The MAX4475–MAX4478/MAX4488/MAX4489 wideband, low-noise, low-distortion operational amplifiers
offer rail-to-rail outputs and single-supply operation
down to 2.7V. They draw 2.2mA of quiescent supply
current per amplifier while featuring ultra-low distortion
(0.0002% THD+N), as well as low input voltage-noise
density (4.5nV/√Hz) and low input current-noise density
(0.5fA/√Hz). These features make the devices an ideal
choice for applications that require low distortion and/or
low noise.
For power conservation, the MAX4475/MAX4488 offer a
low-power shutdown mode that reduces supply current
to 0.01µA and places the amplifiers’ outputs into a highimpedance state. These amplifiers have outputs which
swing rail-to-rail and their input common-mode voltage
range includes ground. The MAX4475–MAX4478 are
unity-gain stable with a gain-bandwidth product of
10MHz. The MAX4488/4489 are internally compensated
for gains of +5V/V or greater with a gain-bandwidth
product of 42MHz. The single MAX4475/MAX4476/
MAX4488 are available in space-saving, 6-pin SOT23
and TDFN packages.
Applications
ADC Buffers
DAC Output Amplifiers
Low-Noise Microphone/Preamplifiers
Digital Scales
Strain Gauges/Sensor Amplifiers
Medical Instrumentation
Features
o Low Input Voltage-Noise Density: 4.5nV/√Hz
o Low Input Current-Noise Density: 0.5fA/√Hz
o Low Distortion: 0.0002% THD+N (1kΩ load)
o Single-Supply Operation from +2.7V to +5.5V
o Input Common-Mode Voltage Range Includes
Ground
o Rail-to-Rail Output Swings with a 1kΩ Load
o 10MHz GBW Product, Unity-Gain Stable
(MAX4475–MAX4478)
o 42MHz GBW Product, Stable with AV≥ +5V/V
(MAX4488/MAX4489)
o Excellent DC Characteristics
VOS= 70µV
I
BIAS
= 1pA
Large-Signal Voltage Gain = 120dB
o Low-Power Shutdown Mode:
Reduces Supply Current to 0.01µA
Places Output in High-Impedance State
= VDD/2, RLtied to VDD/2, SHDN = VDD, TA= -40°C to +125°C, unless otherwise noted.
Typical values are at T
A
= +25°C.) (Notes 1, 2)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Power-Supply Voltage (VDDto VSS) ......................-0.3V to +6.0V
Note 1: All devices are 100% tested at TA= +25°C. Limits over temperature are guaranteed by design.
Note 2: SHDN is available on the MAX4475/MAX4488 only.
Note 3: Guaranteed by the PSRR test.
Note 4: Guaranteed by design.
Note 5: Full-power bandwidth for unity-gain stable devices (MAX4475–MAX4478) is measured in a closed-loop gain of +2V/V to
accommodate the input voltage range, V
OUT
= 4V
P-P
.
Note 6: Lowpass-filter bandwidth is 22kHz for f = 1kHz and 80kHz for f = 20kHz. Noise floor of test equipment = 10nV/√Hz.
= VDD/2, RLtied to VDD/2, input noise floor of test equipment =10nV/√Hz for all distortion
measurements, T
A
= +25°C, unless otherwise noted.)
1µs/div
MAX4488/MAX4489
LARGE-SIGNAL PULSE RESPONSE
VDD = 3V, RL = 10kΩ, CL = 50pF
V
IN
= 20mV PULSE, AV = +5V/V
MAX4475 toc29
V
OUT
200mV/div
1µs/div
MAX4488/MAX4489
SMALL-SIGNAL PULSE RESPONSE
VDD = 3V, RL = 10kΩ, CL = 50pF
V
IN
= 20mV PULSE, AV = +5V/V
MAX4475 toc30
V
OUT
50mV/div
1.6V
1.5V
-20
-90
101000100100k100M10M
MAX4477/MAX4478/MAX4489
CROSSTALK vs. FREQUENCY
-60
-50
-40
-30
MAX4475 toc31
FREQUENCY (Hz)
CROSSTALK (dB)
10k1M
-70
-80
PIN
MAX4475/
MAX4488
MAX4475/
MAX4488
MAX4476
MAX4477/
MAX4489
MAX4478
SOT23/TDFNSO/µMAXSOT23/TDFNSO/µMAXSO/TSSOP
OUT, OUTA,
1611, 71, 7, 8, 14
OUTB, OUTC,
242411
IN+, INA+,
3333, 53, 5, 10, 12
4242, 62, 6, 9, 13
67684
58———
—1, 55——N.C.
