MAXIM MAX3108 Technical data

19-5723; Rev 1; 2/11
SPI/I2C UART with 128-Word FIFOs in WLP
The MAX3108 small form factor universal asynchronous receiver-transmitter (UART) with 128 words each of receive and transmit FIFOs is controlled through a serial I2C or SPI™ controller interface. Auto-sleep and shut­down modes help reduce power consumption during periods of inactivity. A low 500FA (max) supply current and tiny 25-bump WLP (2.1mm x 2.1mm) package make the MAX3108 ideal for low-power portable devices. The MAX3108 operates from a supply voltage of 1.71V to 3.6V.
Baud rates up to 24Mbps make the MAX3108 suitable for today’s high data rate applications. A phase-locked loop (PLL), predivider, and fractional baud-rate generator allow high-resolution baud-rate programming and minimize the dependency of baud rate on reference clock frequency.
Four GPIOs can be used as inputs, outputs, or interrupt inputs. When configured as outputs, they can be programmed to be open-drain outputs and sink up to 20mA of current.
The MAX3108 is ideal for portable and handheld devic­es, is available in a 25-bump (2.1mm x 2.1mm) 0.4mm pitch WLP package, and is specified over the -40NC to +85NC extended temperature range.
Applications
Portable Communication Devices Mobile Internet Devices Low-Power Handheld Devices Medical Systems Point-of-Sale Systems
SPI is a trademark of Motorola, Inc. IrDA is a service mark of Infrared Data Association Corporation.
Functional Diagram
Features
S 24Mbps (max) Baud Rate S Integrated PLL and Divider S 1.71V to 3.6V Supply Range S High-Resolution Programmable Baud Rate S SPI Up to 26MHz Clock Rate S Fast Mode Plus I S Automatic RTS and CTS Hardware Flow Control S Automatic XON/XOFF Software Flow Control S Special Character Detection S 9-Bit Multidrop Mode Data Filtering S SIR- and MIR-Compliant IrDA S Flexible Logic Levels on the Controller and
2
C Up to 1MHz
SM
Encoder/Decoder
Transceiver Interfaces
S Four Flexible GPIOs S Line Noise Indication S Shutdown and Auto-Sleep Modes
S Low 35µA (max) V S Register Compatible with the MAX3107 S Tiny, 25-Bump WLP Package (2.1mm x 2.1mm)
Shutdown Current
CC
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX3108EWA+
-40NC to +85NC
+Denotes a lead(Pb)-free/RoHS-compliant package.
25 WLP
MAX3108
LDOEN
SPI/I2C
MOSI/A1
MISO/SDA
CS/A0
SCLK/SCL
RST
IRQ
XIN
XOUT
V
CC
V
L
LDO
SPI/I2C
LOGIC-LEVEL
TRANSLATION
CRYSTAL
OSCILLATOR
DIVIDER
PLL
V
18
MAX3108
Tx AND FIFO
REGISTERS
AND
CONTROL
FRACTIONAL
BAUD-RATE GENERATOR
DGNDAGND
FLOW
CONTROL
LOGIC-LEVEL
TRANSLATION
Rx AND FIFO
GPIO
V
EXT
TX
CTS
RTS
RX
GPIO0 GPIO1 GPIO2 GPIO3
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
SPI/I2C UART with 128-Word FIFOs in WLP

TABLE OF CONTENTS

Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Package Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
MAX3108
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Bump Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bump Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Receive and Transmit FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Transmitter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Receiver Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Line Noise Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PLL and Predivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Fractional Baud-Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2x and 4x Rate Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Multidrop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Auto Data Filtering in Multidrop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Echo Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Auto Hardware Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
AutoRTS Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
AutoCTS Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Auto Software (XON/XOFF) Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Receiver Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Transmitter Flow Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FIFO Interrupt Triggering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Low-Power Standby Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Forced-Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Auto-Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Power-Up and IRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 ______________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP
TABLE OF CONTENTS (continued)
Interrupt Enabling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Interrupt Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Detailed Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Serial Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SPI Single-Cycle Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SPI Burst Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
START, STOP, and Repeated START Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Single-Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Single-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Startup and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Interrupts and Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Logic-Level Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Connector Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
RS-232 5x3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
MAX3108
_______________________________________________________________________________________ 3
SPI/I2C UART with 128-Word FIFOs in WLP

