)
(SINGLE SUPPLY)
VCC = 2V
VCC = 2.7V
VCC = 3.3V
VX, VY, VZ (V)
IX_, IY_, I
VCC = 5V
Z_
Z
MAX4581 toc03
VCC = 7.5V
VCC = 10V
MAX4581/2/3-05
ON-LEAKAGE
vs. TEMPERATURE
100,000
VCC = 5.5V
= -5.5V
V
10,000
ON LEAKAGE (pA)
EE
1000
100
10
1
-50 12525-25 0 7550 100 TEMPERATURE (°C)
MAX4581/2/3-toc-6
CHARGE INJECTION vs. VX, VY, V
1.5
1.0
0.5
0
-0.5
Q (pC)
-1.0
-1.5
-2.0
-2.5
VCC = 5V
= -5V
V
EE
-5 -3 -2 -1 0-4 12345
VCC = 5V V
VX, VY, VZ (V)
= 0V
EE
Z
MAX4581-07
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________
7
Typical Operating Characteristics (continued)
(VCC= 5V, VEE= -5V, V
GND
= 0V, TA= +25°C, unless otherwise noted.)
100
VCC = 5V V
EE
V
A
10
(nA)
EE
1
, I
CC
I
0.1
0.01
-50 12525-25 0 7550 100
100
600 IN AND OUT
10
1
THD (%)
0.1
0.01 10 1k 10k100 100k
SUPPLY CURRENT
vs. TEMPERATURE
= -5V
, VB,VC,V
TOTAL HARMONIC DISTORTION
= 0V, 5V
ENABLE
I
CC
TEMPERATURE (°C)
vs. FREQUENCY
FREQUENCY (Hz)
MAX4581/2/3-08
I
EE
MAX4581-10
0
FREQUENCY RESPONSE
-10
ON-LOSS
-20
-30
-40
-50
-60
LOSS (dB)
-70
-80
-90
-100
-110
-120
0.1 10 1001
V
CC
1
-1
10
-2
10
-3
10
-4
10
-5
10
(A)
CC
-6
I
10
-7
10
-8
10
-9
10
-10
10
-11
10
02314657891110 12
OFF-LOSS
ON-PHASE
FREQUENCY (MHz)
CURRENT vs. LOGIC LEVEL
, VB, VC, V
(V
A
V
V
= 5V
CC
VA, VB, VC, V
ENABLE
ENABLE
= 12V
CC
)
MAX4581-09
120 100
80 60
PHASE (DEGREES)
40 20 0
-20
-40
-60
-80
-110
-120
MAX4581-11
LOGIC-LEVEL THRESHOLD vs. V
3.0
2.5
(V)
2.0
ENABLE
, V
1.5
C
, V
B
, V
A
1.0
V
0.5
0
0 2341576 8 9 101112
VCC (V)
CC
MAX4581toc12
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
8 _______________________________________________________________________________________
__________Applications Information
Power-Supply Considerations
Overview
The MAX4581/MAX4582/MAX4583 construction is typi­cal of most CMOS analog switches. They have three
supply pins: V
CC
, VEE, and GND. VCCand VEEare used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD­protection diodes are internally connected between each analog-signal pin and both VCCand VEE. If any analog signal exceeds VCCor VEE, one of these diodes
Pin Description
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well
in both directions.
PIN
MAX4581 MAX4582 MAX4583
PDIP, SO,
TSSOP
13, 14, 15, 12,
1, 5, 2, 4
——
——
3 1 15 13 Y Analog Switch “Y” Output
13 11 X1 Analog Switch “X” Normally Open Input
12 10 X0 Analog Switch “X” Normally Closed Input
1 15 Y1 Analog Switch “Y” Normally Open Input
2 16 Y0 Analog Switch “Y” Normally Open Input
3 1 Z1 Analog Switch “Z” Normally Open Input
5 3 Z0 Analog Switch “Z” Normally Open Input
4 2 Z Analog Switch “Z” Output
16 14 16 14 16 14 V
11 9 10 8 11 9 A Digital Address “A” Input
10 8 9 7 10 8 B Digital Address “B” Input
——————EPE xp osed P ad ( TQ FN onl y) . C onnect E P to V
TQFN-EP
11, 12, 13, 10,
15, 3,
16, 2
3 1 13 11 14 12 X Analog Switch “X” Output
9 7 9 7 C Digital Address “C” Input
868686GND
757575V
6 4 6 4 6 4 ENABLE
PDIP, SO,
TSSOP
X0–X7 Analog Switch Inputs 0–7
12, 14,
15, 11
1, 5, 2,
4
TQFN-EP
10, 12,
13, 9
15, 3,
16, 2
PDIP, SO,
TSSOP
——
——
TQFN-EP
NAME FUNCTION
X0, X1,
X2, X3
Y0, Y1,
Y2, Y3
CC
EE
Analog Switch “X” Inputs 0–3
Analog Switch “Y” Inputs 0–3
Positive Analog and Digital Supply-Voltage Input
Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V
Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation.
