MAXIM MAX4212, MAX4213 User Manual

General Description
The MAX4212/MAX4213 single, MAX4216 dual, MAX4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed per­formance with Rail-to-Rail®outputs. The MAX4213/ MAX4218 have a disable feature that reduces power­supply current to 400µA and places the outputs into a high-impedance state. These devices operate from a
3.3V to 10V single supply or from ±1.65V to ±5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).
These devices require only 5.5mA of quiescent supply current while achieving a 300MHz -3dB bandwidth and a 600V/µs slew rate. Input-voltage noise is only 10nV/Hz and input-current noise is only 1.3pA/Hz for either the inverting or noninverting input. These parts are an excellent solution in low-power/low-voltage sys­tems that require wide bandwidth, such as video, com­munications, and instrumentation. In addition, when disabled, their high-output impedance makes them ideal for multiplexing applications.
The MAX4212 comes in a miniature 5-pin SOT23 pack­age, while the MAX4213/MAX4216 come in 8-pin µMAX and SO packages. The MAX4218/MAX4220 are available in space-saving 16-pin QSOP and 14-pin SO packages.
Applications
Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems
Features
High Speed:
300MHz -3dB Bandwidth (MAX4212/MAX4213) 200MHz -3dB Bandwidth (MAX4216/MAX4218/MAX4220) 50MHz 0.1dB Gain Flatness (MAX4212/MAX4213) 600V/µs Slew Rate
Single 3.3V/5.0V Operation
Rail-to-Rail Outputs
Input Common-Mode Range Extends Beyond V
EE
Low Differential Gain/Phase: 0.02%/0.02°
Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
High-Output Drive: ±100mA
400µA Shutdown Capability (MAX4213/MAX4218)
High-Output Impedance in Off State
(MAX4213/MAX4218)
Space-Saving SOT23, µMAX, or QSOP Packages
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
________________________________________________________________ Maxim Integrated Products 1
Pin Configurations
R
O
50
IN
V
OUT
ZO = 50
UNITY-GAIN LINE DRIVER
(R
L
= RO + RTO)
R
F
24
R
TO
50
R
TIN
50
MAX4212
Typical Operating Circuit
19-1178; Rev 3; 10/03
EVALUATION KIT MANUAL
AVAILABLE
Ordering Information
Ordering Information continued at end of data sheet.
Pin Configurations continued at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART
TEMP
RANGE
PIN
TOP
MARK
MAX4212EUK-T
ABAF
MAX4213ESA
8 SO
MAX4213EUA
8 µMAX
PACKAGE
-40°C to +85°C 5 SOT23-5
-40°C to +85°C
-40°C to +85°C
TOP VIEW
1
OUT
MAX4212
2
V
EE
3
IN+
SOT23-5
5
4
N.C.
IN+
V
1
2
IN-
EE
MAX4213
3
4
µMAX/SO
V
CC
IN-
8
EN
V
7
CC
OUT
6
5
N.C.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC= 5V, VEE= 0, EN_ = 5V, RL= 2kto VCC/2, V
OUT
= VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
Supply Voltage (V
CC
to VEE)..................................................12V
IN_-, IN_+, OUT_, EN_ .....................(V
EE
- 0.3V) to (VCC+ 0.3V)
Output Short-Circuit Duration to V
CC
or VEE............. Continuous
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW
14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
0.60
0.70
RL= 50
0.30 0.50
0.30 0.50
RL= 150
0.06 0.20
0.06 0.20
RL= 2k
0.05
Output Voltage Swing V
OUT
V
0.05
RL= 10k
57
1.0V ≤ V
OUT
4V, RL= 50
52 59
0.5V ≤ V
OUT
4.5V, RL= 150
55 61
0.25V ≤ V
OUT
4.75V, RL= 2k
3
M
Common mode (-0.2V ≤ VCM≤ +2.75V)
49MAX42_ _ES_, MAX42_ _EEE
PARAMETER SYMBOL MIN TYP MAX UNITS
Input Resistance R
IN
70
k
Input Offset Current I
OS
0.1 4.0 µA
Input Bias Current I
B
5.4 20 µA
Input Offset Voltage Matching ±1 mV
Common-Mode Rejection Ratio CMRR 70 100 dB
Open-Loop Gain (Note 1) A
VOL
dB
Input Offset Voltage (Note 1)
Input Common-Mode Voltage Range
V
CM
VEE-V
CC
-
0.20 2.25
V
V
OS
412
mV
Input Offset Voltage Temperature Coefficient
TC
VOS
8 µV/°C
CONDITIONS
Differential mode (-1V ≤ VIN≤ +1V)
(Note 1)
(Note 1)
Any channels for MAX4216/MAX4218/ MAX4220
(V
EE
- 0.2V) ≤ V
CM
(V
CC
- 2.25V)
Guaranteed by CMRR test
MAX4212EUK, MAX421_EUA
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC= 5V, VEE= 0, EN_ = 5V, RL= 2kto VCC/2, V
OUT
= VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at
T
A
= +25°C.)