EP (TDFN
only)
—
EP (TDFN
only)
—— EP
INB+, INC+,
IN-, INA-, INB-,
INC-, IND-
NAMEFUNCTION
OUTD
V
SS
IND+
V
DD
SHDN
Amplifier Output
Negative Supply. Connect
to ground for singlesupply operation
Noninverting Amplifier
Input
Inverting Amplifier Input
Positive Supply
Shutdown Input. Connect
to V
for normal
DD
operation (amplifier(s)
enabled).
No Connection. Not
internally connected.
Exposed Paddle. Connect
to V
.
SS
Detailed Description
The MAX4475–MAX4478/MAX4488/MAX4489 singlesupply operational amplifiers feature ultra-low noise
and distortion. Their low distortion and low noise make
them ideal for use as preamplifiers in wide dynamicrange applications, such as 16-bit analog-to-digital
converters (see
Typical Operating Circuit
). Their highinput impedance and low noise are also useful for signal conditioning of high-impedance sources, such as
piezoelectric transducers.
These devices have true rail-to-rail ouput operation,
drive loads as low as 1kΩ while maintining DC accuracy, and can drive capactive loads up to 200pF without
oscillation. The input common-mode voltage range
extends from (VDD- 1.6V) to 200mV below the negative
rail. The push-pull output stage maintains excellent DC
characteristics, while delivering up to ±5mA of current.
The MAX4475–MAX4478 are unity-gain stable, while
the MAX4488/MAX4489 have a higher slew rate and
are stable for gains ≥ 5V/V. The MAX4475/MAX4488
feature a low-power shutdown mode, which reduces
the supply current to 0.01µA and disables the outputs.
Low Distortion
Many factors can affect the noise and distortion that the
device contributes to the input signal. The following
guidelines offer valuable information on the impact of
design choices on Total Harmonic Distortion (THD).
Choosing proper feedback and gain resistor values for
a particular application can be a very important factor
in reducing THD. In general, the smaller the closedloop gain, the smaller the THD generated, especially
when driving heavy resistive loads. The THD of the part
normally increases at approximately 20dB per decade,
as a function of frequency. Operating the device near
or above the full-power bandwidth significantly
degrades distortion.
Referencing the load to either supply also improves the
part’s distortion performance, because only one of the
MOSFETs of the push-pull output stage drives the output. Referencing the load to midsupply increases the
part’s distortion for a given load and feedback setting.
(See the Total Harmonic Distortion vs. Frequency graph
in the
Typical Operating Characteristics
.)
For gains ≥ 5V/V, the decompensated devices
MAX4488/MAX4489 deliver the best distortion performance, since they have a higher slew rate and provide
a higher amount of loop gain for a given closed-loop
gain setting. Capacitive loads below 100pF do not significantly affect distortion results. Distortion performance is relatively constant over supply voltages.
The amplifier’s input-referred noise-voltage density is
dominated by flicker noise at lower frequencies, and by
thermal noise at higher frequencies. Because the thermal noise contribution is affected by the parallel combination of the feedback resistive network (R
F
|| RG,
Figure 1), these resistors should be reduced in cases
where the system bandwidth is large and thermal noise
is dominant. This noise contribution factor decreases,
however, with increasing gain settings.
For example, the input noise-voltage density of the circuit with R
F
= 100kΩ, RG= 11kΩ (AV= +5V/V) is
en= 14nV/√Hz, encan be reduced to 6nV/√Hz by
choosing RF= 10kΩ, RG= 1.1kΩ (AV= +5V/V), at the
expense of greater current consumption and potentially
higher distortion. For a gain of 100V/V with R
F
= 100kΩ,
RG= 1.1kΩ, the enis still a low 6nV/√Hz.
