Maxim MAX4020ESD, MAX4018ESD, MAX4018EEE, MAX4016ESA, MAX4012EUK Datasheet

_______________General Description
The MAX4012 single, MAX4016 dual, MAX4018 triple, and MAX4020 quad op amps are unity-gain-stable devices that combine high-speed performance with Rail-to-Rail
®
outputs. The MAX4018 has a disable fea­ture that reduces power-supply current to 400µA and places its outputs into a high-impedance state. These devices operate from a +3.3V to +10V single supply or from ±1.65V to ±5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applica­tions).
These devices require only 5.5mA of quiescent supply current while achieving a 200MHz -3dB bandwidth and a 600V/µs slew rate. These parts are an excellent solu­tion in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instru­mentation. In addition, when disabled, their high output impedance makes them ideal for multiplexing applica­tions.
The MAX4012 comes in a miniature 5-pin SOT23 pack­age, while the MAX4016 comes in 8-pin µMAX and SO packages. The MAX4018/MAX4020 are available in a space-saving 16-pin QSOP, as well as a 14-pin SO.
________________________Applications
Set-Top Boxes Surveillance Video Systems Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems
____________________________Features
Low-CostHigh Speed:
200MHz -3dB Bandwidth (MAX4012) 150MHz -3dB Bandwidth (MAX4016/18/20) 30MHz 0.1dB Gain Flatness 600V/µs Slew Rate
Single 3.3V/5.0V OperationRail-to-Rail OutputsInput Common-Mode Range Extends Beyond V
EE
Low Differential Gain/Phase: 0.02%/0.02°Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
High Output Drive: ±120mA400µA Shutdown Capability (MAX4018)High Output Impedance in Off State (MAX4018)Space-Saving SOT23-5, µMAX, or QSOP Packages
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
________________________________________________________________
Maxim Integrated Products
1
V
EE
IN-
IN+
1
5
V
CC
OUT
MAX4012
SOT23-5
TOP VIEW
2
3
4
_________________Pin Configurations
R
O
50
IN
V
OUT
ZO = 50
UNITY-GAIN LINE DRIVER
(R
L
= RO + RTO)
R
F
24
R
TO
50
R
TIN
50
MAX4012
__________Typical Operating Circuit
19-1246; Rev 0; 7/97
______________Ordering Information
Ordering Information continued at end of data sheet.
Pin Configurations continued at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800 For small orders, phone 408-737-7600 ext. 3468.
PART
TEMP.
RANGE
PIN-
PACKAGE
5 SOT23-5
MAX4012EUK
-40°C to +85°C
SOT TOP
MARK
ABZP
8 SO
MAX4016ESA
-40°C to +85°C — 8 µMAXMAX4016EUA -40°C to +85°C
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC= +5V, VEE= 0V, EN_ = +5V, RL= ∞to VCC/ 2, V
OUT
= VCC/ 2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at T
A
= +25°C.) (Note 1)
Supply Voltage (V
CC
to VEE)................................................+12V
IN_-, IN_+, OUT_, EN_.....................(V
EE
- 0.3V) to (VCC+ 0.3V)
Output Short-Circuit Duration to V
CC
or VEE............. Continuous
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW
14-Pin SO (derate 8.3mW/°C above +70°C)...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10sec).............................+300°C
Guaranteed by CMRR test
(V
EE
- 0.2V) V
CM
(V
CC
- 2.25V)
Any channels for MAX4016/MAX4018/ MAX4020
(Note 2) (Note 2) Differential mode (-1V VIN≤ +1V)
CONDITIONS
µV/°C8TC
VOS
Input Offset Voltage Temperature Coefficient
mV4 20V
OS
V
VEE- V
CC
-
0.20 2.25
V
CM
Input Common-Mode Voltage Range
Input Offset Voltage (Note 2)