EN_ = 0
EN_ Logic Input Low Current I
IL
200 400
µA
(VEE+ 0.2V) EN_ ≤ V
CC
Output Current I
OUT
mA
TA= +25°C
0.40 0.65Disabled (EN_ = 0)
Quiescent Supply Current (per Amplifier)
I
S
5.5 7.0 mA
Enabled
EN_ Logic Input High Current I
IH
0.5 10 µAEN_ = 5V
0.5
EN_ Logic-High Threshold V
IH
V
CC
- 1.6 V
EN_ Logic-Low Threshold V
IL
VCC- 2.6 V
Disabled Output Resistance R
OUT (OFF)
20 35
k
EN_ = 0, 0 ≤ V
OUT
5V (Note 3)
45VCC= 3.3V, VEE= 0, VCM= 0.90V
PARAMETER SYMBOL MIN TYP MAX UNITS
Operating Supply-Voltage Range
V
S
3.15 11.0 V
54 66
Power-Supply Rejection Ratio (Note 2)
PSRR
46 57
dB
Output Short-Circuit Current I
SC
±150 mA
Open-Loop Output Resistance R
OUT
8
VCCto V
EE
VCC= 5V, VEE= -5V, VCM= 0
VCC= 5V, VEE= 0, VCM= 2.0V
Sinking or sourcing
TA= T
MIN
to T
MAX
±60
±70 ±120
CONDITIONS
RL= 20to VCCor V
EE
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
4 _______________________________________________________________________________________
Note 1: Tested with VCM= 2.5V. Note 2: PSR for single 5V supply tested with V
EE
= 0, VCC= 4.5V to 5.5V; for dual ±5V supply with VEE= -4.5V to -5.5V,
V
CC
= 4.5V to 5.5V; and for single 3.3V supply with VEE= 0, VCC= 3.15V to 3.45V.
Note 3: Does not include the external feedback networks impedance.
AC ELECTRICAL CHARACTERISTICS
(VCC= 5V, VEE= 0, VCM= 2.5V, EN_ = 5V, RF= 24, RL= 100to VCC/2, V
OUT
= VCC/2, A
VCL
= +1, TA= +25°C, unless otherwise
noted.)
MAX4216/MAX4218/MAX4220, f = 10MHz, V
OU
T
= 2V
P-P
dB-95X
TALK
Amplifier Crosstalk
MAX4216/MAX4218/MAX4220, f = 10MHz, V
OUT
= 20mV
P-P
dB0.1Amplifier Gain Matching
µs1t
OFF
Amplifier Disable Time
fC= 5MHz, V
OUT
= 2V
P-P
dBc-78SFDR
Spurious-Free Dynamic Range
Total harmonic distortion
3rd harmonic
2nd harmonic
MAX4216/MAX4218/ MAX4220
MAX4212/MAX4213
MAX4216/MAX4218/ MAX4220
MAX4212/MAX4213
f = 10MHz
EN_ = 0
f = 10kHz
f = 10kHz
V
OUT
= 20mV
P-P
NTSC, RL= 150
NTSC, RL= 150
fC= 10MHz, A
VCL
= 2
fC= 5MHz, V
OUT
= 2V
P-P
V
OUT
= 100mV
P-P
f1 = 10.0MHz, f2 = 10.1MHz, V
OUT
= 1V
P-P
V
OUT
= 2V step
V
OUT
= 2V step
V
OUT
= 2V
P-P
V
OUT
= 20mV
P-P
CONDITIONS
ns100t
ON
Amplifier Enable Time
6Z
OUT
Output Impedance
pF2C
OUT (OFF)
Disabled Output Capacitance
pF1C
IN
Input Capacitance
pA/Hz
1.3i
n
Input Noise-Current Density
nV/Hz
10e
n
Input Noise-Voltage Density
%0.02DGDifferential Gain Error
degrees0.02DPDifferential Phase Error
dBm11Input 1dB Compression Point
dBc35IP3
Two-Tone, Third-Order Intermodulation Distortion
dB-75
-82
HDHarmonic Distortion
200
MHz
300
BW
SS
Small-Signal -3dB Bandwidth
dBc
-78
ns1tR, t
F
Rise/Fall Time
ns45t
S
Settling Time to 0.1%
V/µs600SRSlew Rate
MHz180BW
LS
Large-Signal -3dB Bandwidth
MHz
50
BW
0.1dB
