MAXIM MAX4216, MAX4218, MAX4220 Technical data

General Description
The MAX4212/MAX4213 single, MAX4216 dual, MAX4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed per­formance with rail-to-rail outputs. The MAX4213/ MAX4218 have a disable feature that reduces power­supply current to 400µA and places the outputs into a high-impedance state. These devices operate from a +3.3V to +10V single supply or from ±1.65V to ±5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).
These devices require only 5.5mA of quiescent supply current while achieving a 300MHz -3dB bandwidth and a 600V/µs slew rate. Input voltage noise is only 10nV/Hz and input current noise is only 1.3pA/Hz for either the inverting or noninverting input. These parts are an excellent solution in low-power/low-voltage sys­tems that require wide bandwidth, such as video, com­munications, and instrumentation. In addition, when disabled, their high output impedance makes them ideal for multiplexing applications.
The MAX4212 comes in a miniature 5-pin SOT23 pack­age, while the MAX4213/MAX4216 come in 8-pin µMAX and SO packages. The MAX4218/MAX4220 are avail­able in a space-saving 16-pin QSOP, as well as a 14-pin SO.
Applications
Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems
Features
High Speed:
300MHz -3dB Bandwidth (MAX4212/13) 200MHz -3dB Bandwidth (MAX4216/18/20) 50MHz 0.1dB Gain Flatness (MAX4212/13) 600V/µs Slew Rate
Single 3.3V/5.0V OperationRail-to-Rail OutputsInput Common-Mode Range Extends Beyond V
EE
Low Differential Gain/Phase: 0.02%/0.02°Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
High Output Drive: ±100mA400µA Shutdown Capability (MAX4213/18)High Output Impedance in Off State (MAX4213/18)Space-Saving SOT23-5, µMAX, or QSOP Packages
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
________________________________________________________________
Maxim Integrated Products
1
V
EE
IN-
IN+
1
5
V
CC
OUT
MAX4212
SOT23-5
TOP VIEW
2
3
4
OUT
N.C.
V
EE
1 2
8
7
EN V
CC
IN-
IN+
N.C.
µMAX/SO
3
4
6
5
MAX4213
Pin Configuration
R
O
50
IN
V
OUT
ZO = 50
UNITY-GAIN LINE DRIVER
(R
L
= RO + RTO)
R
F
24
R
TO
50
R
TIN
50
MAX4212
Typical Operating Circuit
19-1178; Rev 1; 6/98
EVALUATION KIT MANUAL
FOLLOWS DATA SHEET
Ordering Information
Ordering Information continued at end of data sheet.
Pin Configurations continued at end of data sheet.
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
-40°C to +85°C
MAX4213ESA
8 SO
ABAF
SOT TOP
MARK
-40°C to +85°CMAX4213EUA
-40°C to +85°C
MAX4212EUK
8 µMAX
5 SOT23-5
PIN-
PACKAGE
TEMP.
RANGE
PART
查询MAX4212供应商
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC= +5V, VEE= 0V, EN_ = +5V, RL= 2kto VCC/ 2, V
OUT
= VCC/ 2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at T
A
= +25°C.)