Using a Feed-Forward Compensation
Capacitor, C
Z
The amplifier’s input capacitance is 10pF. If the resistance seen by the inverting input is large (feedback
network), this can introduce a pole within the amplifier’s
bandwidth resulting in reduced phase margin.
Compensate the reduced phase margin by introducing
a feed-forward capacitor (CZ) between the inverting
input and the output (Figure 1). This effectively cancels
the pole from the inverting input of the amplifier.
Choose the value of C
Z
as follows:
C
Z
= 10 x (RF/ RG) [pF]
In the unity-gain stable MAX4475–MAX4478, the use of
a proper CZis most important for AV= +2V/V, and
AV = -1V/V. In the decompensated MAX4488/
MAX4489, CZis most important for AV= +10V/V.
Figures 2a and 2b show transient response both with
and without CZ.
Using a slightly smaller CZthan suggested by the formula above achieves a higher bandwidth at the
expense of reduced phase and gain margin. As a general guideline, consider using CZfor cases where RG||
RFis greater than 20kΩ (MAX4475–MAX4478) or
greater than 5kΩ (MAX4488/MAX4489).
Applications Information
The MAX4475–MAX4478/MAX4488/MAX4489 combine
good driving capability with ground-sensing input and
rail-to-rail output operation. With their low distortion and
low noise, they are ideal for use in ADC buffers, medical instrumentation systems and other noise-sensitive
applications.
Ground-Sensing and Rail-to-Rail Outputs
The common-mode input range of these devices
extends below ground, and offers excellent commonmode rejection. These devices are guaranteed not to
undergo phase reversal when the input is overdriven
(Figure 3).
Figure 4 showcases the true rail-to-rail output operation
of the amplifier, configured with AV= 5V/V. The output
swings to within 8mV of the supplies with a 10kΩ load,
making the devices ideal in low-supply voltage applications.
Power Supplies and Layout
The MAX4475–MAX4478/MAX4488/MAX4489 operate
from a single +2.7V to +5.5V power supply or from dual
supplies of ±1.35V to ±2.75V. For single-supply operation, bypass the power supply with a 0.1µF ceramic
Figure 3. Overdriven Input Showing No Phase Reversal
capacitor placed close to the VDDpin. If operating from
dual supplies, bypass each supply to ground.
Good layout improves performance by decreasing the
amount of stray capacitance and noise at the op amp’s
inputs and output. To decrease stray capacitance, minimize PC board trace lengths and resistor leads, and
place external components close to the op amp’s pins.
Typical Application Circuit
The
Typical Application Circuit
shows the single
MAX4475 configured as an output buffer for the
MAX5541 16-bit DAC. Because the MAX5541 has an
unbuffered voltage output, the input bias current of the
op amp used must be less than 6nA to maintain 16-bit
accuracy. The MAX4475 has an input bias current of
only 150pA (max), virtually eliminating this as a source
of error. In addition, the MAX4475 has excellent openloop gain and common-mode rejection, making this an
excellent ouput buffer amplifier.
DC-Accurate Lowpass Filter
The MAX4475–MAX4478/MAX4488/MAX4489 offer a
unique combination of low noise, wide bandwidth, and
high gain, making them an excellent choice for active
filters up to 1MHz. The
Typical Operating Circuit
shows
the dual MAX4477 configured as a 5th order
Chebyschev filter with a cutoff frequency of 100kHz.
The circuit is implemented in the Sallen-Key topology,
making this a DC-accurate filter.
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
MAX4475–MAX4478/MAX4488/MAX4489
SOT23, Low-Noise, Low-Distortion,
Wide-Band, Rail-to-Rail Op Amps
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
MAX4475–MAX4478/MAX4488/MAX4489
SOT23, Low-Noise, Low-Distortion,
Wide-Band, Rail-to-Rail Op Amps
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
MAX4475–MAX4478/MAX4488/MAX4489
SOT23, Low-Noise, Low-Distortion,
Wide-Band, Rail-to-Rail Op Amps
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________