LIST OF FIGURES

Figure 1. I2C Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. Transmit FIFO Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Receive Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MAX3108
Figure 6. Midbit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7. Clock Selection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. 2x and 4x Baud Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Setup and Hold times in Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Half-Duplex with Echo Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Echo Suppression Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13. Simplified Interrupt Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 14. PLL Signal Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 15. Single-Cycle Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 16. Single-Cycle Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 17. I2C START, STOP, and Repeated START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 18. Write Byte Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 19. Burst Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 20. Read Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 21. Burst Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 22. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 23. Startup and Initialization Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 24. Logic-Level Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 25. Connector Sharing with a USB Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 26. RS-232 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 27. RS-485 Half-Duplex Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

LIST OF TABLES

Table 1. StopBits Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 2. Lengthx Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 3. SwFlow[3:0] Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 4. PLLFactorx Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 5. I2C Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 ______________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP

LIST OF REGISTERS

Receive Hold Register (RHR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Transmit Hold Register (THR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
IRQ Enable Register (IRQEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Interrupt Status Register (ISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Line Status Interrupt Enable Register (LSRIntEn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Line Status Register (LSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Special Character Interrupt Enable Register (SpclChrIntEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Special Character Interrupt Register (SpclCharInt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STS Interrupt Enable Register (STSIntEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Status Interrupt Register (STSInt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MODE1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
MODE2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Line Control Register (LCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Receiver Timeout Register (RxTimeOut) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
HDplxDelay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
IrDA Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Flow Level Register (FlowLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
FIFO Interrupt Trigger Level Register (FIFOTrgLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Transmit FIFO Level Register (TxFIFOLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Receive FIFO Level Register (RxFIFOLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Flow Control Register (FlowCtrl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
XON1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
XON2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
XOFF1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
XOFF2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
GPIO Configuration Register (GPIOConfg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
GPIO Data Register (GPIOData) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
PLL Configuration Register (PLLConfig). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Baud-Rate Generator Configuration Register (BRGConfig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Baud-Rate Generator LSB Divisor Register (DIVLSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Baud-Rate Generator MSB Divisor Register (DIVMSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Clock Source Register (CLKSource) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
MAX3108
_______________________________________________________________________________________ 5
SPI/I2C UART with 128-Word FIFOs in WLP

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to AGND.) VL, VCC, V
XOUT ........................................................ -0.3V to (VCC + 0.3V)
V18 ...................... -0.3V to the lesser of (VCC + 0.3V) and 2.0V
RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL,
MISO/SDA, LDOEN, SPI/I2C .................... -0.3V to (VL + 0.3V)
TX, RX, RTS, CTS, GPIO_ ....................... -0.3V to (V
, XIN ...............................................-0.3V to +4.0V
EXT
EXT
+ 0.3V)
DGND ...................................................................-0.3V to +0.3V
Continuous Power Dissipation (TA = +70NC)
WLP (derate 19.2mW/NC above +70NC) ................... 1536mW
Operating Temperature Range .......................... -40NC to +85NC
Maximum Junction Temperature .....................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Soldering Temperature (reflow) ......................................+260NC
MAX3108