Bandwidth for 0.1dB Gain Flatness
35
UNITSMIN TYP MAXSYMBOLPARAMETER
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 5
GAIN
(dB)
GAIN
(dB)
GAIN
(dB)
)
CROSSTALK
(dB)
)
__________________________________________Typical Operating Characteristics
(VCC= 5V, VEE= 0, A
VCL
= 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
4
V
= 20mV
OUT
3
2
1
0
-1
GAIN (dB)
-2
-3
-4
-5
-6 100k 1M 10M 100M 1G
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
9
A
= 2
VCL
8
V
= 20mV
OUT
7
6
5
4
3
2
1
0
-1 100k 1M 10M 100M 1G
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
P-P
MAX4212/3/6/8/20-01
OUT
2
1
0
-1
-2
-3
-4
-5
-6
-7 100k 1M 10M 100M 1G
P-P
FREQUENCY (Hz)
3
V
= 20mV
LARGE-SIGNAL GAIN vs. FREQUENCY
4
V
= 2V
OUT
P-P
MAX4212/3/6/8/20-04
GAIN (dB)
3
2
1
0
-1
-2
-3
-4
-5
-6 100k 1M 10M 100M 1G
V
OUT BIAS
P-P
= 1.75V
FREQUENCY (Hz)
MAX4212/3/6/8/20-02
GAIN (dB)
MAX4212/3/6/8/20-05
GAIN (dB)
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
9
A
= 2
VCL
8
V
= 20mV
OUT
7
6
5
4
3
2
1
0
-1 100k 1M 10M 100M 1G
P-P
FREQUENCY (Hz)
MAX4212/MAX4213
GAIN FLATNESS vs. FREQUENCY
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
0.1M 1M 10M 100M 1G FREQUENCY (Hz)
MAX4212/3/6/8/20-03
MAX4212/3/6/8/20-06
MAX4216/MAX4218/MAX4220
GAIN FLATNESS vs. FREQUENCY
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
0.1M 1M 10M 100M 1G FREQUENCY (Hz)
MAX4212/3/6/8/20-07
-10
-30
-50
-70
-90
-110
-130
-150
MAX4216/MAX4218/MAX4220
CROSSTALK vs. FREQUENCY
50
30
10
100k 1M 10M 100M 1G
FREQUENCY (Hz
1000
MAX4212/3/6/8/20-08
100
IMPEDANCE ()
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
10
1
0.1
0.1M 1M 10M 100M FREQUENCY (Hz
MAX4212/3/6/8/20-09
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
6 _______________________________________________________________________________________
)
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0, A
VCL
= 1, RF= 24, RL= 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
HARMONIC DISTORTION
vs. FREQUENCY (A
0
V
= 2V
OUT
-10
-20
-30
-40
-50
-60
-70
-80
HARMONIC DISTORTION (dBc)
-90
-100 100k 1M 10M 100M
P-P
2ND HARMONIC
FREQUENCY (Hz)
3RD HARMONIC
VCL
= 1)
0
-10
-20
MAX4212/3/6/8/20-10
-30
-40
-50
-60
-70
-80
HARMONIC DISTORTION (dBc)
-90
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
V
= 2V
OUT
P-P
A
= 2
VCL
2ND HARMONIC
FREQUENCY (Hz)
= 2)
VCL
3RD HARMONIC
MAX4212/3/6/8/20-11
HARMONIC DISTORTION
0
vs. FREQUENCY (A
V
= 2V
OUT
-10
-20
-30
-40
-50
-60
-70
-80
HARMONIC DISTORTION (dBc)
-90
-100 100k 1M 10M 100M
P-P
A
= 5
VCL
2ND HARMONIC
FREQUENCY (Hz)
VCL
= 5)
3RD HARMONIC
MAX4212/3/6/8/20-12
HARMONIC DISTORTION
= 2V
vs. LOAD
P-P
2ND HARMONIC
LOAD (Ω)
0
f = 5MHz
-10 V
OUT
-20
-30
-40
-50
-60
-70
-80
