The MAX4465–MAX4469 are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized gain
bandwidth product vs. supply current, and low voltage
operation in ultra-small packages. The MAX4465/
MAX4467/MAX4469 are unity-gain stable and deliver a
200kHz gain bandwidth from only 24µA of supply current. The MAX4466/MAX4468 are decompensated for a
minimum stable gain of +5V/V and provide a 600kHz
gain bandwidth product. In addition, these amplifiers
feature Rail-to-Rail®outputs, high A
VOL
,
plus excellent
power-supply rejection and common-mode rejection
ratios for operation in noisy environments.
The MAX4467/MAX4468 include a complete shutdown
mode. In shutdown, the amplifiers’ supply current is
reduced to 5nA and the bias current to the external
microphone is cut off for ultimate power savings. The
single MAX4465/MAX4466 are offered in the ultra-small
5-pin SC70 package, while the single with shutdown
MAX4467/MAX4468 and dual MAX4469 are available in
the space-saving 8-pin SOT23 package.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCCto GND)................................................+6V
All Other Pins to GND.................................-0.3V to (V
Note 1: All specifications are 100% production tested at TA= +25°C. All temperature limits are guaranteed by design.
Note 2: Shutdown mode is available only on the MAX4467/MAX4468.
Note 3: External feedback networks not considered.
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VCM= 0, V
OUT
= VCC/2, RL= ∞ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA= T
The MAX4465–MAX4469 are low-power, micropower op
amps designed to be used as microphone preamplifiers. These preamplifiers are an excellent choice for
noisy environments because of their high commonmode rejection and excellent power-supply rejection
ratios. They operate from a single +2.4V to +5.5V supply.
The MAX4465/MAX4467/MAX4469 are unity-gain stable
and deliver a 200kHz gain bandwidth from only 24µA of
supply current. The MAX4466/MAX4468 have a minimum stable gain of +5V/V while providing a 600kHz
gain bandwidth product.
The MAX4467/MAX4468 feature a complete shutdown,
which is active-high, and a shutdown-controlled output
providing bias to the microphone. The MAX4465/
MAX4467/MAX4469 feature a slew rate suited to voice
channel applications. The MAX4466/MAX4468 can be
used for full-range audio, e.g., PC99 inputs.
Rail-to-Rail Output Stage
The MAX4465–MAX4469 can drive a 10kΩ load and still
typically swing within 16mV of the supply rails. Figure 1
shows the output voltage swing of the MAX4465 configured with AV= +10.
Switched Bias Supply
When used as a microphone amplifier for an electret
microphone, some form of DC bias for the microphone
is necessary. The MAX4467/MAX4468 have the ability to
turn off the bias to the microphone when the device is in
shutdown. This can save several hundred microamps of
supply current, which can be significant in low power
applications. The MIC_BIAS pin provides a switched
version of V
CC
to the bias components. Figure 3 shows
some typical values.
Driving Capacitive Loads
Driving a capacitive load can cause instability in many
op amps, especially those with low quiescent current.
The MAX4465/MAX4467/MAX4469 are unity-gain stable
for a range of capacitive loads up to 100pF. Figure 4
shows the response of the MAX4465 with an excessive
capacitive load.
Applications Information
Shutdown Mode
The MAX4467 and MAX4468 feature a low-power, complete shutdown mode. When SHDN goes high, the supply current drops to 5nA, the output enters a high
impedance state and the bias current to the microphone
is switched off. Pull SHDN low to enable the amplifier.
Do not leave SHDN floating. Figure 5 shows the shutdown waveform.
Common-Mode Rejection Ratio
A microphone preamplifier ideally only amplifies the signal present on its input and converts it to a voltage
appearing at the output. When used in noninverting
mode, there is a small output voltage fluctuation when
both inputs experience the same voltage change in the
( ) denotes SOT23 package of the MAX4467/MAX4468.
Pin Description (continued)
PIN
MAX4465
MAX4466
MAX4467
MAX4468
MAX4469
NAMEFUNCTION
57 (7)8V
CC
Positive Supply. Bypass with a 0.1µF capacitor to
GND.
——2INA-Inverting Amplifier Input A
——3INA+Noninverting Amplifier Input A
——6INB-Inverting Amplifier Input B
——5INB+Noninverting Amplifier Input B
——7OUTBAmplifier Output B
—8 (6)—SHDN
Active-High Shutdown Input. Connect to GND
for normal operation. Connect to VCC for
shutdown. Do not leave floating.
—5 (5)—N.C.No Connection. Not internally connected.
common mode. The ratio of these voltages is called the
common-mode gain. The common-mode rejection ratio
is the ratio of differential-mode gain to common-mode
gain. The high CMRR properties of the
MAX4465–MAX4469 provide outstanding performances
when configured as a noninverting microphone preamplifier.
Power-Up
The MAX4465–MAX4469 outputs typically settle within
1µs after power-up. Figure 6 shows the output voltage
on power-up.
Power Supplies and Layout
The MAX4465–MAX4469 operate from a single +2.4V to
+5.5V power supply. Bypass the power supply with a
0.1µF capacitor to ground. Good layout techniques are
necessary for the MAX4465–MAX4469 family. To
decrease stray capacitance, minimize trace lengths by
placing external components close to the op amp’s
pins. Surface-mount components are recommended. In
systems where analog and digital grounds are available, the MAX4465–MAX4469 should be connected to
the analog ground.
Test Circuits/Timing Diagrams
Figure 2. MAX4466 Typical Application Circuit
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600