Supply Voltage (V
CC
to VEE)................................................+12V
IN_-, IN_+, OUT_, EN_.....................(V
EE
- 0.3V) to (VCC+ 0.3V)
Output Short-Circuit Duration to V
CC
or VEE............. Continuous
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW
14-Pin SO (derate 8.3mW/°C above +70°C)...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10sec).............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
0.60
0.70
RL= 50
0.30 0.50
0.30 0.50
RL= 150
0.06 0.20
0.06 0.20
RL= 2k
0.05
Output Voltage Swing V
OUT
V
0.05
RL= 10k
57
1.0V V
OUT
4V, RL= 50
52 59
0.5V V
OUT
4.5V, RL= 150
55 61
0.25V V
OUT
4.75V, RL= 2k
3
M
Common mode (-0.2V VCM≤ +2.75V)
49MAX42_ _ES_, MAX42_ _EEE
PARAMETER SYMBOL MIN TYP MAX UNITS
Input Resistance R
IN
70
k
Input Offset Current I
OS
0.1 1.0 µA
Input Bias Current I
B
5.4 9.0 µA
Input Offset Voltage Matching ±1 mV
Common-Mode Rejection Ratio CMRR 70 100 dB
Open-Loop Gain (Note 1) A
VOL
dB
Input Offset Voltage (Note 1)
Input Common-Mode Voltage Range
V
CM
VEE-V
CC
-
0.20 2.25
V
V
OS
412
mV
Input Offset Voltage Temperature Coefficient
TC
VOS
8 µV/°C
CONDITIONS
Differential mode (-1V VIN≤ +1V)
(Note 1)
(Note 1)
Any channels for MAX4216/MAX4218/ MAX4220
(V
EE
- 0.2V) V
CM
(V
CC
- 2.25V)
Guaranteed by CMRR test MAX4212EUK, MAX421_EUA
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VEE= 0V, EN_ = +5V, RL= 2kto VCC/ 2, V
OUT
= VCC/ 2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at T
A
= +25°C.)
EN_ = 0V
EN_ Logic Input Low Current I
IL
200 300
µA
(VEE+ 0.2V) EN_ V
CC
Output Current I
OUT
±100 ±120 mA
RL= 20to VCCor V
EE
0.40 0.55Disabled (EN_ = 0V)
Quiescent Supply Current (per Amplifier)
I
S
5.5 7.0 mA
Enabled
EN_ Logic Input High Current I
IH
0.5 10 µAEN_ = 5V
0.5
EN_ Logic-High Threshold V
IH
V
CC
- 1.6 V
EN_ Logic-Low Threshold V
IL
VCC- 2.6 V
Disabled Output Resistance R
OUT (OFF)
20 35
k
EN_ = 0V, 0V V
OUT
5V (Note 3)
45VCC= 3.3V, VEE= 0V, VCM= +0.90V
PARAMETER SYMBOL MIN TYP MAX UNITS
Operating Supply-Voltage Range
V
S
3.15 11.0 V
60 66
Power-Supply Rejection Ratio (Note 2)
PSRR
52 57
dB
Output Short-Circuit Current I
SC
±150 mA
Open-Loop Output Resistance R
OUT
8
CONDITIONS
VCCto V
EE
VCC= 5V, VEE= -5V, VCM= 0V
VCC= 5V, VEE= 0V, VCM= +2.0V
Sinking or sourcing
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
4 _______________________________________________________________________________________
Note 1: Tested with VCM= +2.5V. Note 2: PSR for single +5V supply tested with V
EE
= 0V, VCC= +4.5V to +5.5V; for dual ±5V supply with VEE= -4.5V to -5.5V,
V
CC
= +4.5V to +5.5V; and for single +3.3V supply with VEE= 0V, VCC= +3.15V to +3.45V.
Note 3: Does not include the external feedback network’s impedance.
AC ELECTRICAL CHARACTERISTICS
(VCC= +5V, VEE= 0V, VCM= 2.5V, EN_ = +5V, RF= 24, RL= 100to VCC/ 2, V
OUT
= VCC/ 2, A
VCL
= +1, TA= +25°C, unless
otherwise noted.)