Digital Enable Input. Normally connected to GND.
and VEE.)
CC
C C
.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_______________________________________________________________________________________ 9
XH
Table 1. Truth Table/Switch Programming
X X All switches open All switches open All switches open
L L X–X0
X–X0,
Y–Y0
X–X0, Y–Y0,
Z–Z0
LL
L H X–X1
X–X1,
Y–Y1
X–X1, Y–Y0,
Z–Z0
LL
H H X–X3
X–X3,
Y–Y3
X–X1, Y–Y1,
Z–Z0
H L X–X2
X–X2,
Y–Y2
X–X0, Y–Y1,
Z–Z0
LL
LL
L H X–X5
X–X1,
Y–Y1
X–X1, Y–Y0,
Z–Z1
L L X–X4
X–X0,
Y–Y0
X–X0, Y–Y0,
Z–Z1
HL
HL
H H X–X7
X–X3,
Y–Y3
X–X1, Y–Y1,
Z–Z1
H L X–X6
X–X2,
Y–Y2
X–X0, Y–Y1,
Z–Z1
HL
HL
X = Don’t care
*
C not present on MAX4582.
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally
well in either direction.
ON SWITCHESSELECT INPUTS
B A MAX4581 MAX4582 MAX4583C*
ENABLE
INPUT
will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only cur­rent drawn from VCCor VEE.
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given sig­nal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either VCCor VEEand the analog signal. This means their leakages will vary as the signal varies. The
differ-
ence
in the two diode leakages to the VCCand V
EE
pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch ter­minal. This is why both sides of a given switch can
show leakage currents of either the same or opposite polarity.
There is no connection between the analog-signal paths and GND.
VCCand GND power the internal logic and logic-level translators, and set the input logic limits. The logic-level translators convert the logic levels into switched V
CC
and VEEsignals to drive the gates of the analog sig­nals. This drive signal is the only connection between the logic supplies and signals and the analog supplies. VCCand VEEhave ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible when VCCis +5V. As VCCrises, the threshold increases
MAX4581/MAX4582/MAX4583
slightly, so when VCCreaches +12V the threshold is about 3.1V (above the TTL-guaranteed high-level mini­mum of 2.8V, but still compatible with CMOS outputs).
Bipolar Supplies
These devices operate with bipolar supplies between ±2V and ±5V. The VCCand VEEsupplies need not be symmetrical, but their sum cannot exceed the +13V absolute maximum rating
Single Supply
These devices operate from a single supply between +2V and +12V when V
EE
is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually “work” with a single supply near or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high.
Overvoltage Protection
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi­mum ratings because stresses beyond the listed rat­ings can cause permanent damage to the devices. Always sequence VCCon first, then VEE, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog-signal range to one diode drop below VCCand one diode drop above VEE, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V
CC
and V
EE
should not exceed 13V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground.
High-Frequency Performance
In 50systems, signal response is reasonably flat up to 50MHz (see
Typical Operating Characteristics
). Above 20MHz, the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The off­state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isola­tion is about -50dB in 50systems, becoming worse (approximately 20dB per decade) as frequency in­creases. Higher circuit impedances also degrade off isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.
Pin Nomenclature
The MAX4581/MAX4582/MAX4583 are pin-compatible with the industry-standard 74HC4051/74HC4052/ 74HC4053 and the MAX4051/MAX4052/MAX4053. They function identically and have identical logic dia­grams, although these parts differ electrically.
The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications pub­lished by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations as found all other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim’s standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4581/MAX4582/MAX4583.