dBA
VOL
Open-Loop Gain (Note 2)
dB70 100CMRRCommon-Mode Rejection Ratio
mV±1Input Offset Voltage Matching
µA5.4 20I
B
Input Bias Current
µA0.1 20I
OS
Input Offset Current
k
70
R
IN
Input Resistance
UNITSMIN TYP MAXSYMBOLPARAMETER
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Common mode (-0.2V VCM≤ +2.75V)
M
3
0.25V V
OUT
4.75V, RL= 2k 61
0.5V V
OUT
4.5V, RL= 150 52 59
1.0V V
OUT
4V, RL= 50 57
VV
OUT
Output Voltage Swing (Note 2)
RL= 2k
0.06
0.06
RL= 150
0.30
0.30
0.6 1.5
0.6 1.5
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
VCC- V
OH
VOL- V
EE
RL= 75 RL= 75
to ground
1.1 2.0VCC- V
OH
0.05 0.50VOL- V
EE
mAOutput Current ±100 ±120
±150
8
RL= 20to VCCor V
EE
Sinking or sourcing
I
OUT
R
OUT
I
SC
Open-Loop Output Resistance
Output Short-Circuit Current
mA
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5V, VEE= 0V, EN_ = +5V, RL= ∞to VCC/ 2, V
OUT
= VCC/ 2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at T
A
= +25°C.) (Note 1)
VCC= 5V, VEE= 0V, VCM= +2.0V VCC= 5V, VEE= -5V, VCM= 0V
VCCto V
EE
CONDITIONS
dB
46 57
PSRR
Power-Supply Rejection Ratio (Note 3)
54 66
V3.15 11.0V
S
Operating Supply-Voltage Range
UNITSMIN TYP MAXSYMBOLPARAMETER
VCC= 3.3V, VEE= 0V, VCM= +0.90V 45
EN_ = 0V, 0V V
OUT
5V (Note 4)
k
28 35R
OUT (OFF)
Disabled Output Resistance
VVCC- 2.6V
IL
EN_ Logic-Low Threshold
VV
CC
- 1.6V
IH
EN_ Logic-High Threshold
0.5
EN_ = 5V µA0.5 10I
IH
EN_ Logic Input High Current
Enabled
mA
5.5 7.0
I
S
Quiescent Supply Current (per Amplifier)
MAX4018, disabled (EN_ = 0V) 0.40 0.55
(VEE+ 0.2V) EN_ V
CC
µA
200 300
I
IL
EN_ Logic Input Low Current
EN_ = 0V
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
4 _______________________________________________________________________________________
Note 1: The MAX4012EUT is 100% production tested at TA= +25°C. Specifications over temperature limits are guaranteed by
design.
Note 2: Tested with V
CM
= +2.5V.
Note 3: PSR for single +5V supply tested with V
EE
= 0V, VCC= +4.5V to +5.5V; for dual ±5V supply with VEE= -4.5V to -5.5V,
V
CC
= +4.5V to +5.5V; and for single +3.3V supply with VEE= 0V, VCC= +3.15V to +3.45V.
Note 4: Does not include the external feedback network’s impedance. Note 5: Guaranteed by design.
AC ELECTRICAL CHARACTERISTICS
(VCC= +5V, VEE= 0V, VCM= 2.5V, EN_ = +5V, RF= 24, RL= 100to VCC/ 2, V
OUT
= VCC/ 2, A
VCL
= +1, TA= +25°C, unless
otherwise noted.)
PARAMETER SYMBOL MIN TYP MAX UNITS
Bandwidth for 0.1dB Gain Flatness
BW
0.1dB
6 30 MHz
Large-Signal -3dB Bandwidth BW
LS
140 MHz
Slew Rate SR 600 V/µs Settling Time to 0.1% t
S
45 ns
Rise/Fall Time tR, t
F
1 ns
-78 dBc
Small-Signal -3dB Bandwidth BW
SS
200
MHz
150
Harmonic Distortion HD
-82
-75 dB
Two-Tone, Third-Order Intermodulation Distortion
IP3 35 dBc
Input 1dB Compression Point 11 dBm Differential Phase Error DP 0.02 degrees Differential Gain Error DG 0.02 % Input Noise-Voltage Density e
n
10
nV/Hz
Input Noise-Current Density i
n
6
pA/Hz
Input Capacitance C
IN
1 pF
Disabled Output Capacitance C
OUT (OFF)
2 pF
Output Impedance Z
OUT
6
Amplifier Enable Time t
ON
100 ns
CONDITIONS
V
OUT
= 2Vp-p
V
OUT
= 2V step
V
OUT
= 2V step
f1 = 10.0MHz, f2 = 10.1MHz, V
OUT
= 1Vp-p
V
OUT
= 100mVp-p
fC= 5MHz, V
OUT
= 2Vp-p
fC= 10MHz, A
VCL
= +2 NTSC, RL= 150 NTSC, RL= 150
V
OUT
= 20mVp-p
f = 10kHz f = 10kHz
MAX4018, EN_ = 0V f = 10MHz MAX4018
MAX4012 MAX4016/MAX4018/
MAX4020
V
OUT
= 20mVp-p (Note 5)
2nd harmonic 3rd harmonic
Total harmonic distortion