HARMONIC DISTORTION (dBc)
-90
3RD HARMONIC
-100 0 200 400 600 800 1000
MAX4212/3/6/8/20-13
0
-10
-20
-30
-40
-50
-60
-70
-80
HARMONIC DISTORTION (dBc)
-90
-100
COMMON-MODE REJECTION
vs. FREQUENCY
0
-10
-20
-30
-40
-50
CMR (dB)
-60
-70
-80
-90
-100 100k 1M 10M 100M
FREQUENCY (Hz)
20
10
0
MAX4212/3/6/8/20-16
-10
-20
-30
-40
-50
-60
POWER-SUPPLY REJECTION (dB)
-70
-80
HARMONIC DISTORTION
vs. OUTPUT SWING
fO = 5MHz
2ND HARMONIC
3RD HARMONIC
0.5
1.0
OUTPUT SWING (V
1.5 2.0 )
P-P
POWER-SUPPLY REJECTION
vs. FREQUENCY
100k 1M 10M 100M
FREQUENCY (Hz)
0.03
0.02
0.01
MAX4212/3/6/8/20-14
0.00
DIFF. GAIN (%)
-0.01
0.03
0.02
0.01
0.00
DIFF. PHASE (deg)
-0.01
4.5
4.0
MAX4212/3/6/8/20-17
3.5
3.0
2.5
2.0
OUTPUT SWING (Vp-p)
1.5
1.0
DIFFERENTIAL GAIN AND PHASE
VCM = 1.35V
0 100
VCM = 1.35V
0 100
IRE
IRE
OUTPUT SWING
vs. LOAD RESISTANCE (R
A
= 2
VCL
25 50 75 100 125 150
LOAD RESISTANCE (Ω
)
L
MAX4212/3/6/8/20-15
MAX4212/3/6/8/20-18
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 7
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0, A
VCL
= 1, RF= 24, RL= 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
SMALL-SIGNAL PULSE RESPONSE
IN
(50mV/
div)
VOLTAGE
OUT
(25mV/
div)
V
= 2.5V, RL = 100 to GROUND
CM
LARGE-SIGNAL PULSE RESPONSE
IN
(1V/div)
(A
VCL
20ns/div
(A
VCL
= 1)
MAX4212/3/6/8/20-19
(25mV/
(25mV/
SMALL-SIGNAL PULSE RESPONSE
(A
VCL
IN
div)
VOLTAGE
OUT
div)
20ns/div
VCM = 1.25V, RL = 100 to GROUND
= 2)
MAX4212/3/6/8/20-20
LARGE-SIGNAL PULSE RESPONSE
= 2)
(A
= 1)
MAX4212/3/6/8/20-22
(500mV/
div)
IN
VCL
MAX4212/3/6/8/20-23
IN
(50mV/
div)
VOLTAGE
OUT
(25mV/
div)
IN
(1V/
div)
SMALL-SIGNAL PULSE RESPONSE
= 5pF, A
(C
L
= 1.75V, RL = 100 to GROUND
V
CM
20ns/div
VCL
= 1)
LARGE-SIGNAL PULSE RESPONSE
(C
= 5pF, A
L
VCL
= 2)
MAX4212/3/6/8/20-21
MAX4212/3/6/8/20-24
VOLTAGE
OUT
(1V/div)
V
= 1.75V, RL = 100 to GROUND
CM
MAX4213
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
100
10
NOISE (nV/Hz)
1
1 10 1k 10M1M
100 10k 100k
FREQUENCY (Hz)
VOLTAGE
OUT
(500mV/
div)
20ns/div
= 1.75V, RL = 100 to GROUND
V
CM
20ns/div
VOLTAGE
OUT
(500mV/
div)
20ns/div
V
= 0.9V, RL = 100 to GROUND
CM
MAX4218
CURRENT-NOISE DENSITY
10
MAX4212/3/6/8/20-25
NOISE (pA/Hz)
vs. FREQUENCY
1
1 10 1k 10M1M
100 10k 100k
FREQUENCY (Hz)
EN_
MAX4212/3/6/8/20-26
OUT
ENABLE RESPONSE TIME
VIN = 1.0V
MAX4212/3/6/8/20-27
1µs/div
5.0V (ENABLE)
0 (DISABLE)
1V
0
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
8 _______________________________________________________________________________________
____________________________Typical Operating Characteristics (continued)
(VCC= 5V, VEE= 0, A
VCL
= 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
OPEN-LOOP GAIN
70
60
50
40
OPEN-LOOP GAIN (dB)