MAX4216/MAX4218/MAX4220, f = 10MHz, V
OU
T
= 2Vp-p
dB-95X
TALK
Amplifier Crosstalk
MAX4216/MAX4218/MAX4220, f = 10MHz, V
OUT
= 20mVp-p
dB0.1Amplifier Gain Matching
µs1t
OFF
Amplifier Disable Time
fC= 5MHz, V
OUT
= 2Vp-p dBc-78SFDR
Spurious-Free Dynamic Range
Total harmonic distortion
3rd harmonic
2nd harmonic
MAX4216/MAX4218/ MAX4220
MAX4212/MAX4213
MAX4216/MAX4218/ MAX4220
MAX4212/MAX4213
f = 10MHz
EN_ = 0V
f = 10kHz
f = 10kHz
V
OUT
= 20mVp-p
NTSC, RL= 150
NTSC, RL= 150
fC= 10MHz, A
VCL
= +2
fC= 5MHz, V
OUT
= 2Vp-p
V
OUT
= 100mVp-p
f1 = 10.0MHz, f2 = 10.1MHz, V
OUT
= 1Vp-p
V
OUT
= 2V step
V
OUT
= 2V step
V
OUT
= 2Vp-p
V
OUT
= 20mVp-p
CONDITIONS
ns100t
ON
Amplifier Enable Time
6Z
OUT
Output Impedance
pF2C
OUT (OFF)
Disabled Output Capacitance
pF1C
IN
Input Capacitance
pA/Hz
1.3i
n
Input Noise-Current Density
nV/Hz
10e
n
Input Noise-Voltage Density
%0.02DGDifferential Gain Error
degrees0.02DPDifferential Phase Error
dBm11Input 1dB Compression Point
dBc35IP3
Two-Tone, Third-Order Intermodulation Distortion
dB-75
-82
HDHarmonic Distortion
200
MHz
300
BW
SS
Small-Signal -3dB Bandwidth
dBc
-78
ns1tR, t
F
Rise/Fall Time
ns45t
S
Settling Time to 0.1%
V/µs600SRSlew Rate
MHz180BW
LS
Large-Signal -3dB Bandwidth
MHz
50
BW
0.1dB
Bandwidth for 0.1dB Gain Flatness
35
UNITSMIN TYP MAXSYMBOLPARAMETER
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________
5
4
-6 100k 1M 10M 100M 1G
MAX4212/13
SMALL-SIGNAL GAIN vs. FREQUENCY
-4
MAX4212/3/6/8/20-01
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
V
OUT
= 20mVp-p
3
-7 100k 1M 10M 100M 1G
MAX4216/18/20
SMALL-SIGNAL GAIN vs. FREQUENCY
-5
MAX4212/3/6/8/20-02
FREQUENCY (Hz)
GAIN (dB)
-3
-1
1
2
-6
-4
-2
0
V
OUT
= 20mVp-p
9
-1 100k 1M 10M 100M 1G
MAX4212/13
SMALL-SIGNAL GAIN vs. FREQUENCY
1
MAX4212/3/6/8/20-03
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
A
VCL
= +2
V
OUT
= 20mVp-p
9
-1 100k 1M 10M 100M 1G
MAX4216/18/20
SMALL-SIGNAL GAIN vs. FREQUENCY
1
MAX4212/3/6/8/20-04
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
A
VCL
= +2
V
OUT
= 20mVp-p
0.5
-0.5
0.1M 1M 10M 100M 1G
MAX4216/18/20
GAIN FLATNESS vs. FREQUENCY
-0.3
MAX4212/3/6/8/20-07
FREQUENCY (Hz)
GAIN (dB)
-0.1
0.1
0.3
0.4
-0.4
-0.2
0
0.2
4
-6 100k 1M 10M 100M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
-4
MAX4212/3/6/8/20-05
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
V
OUT
= 2Vp-p
V
OUT BIAS
= 1.75V
0.7
-0.3
0.1M 1M 10M 100M 1G
MAX4212/13
GAIN FLATNESS vs. FREQUENCY
-0.1
MAX4212/3/6/8/20-06
FREQUENCY (Hz)
GAIN (dB)
0.1
0.3
0.5
0.6
-0.2
0
0.2
0.4
50
-150 100k 1M 10M 100M 1G
MAX4216/18/20
CROSSTALK vs. FREQUENCY
-110
MAX4212/3/6/8/20-08
FREQUENCY (Hz)
CROSSTALK (dB)
-70
-30
10
30
-130
-90
-50
-10
1000
0.1
0.1M 1M 10M 100M
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4212/3/6/8/20-09
FREQUENCY (Hz)
IMPEDANCE ()
100
1
10
__________________________________________Typical Operating Characteristics
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