Spurious-Free Dynamic Range
SFDR -78 dBcfC= 5MHz, V
OUT
= 2Vp-p
Amplifier Disable Time t
OFF
1 µsMAX4018
Amplifier Gain Matching 0.1 dB
MAX4016/MAX4018/MAX4020, f = 10MHz, V
OUT
= 20mVp-p
Amplifier Crosstalk X
TALK
-95 dB
MAX4016/MAX4018/MAX4020, f = 10MHz, V
OU
T
= 2Vp-p, RS= 50to ground
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________
5
4
-6 100k 1M 10M 100M 1G
MAX4012
SMALL-SIGNAL GAIN vs. FREQUENCY
(A
VCL
= +1)
-4
MAX4012-01
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
A
VCL
= +1
V
OUT
= 20mVp-p
3
-7 100k 1M 10M 100M 1G
MAX4016/18/20
SMALL-SIGNAL GAIN vs. FREQUENCY
(A
VCL
= +1)
-5
MAX4012-02
FREQUENCY (Hz)
GAIN (dB)
-3
-1
1
2
-6
-4
-2
0
A
VCL
= +1
V
OUT
= 20mVp-p
9
-1 100k 1M 10M 100M 1G
MAX4012
SMALL-SIGNAL GAIN vs. FREQUENCY
(A
VCL
= +2)
1
MAX4012-03
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
A
VCL
= +2
V
OUT
= 20mVp-p
9
-1 100k 1M 10M 100M 1G
MAX4016/18/20
SMALL-SIGNAL GAIN vs. FREQUENCY
(A
VCL
= +2)
1
MAX4012-04
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
A
VCL
= +2
V
OUT
= 20mVp-p
0.5
-0.5
0.1M 1M 10M 100M 1G
MAX4016/18/20
GAIN FLATNESS vs. FREQUENCY
-0.3
MAX4012-07
FREQUENCY (Hz)
GAIN (dB)
-0.1
0.1
0.3
0.4
-0.4
-0.2
0
0.2
A
VCL
= +1
V
OUT
= 20mVp-p
4
-6 100k 1M 10M 100M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
-4
MAX4012-05
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
V
OUT
= 2Vp-p
V
OUT BIAS
= 1.75V
0.7
-0.3
0.1M 1M 10M 100M 1G
MAX4012
GAIN FLATNESS vs. FREQUENCY
-0.1
MAX4012-06
FREQUENCY (Hz)
GAIN (dB)
0.1
0.3
0.5
0.6
-0.2
0
0.2
0.4
A
VCL
= +1
V
OUT
= 20mVp-p
50
-150 100k 1M 10M 100M 1G
MAX4016/18/20
CROSSTALK vs. FREQUENCY
-110
MAX4212-08
FREQUENCY (Hz)
CROSSTALK (dB)
-70
-30
10
30
-130
-90
-50
-10
RS = 50
1000
0.1
0.1M 1M 10M 100M
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4012-09
FREQUENCY (Hz)
IMPEDANCE ()
100
1
10
__________________________________________Typical Operating Characteristics
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
6 _______________________________________________________________________________________
0
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +1)
-80
MAX4012-10
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
A
VCL
= +1
2ND HARMONIC
3RD HARMONIC
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +2)
-80
MAX4012-11
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
A
VCL
= +2
2ND HARMONIC
3RD HARMONIC
0
-100 100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (A
VCL
= +5)
-80
MAX4012-12
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
V
OUT
= 2Vp-p
A
VCL
= +5
2ND HARMONIC
3RD HARMONIC
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4012-13
LOAD ()
0 200 400 600 800 1000
HARMONIC DISTORTION
vs. LOAD
HARMONIC DISTORTION (dBc)
f = 5MHz V
OUT
= 2Vp-p
3rd HARMONIC
2rd HARMONIC
0
-100 100k 1M 10M 100M
COMMON-MODE REJECTION
vs. FREQUENCY
-80
MAX4012-16
FREQUENCY (Hz)
CMR (dB)
-60
-40
-20
-10
-90
-70
-50
-30
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4012-14
OUTPUT SWING (Vp-p)
0.5
1.0
1.5 2.0
HARMONIC DISTORTION
vs. OUTPUT SWING
HARMONIC DISTORTION (dBc)
fO = 5MHz
3RD HARMONIC
2ND HARMONIC
-0.01 0 100
0 100
DIFFERENTIAL GAIN AND PHASE
-0.01
0.00
0.00
0.01
0.01
0.02
0.02
0.03
0.03
IRE
IRE
DIFF. PHASE (deg)
DIFF. GAIN (%)
MAX4012-15
VCM = +1.35V
VCM = +1.35V
20
-80 100k 1M 10M 100M
POWER-SUPPLY REJECTION
vs. FREQUENCY
-60
MAX4012-17
FREQUENCY (Hz)
POWER-SUPPLY REJECTION (dB)
-40
-20
0
10
-70
-50
-30