30
20
vs. LOAD RESISTANCE
0 200 400 600 800 1k
LOAD RESISTANCE (Ω)
CLOSED-LOOP BANDWIDTH
400
350
MAX4212/3/6/8/20-28
300
250
200
150
100
CLOSED-LOOP BANDWIDTH (MHz)
50
0
vs. LOAD RESISTANCE
MAX4212/3/6/8/20-29
1000 200 500400300 600
LOAD RESISTANCE ()
OFF-ISOLATION vs. FREQUENCY
10
0
-10
-20
-30
-40
-50
OFF-ISOLATION (dB)
-60
-70
-80
-90 100k 10M 100M1M
FREQUENCY (Hz)
MAX4212/3/6/8/20-30
POWER-SUPPLY CURRENT
7
6
5
4
POWER-SUPPLY CURRENT (mA)
3
vs. TEMPERATURE
-25-50 0 755025 100 TEMPERATURE (°C)
MAX4212/3/6/8/20-31
INPUT BIAS CURRENT (µA)
6.0
5.5
5.0
4.5
4.0
POWER-SUPPLY CURRENT
vs. POWER-SUPPLY VOLTAGE
10
8
6
4
2
POWER-SUPPLY CURRENT (mA)
MAX4212/3/6/8/20-34
5
4
3
2
1
INPUT OFFSET VOLTAGE (mV)
INPUT BIAS CURRENT
vs. TEMPERATURE
-25-50 0 755025 100 TEMPERATURE (°C)
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
0.20
0.16
MAX4212/3/6/8/20-32
0.12
0.08
0.04
INPUT OFFSET CURRENT (µA)
0
5.0
4.8
MAX4212/3/6/8/20-35
4.6
4.4
VOLTAGE SWING (Vp-p)
4.2
INPUT OFFSET CURRENT
vs. TEMPERATURE
-25-50 0 755025 100 TEMPERATURE (°C)
VOLTAGE SWING vs. TEMPERATURE
RL = 150TO VCC/2
MAX4212/3/6/8/20-33
MAX4212/3/6/8/20-36
0
43 567891011
POWER-SUPPLY VOLTAGE (V)
0
-25-50 0 755025 100 TEMPERATURE (°C)
4.0
-25-50 0 755025 100
TEMPERATURE (°C)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 9
______________________________________________________________Pin Description
QSOPSOQSOPSO
MAX4218
MAX4216 SO/µMAX
MAX4220
MAX4213 SO/µMAX
MAX4212
SOT23
ENC2 2 Enable Amplifier C
ENB3 3 Enable Amplifier B
ENA1 1 Enable Amplifier A
EN 8 Enable Amplifier
IND+14 12 Amplifier D Noninverting Input
IND-15 13 Amplifier D Inverting Input
OUTD16 14 Amplifier D Output
INC+1212 14 10 Amplifier C Noninverting Input
INC-1113 15 9 Amplifier C Inverting Input
NAME
N.C.
OUT
V
EE
IN+
INA-
OUTA
V
CC
IN-
OUTC
INB+
INB-
OUTB
INA+
8, 9
13
2
1
4
10
5
6
7
3
11
6
7
4
14
10
9
8
5
8, 9
13
6
7
4
16
12
11
10
5
4
2
1
8
5
6
7
3
11
2
1
4
8
5
6
7
3
FUNCTION
1, 5
No Connection. Not internally connected. Tie to ground or leave open.
1 6 Amplifier Output
PIN
2 4
Negative Power Supply or Ground (in single-supply operation)
3 3 Noninverting Input
Amplifier A Inverting Input
Amplifier A Output
5 7 Positive Power Supply
4 2 Inverting Input
Amplifier C Output
Amplifier B Noninverting Input
Amplifier B Inverting Input
Amplifier B Output
Amplifier A Noninverting Input
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________Detailed Description
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback ampli­fiers that employ current-feedback techniques to achieve 600V/µs slew rates and 300MHz bandwidths. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal­processing applications.