Low-Voltage, CMOS Analog Multiplexers/Switches
10 ______________________________________________________________________________________
Figure 1. Overvoltage Protection Using External Blocking Diodes
V
CC
D1 EXTERNAL BLOCKING DIODE
V
CC
*
X, Y, Z X_, Y_, Z_
*
V
EE
V
EE
*
*
D2 EXTERNAL BLOCKING DIODE
*INTERNAL PROTECTION DIODES
MAX4581 MAX4582 MAX4583
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 11
Figure 2. Address Transition Times
______________________________________________Test Circuits/Timing Diagrams
V
VA, VB, VC
50
V
, V
A
B
50
A
B
C
ENABLE
A
B
ENABLE
CC
V
CC
MAX4581
GND
V
CC
V
CC
X1, X2, Y1, Y2
MAX4582
GND
V
V
V
V
X1–X6
EE
EE
X
X3, Y3
EE
EE
0
X, Y
VA, VB, V
X0
X7
X
V
CC
V
EE
V
OUT
35pF
300
VA, V
, Y
0
300
V
CC
V
EE
V
OUT
35pF
V
CC
C
50%
0V
V
X0
90%
0V
V
OUT
V
X7
t
TRANS
V
CC
B
50%
90%
t
TRANS
0V
V
,
X0
V
Y0
90%
0V
V
OUT
,
V
X3
V
Y3
t
TRANS
90%
t
TRANS
V
CC
V
V
, VB, V
A
C
A, B, C
CC
50
MAX4583
ENABLE
GND
V
= 0V FOR SINGLE-SUPPLY OPERATION.
EE
TEST EACH SECTION INDIVIDUALLY.
X1, Y1, Z1
X2, Y2, Z2
X, Y, Z
V
EE
V
EE
300
V
OUT
CC
C
0V
,
V
X0
,
V
Y0
V
Z0
0V
V
,
X1
,
V
Y1
V
Z1
t
TRANS
VA, VB, V
V
EE
V
CC
V
OUT
35pF
V
50%
90%
90%
t
TRANS
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
12 ______________________________________________________________________________________
Figure 3. Inhibit Switching Times
_________________________________Test Circuits/Timing Diagrams (continued)
V
CC
V
CC
V
X1–X7
EE
X0
V
CC
V
X
OUT
35pF
V
ENABLE
50
A
B
C
MAX4581
ENABLE
GND
300
V
EE
V
CC
V
CC
A
B
X0, Y0
X1–X3, Y1–Y3
V
CC
MAX4582
V
ENABLE
50
ENABLE
GND
X, Y
V
EE
300
V
EE
35pF
V
OUT
V
V
Enable
V
OUT
Enable
V
OUT
V
CC
50%
0V
V
X0
90%
90%
0V
t
ON
V
CC
50%
t
OFF
0V
V
,
X0
V
Y0
90%
90%
0V
t
ON
t
OFF
V
V
ENABLE
50
A B C
ENABLE
CC
V
CC
MAX4583
GND
X1, Y1, Z1
X0, Y0, Z0
X, Y, Z
V
EE
V
EE
300
V
CC
V
EE
V
OUT
35pF
V
Enable
V
OUT
V
VX0, V
V
VX1, V
V
CC
50%
0V
,
Y0
Z0
90%
,
Y1
Z1
t
ON
VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY.
90%
t
OFF
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 13
Figure 4. Break-Before-Make Interval
Figure 5. Charge Injection
_________________________________Test Circuits/Timing Diagrams (continued)
V
CC
VA, VB, V
50
C
A
B
C
V
CC
MAX4581
ENABLE
GND
V
V
V
CC
VA, VB, V
50
C
A, B, C
V
CC
X0, X1, Y0,
Y1, Z0, Z1
MAX4583
ENABLE
GND
V
V
VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY.
X0–X7
EE
EE
X, Y, Z
EE
EE
V
CC
VA, V
V
CC
B
50
A
B
V
CC
X0–X3,
Y0–Y3
V
CC
MAX4582
V
35pF
35pF
OUT
VA, VB, V
V
OUT
V+
C
0V
, VY, V
V
X
Z
V
OUT
0V
X
300
V
CC
300
ENABLE
50%
t
BBM
GND
X, Y
V
EE
300
V
EE
t
< 20ns
R
< 20ns
t
F
80%
35pF
V
OUT
V
CC
V
CC
CHANNEL
SELECT
V
ENABLE
V
= 0V FOR SINGLE-SUPPLY OPERATION.
EE
TEST EACH SECTION INDIVIDUALLY.
A
B
C
ENABLE
50
X_, Y_, Z_
MAX4581 MAX4582 MAX4583
GND
V
V
X, Y, Z
EE
EE
= 1000pF
C
L
V
V
Enable
V
OUT
CC
0V
V
OUT
V
IS THE MEASURED VOLTAGE DUE TO CHARGE
OUT
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
Q = V
X C
OUT
L
V
OUT
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
14 ______________________________________________________________________________________
Figure 6. Off Isolation, On Loss, and Crosstalk
Figure 7. Capacitance
_________________________________Test Circuits/Timing Diagrams (continued)
V
10nF
CC
NETWORK
MEAS.
ANALYZER
50
50 50
50
REF.