-10
4.5
4.0
3.5
2.5
2.0
1.5
3.0
1.0
MAX4012-18
LOAD RESISTANCE ()
25 50 75 100 125 150
OUTPUT SWING
vs. LOAD RESISTANCE
OUTPUT SWING (Vp-p)
A
VCL
= +2
RL to VCC/2
RL to GROUND
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 7
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(A
VCL
= +1)
MAX4012-19
TIME (20ns/div)
V
CM
= +2.5V, RL = 100 to GROUND
IN
(25mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(A
VCL
= +2)
MAX4012-20
TIME (20ns/div)
VCM = +1.25V, RL = 100 to GROUND
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(C
L
= 5pF, A
VCL
= +1)
MAX4012-21
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
IN
(1V/div)
OUT
(1V/div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(A
VCL
= +1)
MAX4012-22
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
100
10
1
1 10 1k 10M1M
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
MAX4012-25
FREQUENCY (Hz)
NOISE (nV/Hz)
100 10k 100k
IN
(500mV/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(A
VCL
= +2)
MAX4012-23
TIME (20ns/div)
V
CM
= 0.9V, RL = 100 to GROUND
IN
(1V/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(C
L
= 5pF, A
VCL
= +2)
MAX4012-24
TIME (20ns/div)
V
CM
= +1.75V, RL = 100 to GROUND
10
1
1 10 1k 10M1M
CURRENT-NOISE DENSITY
vs. FREQUENCY
MAX4012-26
FREQUENCY (Hz)
NOISE (pA/Hz)
100 10k 100k
EN_
5.0V (ENABLE)
0V (DISABLE)
1V
0V
OUT
ENABLE RESPONSE TIME
MAX4012-27
TIME (1µs/div)
VIN = +1.0V
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
8 _______________________________________________________________________________________
70
50
60
40
30
20
MAX4012-28
LOAD RESISTANCE ()
0 200 400 600 800 1k
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
OPEN-LOOP GAIN (dB)
400 350 300 250
150
50
100
200
0
MAX4012-29
LOAD RESISTANCE ()
1000 200 500400300 600
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
CLOSED-LOOP BANDWIDTH (MHz)
10
-90 100k 10M 100M1M
OFF ISOLATION vs. FREQUENCY
-80
MAX4012-30
FREQUENCY (Hz)
OFF ISOLATION (dB)
-70
-60
-50
-40
-30
-20
-10
0
7
6
4
5
3
MAX4012-31
TEMPERATURE (°C)
-25-50 0 755025 100
SUPPLY CURRENT
vs. TEMPERATURE
SUPPLY CURRENT (mA)
10
8
6
4
2
0
MAX4012-34
SUPPLY VOLTAGE (V)
43 5 6 7 8 9 10 11
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
SUPPLY CURRENT (mA)
6.0
5.5
4.5
5.0
4.0
MAX4012-32
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT BIAS CURRENT (µA)
0.20
0.16
0.12
0.04
0.08
0
MAX4012-33
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET CURRENT
vs. TEMPERATURE
INPUT OFFSET CURRENT (µA)
5
4
3
1
2
0
MAX4012-35
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
INPUT OFFSET VOLTAGE (mV)
5.0
4.8
4.6
4.2
4.4
4.0
MAX4012-36
TEMPERATURE (°C)
-25-50 0 755025 100
OUTPUT VOLTAGE SWING
vs. TEMPERATURE
VOLTAGE SWING (Vp-p)
RL = 150 TO V
CC
/ 2
____________________________Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0V, A
VCL
= +1, RF= 24, RL= 100to VCC/ 2, TA = +25°C, unless otherwise noted.)
PIN
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 9
______________________________________________________________Pin Description
Amplifier A Noninverting Input— Amplifier B Output— Amplifier B Inverting Input— Amplifier B Noninverting Input— Amplifier C Output
Inverting Input4 Positive Power Supply5 Amplifier A Output— Amplifier A Inverting Input
Noninverting Input3
Negative Power Supply or Ground (in single-supply operation)
2
Amplifier Output1
No Connect. Not internally connected. Tie to ground or leave open.