The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±100mA drive capability, while constrain­ing total supply current to less than 7mA. The input stage permits common-mode voltages beyond the nega­tive supply and to within 2.25V of the positive supply rail.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are internally compensated for unity gain. When config­ured for unity gain, the devices require a 24resistor (RF) in series with the feedback path. This resistor
improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capaci­tance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (R
F
) and input (RG) resistor values to fit your application. Large resistor val­ues increase voltage noise and interact with the amplifi­ers input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a nonin­verting gain-of-two configuration (RF= RG) using 1k resistors, combined with 1pF of amplifier input capaci­tance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier band­width, it jeopardizes stability. Reducing the 1kresis­tors to 100extends the pole frequency to 1.59GHz, but could limit output swing by adding 200in parallel with the amplifiers load resistor. Table 1 shows sug­gested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single 3.3V to 11V power supply or from dual supplies to ±5.5V. For single-supply operation, bypass VCCto ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual sup­plies, bypass each supply with a 0.1µF capacitor.
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
10 ______________________________________________________________________________________
Figure 1a. Noninverting Gain Configuration Figure 1b. Inverting Gain Configuration
R
G
IN
R
TIN
R
F
V
OUT
R
TO
= [1+ (RF / RG)] V
R
IN
R
V
OUT
R
IN
O
TIN
G
R
S
R
F
V
OUT
= -(RF / RG) V
R
TO
IN
V
OUT
R
O
Maxim recommends using microstrip and stripline tech­niques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifiers performance, design it for a frequency greater than 1GHz. Pay care­ful attention to inputs and outputs to avoid large para­sitic capacitance. Whether or not you use a constant­impedance board, observe the following guidelines when designing the board:
Dont use wire-wrap boards because they are too inductive.
Dont use IC sockets because they increase parasitic capacitance and inductance.
Use surface-mount instead of through-hole compo­nents for better high-frequency performance.
Use a PC board with at least two layers; it should be as free from voids as possible.
Keep signal lines as short and as straight as possi­ble. Do not make 90° turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from (V
EE
- 200mV) to (VCC- 2.25V) with excellent common­mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not under­go phase reversal or latchup.
The output swings to within 50mV of either power­supply rail with a 10kload. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single 5V application, the input can swing 2.95V
P-P
, and the out-
put can swing 4.9V
P-P
with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the nega­tive supply rail, IILincreases (Figure 2). A single resis­tor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VILas the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL).
When the MAX4213/MAX4218 are disabled, the amplifi­ers output impedance is 35k. This high resistance and the low 2pF output capacitance make these parts ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive load­ing. See the Output Capacitive Loading and Stability section for more information.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 11
Table 1. Recommended Component Values
Note: RL= RO+ RTO; R
TIN
and RTOare calculated for 50applications. For 75systems, RTO= 75; calculate R
TIN
from the
following equation:
R =
75
1-
75
R
TIN
G
-25
+25-10+10-5+5-2+2-1
+1
49.9
10
0
50
1200
GAIN (V/V)
49.9
6
49.9
20
500
49.9
25
0
50
500
49.9
11
49.9
56
500
49.9
33
100
0
100
500
49.9
25
49.9
124
500
49.9
60
62
0
250
500
49.9
105
49.9
500
500
49.949.9
RTO()
90300Small-Signal -3dB Bandwidth (MHz)
5649.9
R
TIN
()
0
RS()
COMPONENT
500
RG()
50024
RF()
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Output Capacitive Loading and Stability
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are optimized for AC performance. They are not designed to drive highly reactive loads, which de­creases phase margin and may produce excessive ringing and oscillation. Figure 5 shows a circuit that eliminates this problem. Figure 6 is a graph of the opti­mal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capacitive load causes excessive peak­ing of the amplifiers frequency response if the capaci­tor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20to 30) placed before the reactive load prevents ringing and oscilla­tion. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance.