6 _______________________________________________________________________________________
0
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +1)
-80
MAX4212/3/6/8/20-10
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
2ND HARMONIC
3RD HARMONIC
0
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +2)
-80
MAX4212/3/6/8/20-11
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
A
VCL
= +2
2ND HARMONIC
3RD HARMONIC
0
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +5)
-80
MAX4212/3/6/8/20-12
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
A
VCL
= +5
2ND HARMONIC
3RD HARMONIC
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4212/3/6/8/20-13
LOAD (Ω)
0 200 400 600 800 1000
HARMONIC DISTORTION
vs. LOAD
HARMONIC DISTORTION (dBc)
f = 5MHz V
OUT
= 2Vp-p
3RD HARMONIC
2ND HARMONIC
0
-100 100k 1M 10M 100M
COMMON-MODE REJECTION
vs. FREQUENCY
-80
MAX4212/3/6/8/20-16
FREQUENCY (Hz)
CMR (dB)
-60
-40
-20
-10
-90
-70
-50
-30
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4212/3/6/8/20-14
OUTPUT SWING (Vp-p)
0.5
1.0
1.5 2.0
HARMONIC DISTORTION
vs. OUTPUT SWING
HARMONIC DISTORTION (dBc)
fO = 5MHz
3RD HARMONIC
2ND HARMONIC
-0.01 0 100
0 100
DIFFERENTIAL GAIN AND PHASE
-0.01
0.00
0.00
0.01
0.01
0.02
0.02
0.03
0.03
IRE
IRE
DIFF. PHASE (deg)
DIFF. GAIN (%)
MAX4212/3/6/8/20-15
VCM = +1.35V
VCM = +1.35V
20
-80 100k 1M 10M 100M
POWER-SUPPLY REJECTION
vs. FREQUENCY
-60
MAX4212/3/6/8/20-17
FREQUENCY (Hz)
POWER-SUPPLY REJECTION (dB)
-40
-20
0
10
-70
-50
-30
-10
4.5
4.0
3.5
2.5
2.0
1.5
3.0
1.0
MAX4212/3/6/8/20-18
LOAD RESISTANCE (Ω)
25 50 75 100 125 150
OUTPUT SWING
vs. LOAD RESISTANCE (R
L
)
OUTPUT SWING (Vp-p)
A
VCL
= +2
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 7
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(A
VCL
= +1)
MAX4212/3/6/8/20-19
TIME (20ns/div)
V
CM
= +2.5V, RL = 100 to GROUND
IN
(25mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(A
VCL
= +2)
MAX4212/3/6/8/20-20
TIME (20ns/div)
VCM = +1.25V, RL = 100 to GROUND
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(C
L
= 5pF, A
VCL
= +1)
MAX4212/3/6/8/20-21
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
IN
(1V/div)
OUT
(1V/div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(A
VCL
= +1)
MAX4212/3/6/8/20-22
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
100
10
1
1 10 1k 10M1M
MAX4213
VOLTAGE NOISE DENSITY
vs. FREQUENCY
MAX4212/3/6/8/20-25
FREQUENCY (Hz)
NOISE (nV/Hz)
100 10k 100k
IN
(500mV/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(A
VCL
= +2)
MAX4212/3/6/8/20-23
TIME (20ns/div)
V
CM
= 0.9V, RL = 100 to GROUND
IN
(1V/
div)
OUT
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(C
L
= 5pF, A
VCL
= +2)
MAX4212/3/6/8/20-24
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
10
1
1 10 1k 10M1M
MAX4218
CURRENT NOISE DENSITY
vs. FREQUENCY
MAX4212/3/6/8/20-26
FREQUENCY (Hz)
NOISE (pA/ Hz)
100 10k 100k
EN_
5.0V (ENABLE)
0V (DISABLE)