OFF-ISOLATION = 20log
ON-LOSS = 20log
CROSSTALK = 20log
V
V
V
OUT
V
OUT
V
OUT
V
IN
IN
IN
V
IN
CHANNEL
SELECT
V
CC
A
B
C
X_, Y_, Z_
MAX4581 MAX4582
V
MAX4583
ENABLE
GND
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
10nF
V
V
X, Y, Z
EE
EE
OUT
V
CC
V
CC
CHANNEL
SELECT
A
B
C
ENABLE
X_, Y_, Z_
MAX4581 MAX4582 MAX4583
GND
V
V
X, Y, Z
EE
EE
1MHz
CAPACITANCE
ANALYZER
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
______________________________________________________________________________________ 15
Ordering Information (continued)
+
Denotes a lead(Pb)-free/RoHS-compliant package. /V Denotes an automotive qualified part. T = Tape and reel.
*
EP = Exposed pad.
Pin Configurations/Functional Diagrams (continued)
BOTTOM VIEW
X1 X0 X3
11 10 9
12
X2
13
V
14
CC
X4
15
X6
16
+
*CONNECT EXPOSED PAD TO V
MAX4581
1234
X7 X5
X
TQFN
CC
PART TEMP RANGE
MAX4581CEE+ 0°C to +70°C 16 QSOP
MAX4581EPE+ -40°C to +85°C 16 PDIP
MAX4581ESE+ -40°C to +85°C 16 Narrow SO
MAX4581EUE+ -40°C to +85°C 16 TSSOP
MAX4581EEE+ -40°C to +85°C 16 QSOP
MAX4581ETE+ -40°C to +85°C 16 TQFN-EP* AGH
MAX4581ASE+ -40°C to +125°C 16 Narrow SO
MAX4581AUE+ -40°C to +125°C 16 TSSOP
MAX4582CPE+ 0°C to +70°C 16 PDIP
MAX4582CSE+ 0°C to +70°C 16 Narrow SO
MAX4582CUE+ 0°C to +70°C 16 TSSOP
MAX4582CEE+ 0°C to +70°C 16 QSOP
MAX4582EPE+ -40°C to +85°C 16 PDIP
MAX4582ESE+ -40°C to +85°C 16 Narrow SO
MAX4582EUE+ -40°C to +85°C 16 TSSOP
A
*EP
EN
PIN­PACKAGE
B
C
GND
V
X2
13
V
14
CC
Y0
15
Y2
EE
16
++
8
7
6
5
TOP
MARK
X1
12
1234
Y
X0 X3
X
11 10 9
A
8
B
7
MAX4582
*EP
Y3 Y1
TQFN TQFN
EN
GND
6
V
5
Y
13
V
14
CC
Y1
15
Y0
EE
16
PART TEMP RANGE
MAX4582EEE+ -40°C to +85°C 16 QSOP
MAX4582ETE+ -40°C to +85°C 16 TQFN-EP* AGH
MAX4582ASE+ -40°C to +125°C 16 Narrow SO
MAX4582AUE/V+T -40°C to +125°C 16 TSSOP
MAX4583CPE+ 0°C to +70°C 16 PDIP
MAX4583CSE+ 0°C to +70°C 16 Narrow SO
MAX4583CUE+ 0°C to +70°C 16 TSSOP
MAX4583CEE+ 0°C to +70°C 16 QSOP
MAX4583EPE+ -40°C to +85°C 16 PDIP
MAX4583ESE+ -40°C to +85°C 16 Narrow SO
MAX4583EUE+ -40°C to +85°C 16 TSSOP
MAX4583EEE+ -40°C to +85°C 16 QSOP
MAX4583ETE+ -40°C to +85°C 16 TQFN–EP* AGH
MAX4583ASE+ -40°C to +125°C 16 Narrow SO
MAX4583AUE+ -40°C to +125°C 16 TSSOP
X1 X0
X
12
11 10 9
A
MAX4583
*EP
1234
Z1
Z0
Z
EN
PIN­PACKAGE
B
8
C
7
GND
6
V
5
EE
TOP
MARK
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog Multiplexers/Switches
16 ______________________________________________________________________________________
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages
. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE NO.
LAND
PATTERN NO.
16 PDIP P16+1
21-0043
16 Narrow SO S16+1
21-0041 90-0097
16 TSSOP U16+2
21-0066 90-0117
16 QSOP E16+4
21-0055 90-0167
16 TQFN T1633+5
21-0136
90-0032
Chip Information
PROCESS: BICMOS
TRANSISTOR COUNT: 219
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
17
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2012 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
Revision History
REVISION
NUMBER
5 6/07 Various changes
6 3/12
REVISION
DATE
DESCRIPTION
Updated TQFN, PDIP, and lead-free packaging options; updated temperature ranges
PAGES
CHANGED
1–7, 15, 16
Loading...