FUNCTION
3 7 6 5 8
4 1 2
11
3 7 6 5
8 1 2
4
5 10 11 12 16
4
7
6
13
8, 9
5 8
9 10 14
4
7
6
11
3 7 6 5
10
4 1 2
13
8, 9
INA+
OUTB
INB-
INB+
OUTC
IN-
V
CC
OUTA
INA-
IN+
V
EE
OUT
N.C.
NAME
Amplifier C Inverting Input 9 1513 11 INC­Amplifier C Noninverting Input 10 1412 12 INC+ Amplifier D Output 14 16 OUTD Amplifier D Inverting Input 13 15 IND­Amplifier D Noninverting Input 12 14 IND+ Enable Amplifier EN Enable Amplifier A 11 ENA Enable Amplifier B 33 ENB Enable Amplifier C 22 ENC
MAX4012
SOT23-5
MAX4020
MAX4016 SO/µMAX
MAX4018
SO QSOP SO QSOP
PIN
MAX4012/MAX4016/MAX4018/MAX4020
_______________Detailed Description
The MAX4012/MAX4016/MAX4018/MAX4020 are sin­gle-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 600V/µs slew rates and 200MHz bandwidths. Excellent harmonic distortion and differential gain/phase perfor­mance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.
The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±120mA drive capability, while constrain­ing total supply current to less than 7mA. The input stage permits common-mode voltages beyond the nega­tive supply and to within 2.25V of the positive supply rail.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
cuit formed by the parasitic feedback capacitance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor val­ues increase voltage noise and interact with the amplifi­er’s input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a nonin­verting gain-of-two configuration (RF= RG) using 1k resistors, combined with 1pF of amplifier input capaci­tance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier band­width, it jeopardizes stability. Reducing the 1kresis­tors to 100extends the pole frequency to 1.59GHz, but could limit output swing by adding 200in parallel with the amplifier’s load resistor. Table 1 shows sug­gested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single +3.3V to +11V power supply or from dual supplies to ±5.5V. For single­supply operation, bypass VCCto ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor.
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
10 ______________________________________________________________________________________
IN
R
G
V
OUT
= [1+ (RF / RG)] V
IN
R
F
R
TO
R
TIN
R
O
V
OUT
MAX40_ _
Figure 1a. Noninverting Gain Configuration Figure 1b. Inverting Gain Configuration
MAX40_ _
V
R
F
= -(RF / RG) V
OUT
R
IN
R
TIN
G
R
S
R
TO
IN
V
OUT
R
O
Maxim recommends using microstrip and stripline tech­niques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier’s performance, design it for a frequency greater than 1GHz. Pay care­ful attention to inputs and outputs to avoid large para­sitic capacitance. Whether or not you use a constant­impedance board, observe the following guidelines when designing the board:
• Don’t use wire-wrap boards because they are too inductive.
• Don’t use IC sockets because they increase parasitic capacitance and inductance.
• Use surface-mount instead of through-hole compo­nents for better high-frequency performance.
• Use a PC board with at least two layers; it should be as free from voids as possible.
• Keep signal lines as short and as straight as possi­ble. Do not make 90° turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from (VEE- 200mV) to (VCC- 2.25V) with excellent common­mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not under­go phase reversal or latchup.
The output swings to within 60mV of either power­supply rail with a 2kload. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p, and the out­put can swing 4.9Vp-p with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the nega­tive supply rail, IILincreases (Figure 2). A single resis­tor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VILas the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL).
When the MAX4018 is disabled, the amplifier’s output impedance is 35k. This high resistance and the low 2pF output capacitance make this part ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading. See the
Output Capacitive Loading and Stability
section for
more information.