1V
0V
OUT
ENABLE RESPONSE TIME
MAX4212/3/6/8/20-27
TIME (1µs/div)
VIN = +1.0V
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
8 _______________________________________________________________________________________
70
50
60
40
30
20
MAX4212/3/6/8/20-28
LOAD RESISTANCE (Ω)
0 200 400 600 800 1k
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
OPEN-LOOP GAIN (dB)
400 350 300 250
150
50
100
200
0
MAX4212/3/6/8/20-29
LOAD RESISTANCE ()
1000 200 500400300 600
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
CLOSED-LOOP BANDWIDTH (MHz)
10
-90 100k 10M 100M1M
OFF ISOLATION vs. FREQUENCY
-80
MAX4212/3/6/8/20-30
FREQUENCY (Hz)
OFF ISOLATION (dB)
-70
-60
-50
-40
-30
-20
-10
0
7
6
4
5
3
MAX4212/3/6/8/20-31
TEMPERATURE (°C)
-25-50 0 755025 100
POWER-SUPPLY CURRENT
vs. TEMPERATURE
POWER-SUPPLY CURRENT (mA)
10
8
6
4
2
0
MAX4212/3/6/8/20-34
POWER-SUPPLY VOLTAGE (V)
43 567891011
POWER-SUPPLY CURRENT
vs. POWER-SUPPLY VOLTAGE
POWER-SUPPLY CURRENT (mA)
6.0
5.5
4.5
5.0
4.0
MAX4212/3/6/8/20-32
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT BIAS CURRENT (µA)
0.20
0.16
0.12
0.04
0.08
0
MAX4212/3/6/8/20-33
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET CURRENT
vs. TEMPERATURE
INPUT OFFSET CURRENT (µA)
5
4
3
1
2
0
MAX4212/3/6/8/20-35
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
INPUT OFFSET VOLTAGE (mV)
5.0
4.8
4.6
4.2
4.4
4.0
MAX4212/3/6/8/20-36
TEMPERATURE (°C)
-25-50 0 755025 100
VOLTAGE SWING vs. TEMPERATURE
VOLTAGE SWING (Vp-p)
RL = 150TO V
CC
/ 2
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 9
______________________________________________________________Pin Description
QSOPSOQSOPSO
MAX4218
MAX4216
SO/µMAX
MAX4220
MAX4213
SO/µMAX
MAX4212
SOT23-5
ENC2 2 Enable Amplifier C
ENB3 3 Enable Amplifier B
ENA1 1 Enable Amplifier A
EN 8 Enable Amplifier
IND+14 12 Amplifier D Noninverting Input
IND-15 13 Amplifier D Inverting Input
OUTD16 14 Amplifier D Output
INC+1212 14 10 Amplifier C Noninverting Input
INC-1113 15 9 Amplifier C Inverting Input
NAME
N.C.
OUT
V
EE
IN+
INA-
OUTA
V
CC
IN-
OUTC
INB+
INB-
OUTB
INA+
8, 9
13
2
1
4
10
5
6
7
3
11
6
7
4
14
10
9
8
5
8, 9
13
6
7
4
16
12
11
10
5
4
2
1
8
5
6
7
3
11
2
1
4
8
5
6
7
3
FUNCTION
1, 5
No Connect. Not internally connected. Tie to ground or leave open.
1 6 Amplifier Output
PIN
2 4
Negative Power Supply or Ground (in single-supply operation)
3 3 Noninverting Input
Amplifier A Inverting Input
Amplifier A Output
5 7 Positive Power Supply
4 2 Inverting Input
Amplifier C Output
Amplifier B Noninverting Input
Amplifier B Inverting Input
Amplifier B Output
Amplifier A Noninverting Input
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________Detailed Description
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback ampli­fiers that employ current-feedback techniques to achieve 600V/µs slew rates and 300MHz bandwidths. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal­processing applications.