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
12 ______________________________________________________________________________________
Figure 2. Enable Logic-Low Input Current vs. V
IL
Figure 4. Enable Logic-Low Input Current vs. V
IL
with 10k
Series Resistor
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
20
0
-20
-40
-60
-80
-100
INPUT CURRENT (µA)
-120
-140
-160 0 50 100 150 300 350 500
0
-1
-2
-3
-4
-5
-6
INPUT CURRENT (µA)
-7
-8
-9
-10 0 50 100 150 300 350 500
200 250 400 450
mV ABOVE V
200 250 400 450
mV ABOVE V
EE
EE
ENABLE
10k
IN-
IN+
MAX42_ _
EN_
OUT
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 13
Figure 5. Driving a Capacitive Load through an Isolation Resistor
Figure 6. Capacitive Load vs. Isolation Resistance
Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor
Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27Isolation Resistor
30
50
MAX42_ _
R
F
R
ISO
V
OUT
C
L
25
()
ISO
20
15
10
5
ISOLATION RESISTANCE, R
0
500 100 200150 250
CAPACITIVE LOAD (pF)
R
G
V
IN
R
TIN
6
5
4
3
2
1
GIAN (dB)
0
-1
-2
-3
-4 100k 10M 100M1M 1G
CL = 10pF
FREQUENCY (Hz)
CL = 15pF
CL = 5pF
3
R
= 27
ISO
2
1
0
-1
-2
GIAN (dB)
-3
-4
-5
-6
-7 100k 10M 100M1M 1G
CL = 68pF
CL = 120pF
FREQUENCY (Hz)
CL = 47pF
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
14 ______________________________________________________________________________________
Pin Configurations (continued)
TOP VIEW
ENA
ENC
ENB
V
INA+
INA-
OUTA
ENA
ENC
ENB
V
INA+
INA-
OUTA
N.C.
OUTC
1
2
3
4
CC
MAX4218
5
6
7
SO
1
2
3
MAX4218
4
CC
5
6
7
8
14
13
INC-
12
INC+
11
V
EE
INB+
10
INB-
9
OUTB
8
OUTA
1
INA-
2
MAX4216
3
INA+
4
V
EE
16
OUTC
INC-
15
INC+
14
V
13
EE
INB+
12
INB-
11
OUTB
10
N.C.
9
µMAX/SO
V
8
CC
OUTB
7
INB-
6
5
INB+
OUTA
INA-
INA+
V
INB+
INB-
OUTB
OUTA
INA-
INA+
V
INB+
INB-
OUTB
N.C.
1
2
3
4
CC
MAX4220
5
6
7
SO
1
2
3
MAX4220
4
CC
5
6
7
8
OUTD
14
13
IND-
12
IND+
11
V
EE
INC+
10
INC-
9
OUTC
8
16
OUTD
IND-
15
IND+
14
V
13
EE
INC+
12
INC-
11
OUTC
10
N.C.
9
QSOP
QSOP
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 15
Chip Information_Ordering Information (continued)
MAX4212/MAX4213 TRANSISTOR COUNT: 95
MAX4216 TRANSISTOR COUNT: 190
MAX4218 TRANSISTOR COUNT: 299
MAX4220 TRANSISTOR COUNT: 362
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
PART
MAX4216ESA -40°C to +85°C 8 SO
MAX4216EUA -40°C to +85°C 8 µMAX
MAX4218ESD -40°C to +85°C 14 SO
MAX4218EEE -40°C to +85°C 16 QSOP
MAX4220ESD -40°C to +85°C 14 SO
MAX4220EEE -40°C to +85°C 16 QSOP
TEMP
RANGE
PIN PACKAGE
TOP
MARK
SOT-23 5L .EPS
PACKAGE OUTLINE, SOT-23, 5L
21-0057
1
E
1
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
0.6±0.1
0.6±0.1
8
1
TOP VIEW
ÿ 0.50±0.1
D
4X S
E H
BOTTOM VIEW
8
1
DIM
A1 A2 b
c D
E
A
e
H
L
α
S
INCHES
MIN
-
0.002
0.030
0.010
0.005
0.116
0.0256 BSC
0.116
0.188
0.016 0∞
0.0207 BSC
MAX
0.043
0.006
0.037
0.014
0.007
0.120
0.120
0.198
0.026 6∞
MILLIMETERS
MAX
MIN
-1.10
0.05 0.15
0.950.75
0.25 0.36
0.13 0.18
2.95 3.05
0.65 BSC
2.95 3.05
4.78
5.03
0.41
0.66 6∞0∞
0.5250 BSC
8LUMAXD.EPS
A2
e
FRONT VIEW
A1
A
c
b
L
SIDE VIEW
α
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
21-0036
REV.DOCUMENT CONTROL NO.APPROVAL
1
J
1
QSOP.EPS
Loading...