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 11
RF()
24 500
RG()
500
COMPONENT
RS()
0
R
TIN
()
49.9 56
Small-Signal -3dB Bandwidth (MHz) 200 90
RTO()
49.9 49.9
Table 1. Recommended Component Values
Note: RL= RO+ RTO; R
TIN
and RTOare calculated for 50applications. For 75systems, RTO= 75; calculate R
TIN
from the
following equation:
500 500
49.9
105
49.9
500 250
0
62
60
49.9
500 124
49.9
25
49.9
500 100
0
100
33
49.9
500
56 —
49.9
11
49.9
500
50
0
25
49.9
500
20 —
49.9
6
49.9
GAIN (V/V)
1200
50
0
10
49.9
+1 -1 +2 -2 +5 -5 +10 -10 +25 -25
R =
TIN
75
75
1-
R
G
MAX4012/MAX4016/MAX4018/MAX4020
To implement the mux function, the outputs of multiple amplifiers can be tied together, and only the amplifier with the selected input will be enabled. All of the other amplifiers will be placed in the low-power shutdown mode, with their high output impedance presenting very little load to the active amplifier output. For gains of +2 or greater, the feedback network impedance of all the amplifiers used in a mux application must be considered when calculating the total load on the active amplifier output
Output Capacitive Loading and Stability
The MAX4012/MAX4016/MAX4018/MAX4020 are opti­mized for AC performance. They are not designed to drive highly reactive loads, which decreases phase margin and may produce excessive ringing and oscilla­tion. Figure 5 shows a circuit that eliminates this prob­lem. Figure 6 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capaci­tive load causes excessive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20to 30) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance.
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
12 ______________________________________________________________________________________
OUT
IN-
EN_
IN+
10k
ENABLE
MAX40_ _
Figure 2. Enable Logic-Low Input Current vs. V
IL
Figure 4. Enable Logic-Low Input Current vs. V
IL
with 10k
Series Resistor
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
20
0
-20
-40
-60
-80
-100
INPUT CURRENT (µA)
-120
-140
-160 0 50 100 150 300 350 500
0
-1
-2
-3
-4
-5
-6
INPUT CURRENT (µA)
-7
-8
-9
-10 0 50 100 150 300 350 500
200 250 400 450
mV ABOVE V
200 250 400 450
mV ABOVE V
EE
EE
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 13
R
G
R
F
R
ISO
50
C
L
V
OUT
V
IN
R
TIN
MAX40_ _
Figure 5. Driving a Capacitive Load through an Isolation Resistor
30
25
20
5
10
15
0
CAPACITIVE LOAD (pF)
500 100 200150 250
ISOLATION RESISTANCE, R
ISO
()
Figure 6. Capacitive Load vs. Isolation Resistance
6
-4 100k 10M 100M1M 1G
-2
FREQUENCY (Hz)
GAIN (dB)
0
2
4
5
-3
-1
1
3
CL = 10pF
CL = 15pF
CL = 5pF
Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor
3
-7 100k 10M 100M1M 1G
-5
FREQUENCY (Hz)
GAIN (dB)
-3
-1
1
2
-6
-4
-2
0
CL = 68pF
R
ISO
= 27
CL = 120pF
CL = 47pF
Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27
Isolation Resistor
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
14 ______________________________________________________________________________________
TOP VIEW
14 13 12
11 10
9 8
1 2 3
4 5 6 7
OUTC INC-
INC+ V
EE
V
CC
ENB
ENC
ENA
MAX4018
INB+ INB­OUTB
OUTA
INA-
INA+
SO
14 13 12
11 10
9 8
1 2 3
4 5 6 7
OUTD IND-
IND+ V
EE
V
CC
INA+
INA-
OUTA
MAX4020
INC+ INC­OUTC
OUTB
INB-
INB+
SO
16 15 14 13
12 11 10
9
1 2 3 4 5 6 7 8
OUTC INC­INC+ V
EE
INB+ INB­OUTB N.C.
ENA ENC ENB
V
CC
INA+ INA-
OUTA
N.C.
MAX4018
QSOP
16 15 14 13
12 11 10
9
1
2 3 4
5
6 7 8
OUTD IND­IND+ V
EE
INC+ INC­OUTC N.C.
OUTA
INA-
INA+
V
CC
INB+
INB-
OUTB
N.C.
MAX4020
QSOP
INB-
INB+
V
EE
1 2
8
7
V
CC
OUTB
INA-
INA+
OUTA
SO/µMAX
3
4
6
5
MAX4016
_____________________________________________Pin Configurations (continued)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 15
362MAX4020
299MAX4018
190MAX4016
95MAX4012
TRANSISTOR
COUNT
PART
___________________Chip Information_Ordering Information (continued)
PART
TEMP.
RANGE
SOT TOP
MARK
________________________________________________________Package Information
PIN-
PACKAGE
14 SO 16 QSOP 14 SO 16 QSOP
MAX4018ESD
-40°C to +85°C MAX4018EEE -40°C to +85°C MAX4020ESD
-40°C to +85°C MAX4020EEE -40°C to +85°C
— — — —
SOT5L.EPS
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
___________________________________________Package Information (continued)
8LUMAXD.EPS
QSOP.EPS
Loading...