The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±100mA drive capability, while constrain­ing total supply current to less than 7mA. The input stage permits common-mode voltages beyond the nega­tive supply and to within 2.25V of the positive supply rail.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are internally compensated for unity gain. When config­ured for unity gain, the devices require a 24Ω resistor (RF) in series with the feedback path. This resistor
improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capaci­tance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor val­ues increase voltage noise and interact with the amplifi­er’s input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a nonin­verting gain-of-two configuration (RF= RG) using 1k resistors, combined with 1pF of amplifier input capaci­tance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier band­width, it jeopardizes stability. Reducing the 1kΩ resis- tors to 100extends the pole frequency to 1.59GHz, but could limit output swing by adding 200in parallel with the amplifier’s load resistor. Table 1 shows sug­gested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single +3.3V to +11V power supply or from dual supplies to ±5.5V. For single­supply operation, bypass VCCto ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor.
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
10 ______________________________________________________________________________________
IN
R
G
V
OUT
= [1+ (RF / RG)] V
IN
R
F
R
TO
R
TIN
R
O
V
OUT
Figure 1a. Noninverting Gain Configuration Figure 1b. Inverting Gain Configuration
R
IN
R
TIN
G
R
S
R
F
V
OUT
= -(RF / RG) V
R
TO
IN
V
OUT
R
O
Maxim recommends using microstrip and stripline tech­niques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier’s performance, design it for a frequency greater than 1GHz. Pay care­ful attention to inputs and outputs to avoid large para­sitic capacitance. Whether or not you use a constant­impedance board, observe the following guidelines when designing the board:
• Don’t use wire-wrap boards because they are too inductive.
• Don’t use IC sockets because they increase parasitic capacitance and inductance.
• Use surface-mount instead of through-hole compo­nents for better high-frequency performance.
• Use a PC board with at least two layers; it should be as free from voids as possible.
• Keep signal lines as short and as straight as possi­ble. Do not make 90° turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from (VEE- 200mV) to (VCC- 2.25V) with excellent common­mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not under­go phase reversal or latchup.
The output swings to within 50mV of either power­supply rail with a 10kload. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p, and the out­put can swing 4.9Vp-p with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the nega­tive supply rail, IILincreases (Figure 2). A single resis­tor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VILas the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL).
When the MAX4213/MAX4218 are disabled, the amplifi­er’s output impedance is 35k. This high resistance and the low 2pF output capacitance make these parts ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive load­ing. See the
Output Capacitive Loading and Stability
section for more information.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 11
Table 1. Recommended Component Values
Note: RL= RO+ RTO; R
TIN
and RTOare calculated for 50applications. For 75systems, RTO= 75; calculate R
TIN
from the
following equation:
R =
75
1-
75
R
TIN
G
-25
+25-10+10-5+5-2+2-1
+1
49.9 10
0
50
1200
GAIN (V/V)
49.9 6
49.9
20
500
49.9 25
0
50
500
49.9 11
49.9
56
500
49.9 33
100
0
100
500
49.9 25
49.9
124
500
49.9 60
62
0
250
500
49.9 105
49.9
500
500
49.949.9
RTO()
90300Small-Signal -3dB Bandwidth (MHz)
5649.9
R
TIN
()
0
RS()
COMPONENT
500
RG()
50024
RF()
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Output Capacitive Loading and Stability
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are optimized for AC performance. They are not designed to drive highly reactive loads, which de­creases phase margin and may produce excessive ringing and oscillation. Figure 5 shows a circuit that eliminates this problem. Figure 6 is a graph of the opti­mal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capacitive load causes excessive peak­ing of the amplifier’s frequency response if the capaci­tor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20to 30) placed before the reactive load prevents ringing and oscilla­tion. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27Ω isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance.
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
12 ______________________________________________________________________________________
OUT
IN-
EN_
IN+
10k
ENABLE
MAX42_ _
Figure 2. Enable Logic-Low Input Current vs. V
IL
Figure 4. Enable Logic-Low Input Current vs. V
IL
with 10k
Series Resistor
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
20
0
-20
-40
-60
-80
-100
INPUT CURRENT (µA)
-120
-140
-160 0 50 100 150 300 350 500
0
-1
-2
-3
-4
-5
-6
INPUT CURRENT (µA)
-7
-8
-9
-10 0 50 100 150 300 350 500
200 250 400 450
mV ABOVE V
200 250 400 450
mV ABOVE V
EE
EE
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 13
R
G
R
F
R
ISO
50
C
L
V
OUT
V
IN
R
TIN
MAX42_ _
Figure 5. Driving a Capacitive Load through an Isolation Resistor
30
25
20
5
10
15
0
CAPACITIVE LOAD (pF)
500 100 200150 250
ISOLATION RESISTANCE, R
ISO
()
Figure 6. Capacitive Load vs. Isolation Resistance
6
-4 100k 10M 100M1M 1G
-2
FREQUENCY (Hz)
GIAN (dB)
0
2
4
5
-3
-1
1
3
CL = 10pF
CL = 15pF
CL = 5pF
Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor
3
-7 100k 10M 100M1M 1G
-5
FREQUENCY (Hz)
GIAN (dB)
-3
-1
1
2
-6
-4
-2
0
CL = 68pF
R
ISO
= 27
CL = 120pF
CL = 47pF
Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27
Isolation Resistor
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
14 ______________________________________________________________________________________
TOP VIEW
INB-
INB+
V
EE
1 2
8
7
V
CC
OUTB
INA-
INA+
OUTA
µMAX/SO
3
4
6
5
MAX4216
14 13 12
11 10
9 8
1
2 3 4 5 6 7
OUTC INC-
INC+ V
EE
V
CC
ENB
ENC
ENA
MAX4218
INB+ INB­OUTB
OUTA
INA-
INA+
SO
14 13 12
11 10
9 8
1
2 3 4 5 6 7
OUTD IND-
IND+
V
EE
V
CC
INA+
INA-
OUTA
MAX4220
INC+ INC­OUTC
OUTB
INB-
INB+
SO
16 15 14
13
12 11
10
9
1 2 3 4 5 6 7 8
OUTC INC­INC+ V
EE
INB+ INB­OUTB N.C.
ENA ENC ENB
V
CC
INA+ INA-
OUTA
N.C.
MAX4218
QSOP
16 15 14 13
12 11 10
9
1 2 3 4 5 6 7 8
OUTD
IND-
IND+
V
EE
INC+
INC-
OUTC
N.C.
OUTA
INA­INA+
V
CC
INB+ INB-
OUTB
N.C.
MAX4220
QSOP
_____________________________________________Pin Configurations (continued)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 15
362MAX4220
299MAX4218
190MAX4216
95MAX4212/MAX4213
TRANSISTOR
COUNT
PART
___________________Chip Information_Ordering Information (continued)
________________________________________________________Package Information
SOT5L.EPS
-40°C to +85°CMAX4220EEE
-40°C to +85°C
MAX4220ESD
-40°C to +85°CMAX4218EEE
-40°C to +85°C
MAX4218ESD
16 QSOP
14 SO
16 QSOP
14 SO
8 µMAX
8 SO
PIN-
PACKAGE
SOT TOP
MARK
-40°C to +85°CMAX4216EUA
-40°C to +85°C
MAX4216ESA
TEMP.
RANGE
PART
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
16 ______________________________________________________________________________________
8LUMAXD.EPS
___________________________________________Package Information (continued)
QSOP.EPS
Loading...