PACKAGE THERMAL CHARACTERISTICS

WLP
Junction-to-Ambient Thermal Resistance (BJA) ...........52NC/W
Junction-to-Case Thermal Resistance (BJC) ................11NC/W
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, V VCC = 2.8V, VL = 1.8V, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Digital Interface Supply Voltage V
Analog Supply Voltage V
UART Interface Logic Supply Voltage
Logic Supply Voltage V
CURRENT CONSUMPTION
VCC Supply Current I
VCC Shutdown Supply Current I
VL Shutdown or Sleep Supply Current
V
Shutdown Supply Current I
EXT
V18 Input Power-Supply Current in Shutdown Mode
= 2.5V, TA = +25NC.) (Notes 2, 3)
EXT
V
CCSHDN
I
18SHDN
= 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at
EXT
L
CC
EXT
CC
I
EXT
Internal PLL disabled and bypassed 1.71 3.6 Internal PLL enabled 2.35 3.6
18
1.8MHz crystal oscillator active, PLL disabled, SPI/I2C interface idle, UART interfaces idle, LDOEN = high
Baud rate = 1Mbps, 20MHz external clock, SPI/I2C interface idle, PLL disabled, UART in loopback mode, LDOEN = low
Shutdown mode, LDOEN = low, RST = low, all inputs and outputs are idle
Shutdown or sleep mode, all inputs and
L
outputs are idle
Shutdown mode, RST = low, all inputs and outputs are idle
Shutdown mode, LDOEN = low, RST = low, all inputs and outputs are idle
(Note 1)
1.71 3.6 V
1.71 3.6 V
1.65 1.95 V
500
500
35
15
10
50
V
FA
FA
FA
FA
FA
6 ______________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, V VCC = 2.8V, VL = 1.8V, V
= 2.5V, TA = +25NC.) (Notes 2, 3)
EXT
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
V18 Input Power-Supply Current I
SCLK/SCL, MISO/SDA
MISO/SDA Output Logic-Low Voltage in I2C Mode
MISO/SDA Output Logic-Low Voltage in SPI Mode
MISO/SDA Output Logic-High Voltage in SPI Mode
V
V
V
OHSPI
Input Logic-Low Voltage V
Input Logic-High Voltage V
Input Hysteresis V
Input Leakage Current I Input Capacitance C
SPI/I2C, CS/A0, MOSI/A1 INPUTS
Input Logic-Low Voltage V
Input Logic-High Voltage V
Input Hysteresis V Input Leakage Current I Input Capacitance C
IRQ OUTPUT (OPEN DRAIN)
Output Logic-Low Voltage V Output Leakage Current I
LDOEN AND RST INPUTS
Input Logic-Low Voltage V
Input Logic-High Voltage V
Input Hysteresis V Input Leakage Current I
= 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at
EXT
Baud rate = 1Mbps, 20MHz external clock,
18
PLL disabled, UART in loopback mode, LDOEN = low (Note 4)
Sink current = 3mA, VL > 2V 0.4
OLI2C
OLSPI
Sink current = 3mA, VL < 2V
Sink current = 2mA 0.4 V
Source current = 2mA
SPI and I2C mode
IL
SPI and I2C mode
IH
HYST
HYST
OL
OL
HYST
SPI and I2C mode
VIN = 0 to VL, SPI and I2C mode -1 +1
IL
SPI and I2C mode 5 pF
IN
SPI and I2C mode
IL
SPI and I2C mode
IH
SPI and I2C mode 50 mV VIN = 0 to VL, SPI and I2C mode -1 +1
IL
SPI and I2C mode 5 pF
IN
Sink current = 2mA 0.4 V
V
= 0 to VL, IRQ is not asserted
IRQ
IL
IH
VIN = 0 to V
IL
L
VL -
0.4
0.7 x V
L
0.05 x V
L
0.7 x V
L
-1 +1
0.7 x V
L
50 mV
-1 +1
2 mA
0.2 x V
L
0.3 x V
L
0.3 x V
L
0.3 x V
L
MAX3108
V
V
V
V
V
FA
V
V
FA
FA
V
V
FA
_______________________________________________________________________________________ 7
SPI/I2C UART with 128-Word FIFOs in WLP
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, V VCC = 2.8V, VL = 1.8V, V
= 2.5V, TA = +25NC.) (Notes 2, 3)
EXT
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
UART INTERFACE RTS, TX OUTPUTS
Output Logic-Low Voltage V
MAX3108
Output Logic-High Voltage V
Input Leakage Current I Input Capacitance C
CTS, RX INPUTS
Input Logic-Low Voltage V
Input Logic-High Voltage V
Input Hysteresis V CTS Input Leakage Current
RX Pullup Current I Input Capacitance C
GPIO_ INPUTS/OUTPUTS
Output Logic-Low Voltage V
Output Logic-High Voltage V
Input Logic-Low Voltage V
Input Logic-High Voltage V
Pulldown Current I
XIN
Input Logic-Low Voltage V Input Logic-High Voltage V Input Capacitance C
XOUT
Input Capacitance C
= 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at
EXT
OL
OH
HYST
I
PU
Sink current = 2mA 0.4 V
Source current = 2mA
Output is three-stated, V
IL
High-Z mode 5 pF
IN
IL
IH
RTS
= 0 to V
EXT
0.7 x V
EXT
-1 +1
0.7 x V
EXT
50 mV
V
IL
CTS
= 0 to V
EXT
-1 +1
VRX = 0V -7.5 -5.5 -3.5
IN
5 pF
Sink current = 20mA, push-pull or open-
OL
OH
IL
IH
PD
IL
IH
XIN
XOUT
drain output type, V
Sink current = 20mA, push-pull or open­drain output type, V
Source current = 5mA, push-pull output type
GPIO_ is configured as an input 0.4 V
GPIO_ is configured as an input
V
= V
GPIO_
, GPIO_ is configured as an
EXT
input
EXT
EXT
> 2.3V
< 2.3V
V
-
EXT
0.4V
2/3 x V
EXT
3.5 5.5 7.5
1.2 V 16 pF
16 pF
0.3 x V
EXT
0.45
0.55
0.6 V
V
FA
V
V
FA FA
V
V
V
FA
8 ______________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP

AC ELECTRICAL CHARACTERISTICS

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, V VCC = 2.8V, VL = 1.8V, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
External Cystal Frequency f External Clock Frequency f External Clock Duty Cycle (Note 5) 45 55 %
Baud-Rate Generator Clock Input Frequency
I2C BUS: TIMING CHARACTERISTICS (Figure 1)
SCL Clock Frequency f
Bus Free Time Between a STOP and START Condition
Hold Time for START Condition and Repeated START Condition
Low Period of the SCL Clock t
High Period of the SCL Clock t
Data Hold Time
Data Setup Time t
Setup Time for Repeated START Condition
Rise Time of Incoming SDA and SCL Signals
Fall Time of SDA and SCL Signals
= 2.5V, TA = +25NC.) (Note 2)
EXT
XOSC
t
HD:STA
t
HD:DAT
SU:DAT
t
SU:STA
= 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at
EXT
1 4 MHz
CLK
f
REF
SCL
t
BUF
LOW
HIGH
t
R
t
F
Standard mode 100
Fast mode plus 1000 Standard mode 4.7 Fast mode 1.3 Fast mode plus 0.5 Standard mode 4.0 Fast mode 0.6 Fast mode plus 0.26 Standard mode 4.7 Fast mode 1.3 Fast mode plus 0.5 Standard mode 4.0 Fast mode 0.6 Fast mode plus 0.26 Standard mode 0 0.9 Fast mode 0 0.9 Fast mode plus 0 Standard mode 250
Fast mode plus 50 Standard mode 4.7 Fast mode 0.2 Fast mode plus 0.26
Standard mode (0.3 x VL to 0.7 x VL) (Note 6)
Fast mode (0.3 x VL to 0.7 x VL) (Note 6)
Fast mode plus 120
Standard mode (0.3 x VL to 0.7 x VL) (Note 6)
Fast mode (0.3 x VL to 0.7 x VL) (Note 6)
Fast mode plus 120
0.5 35 MHz
20 +
0.1C
20 +
0.1C
20 +
0.1C
20 +
0.1C
B
B
B
B
1000
1000
96 MHz
300
300
MAX3108
kHzFast mode 400
Fs
Fs
Fs
Fs
Fs
nsFast mode 100
Fs
ns
ns
_______________________________________________________________________________________ 9
SPI/I2C UART with 128-Word FIFOs in WLP
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, V VCC = 2.8V, VL = 1.8V, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Setup Time for STOP Condition t
= 2.5V, TA = +25NC.) (Note 2)
EXT
SU:STO
MAX3108
Capacitive Load for SDA and SCL
SCL and SDA I/O Capacitance C Pulse Width of Spike Suppressed t
SPI BUS: TIMING CHARACTERISTICS (Figure 2)
SCLK Clock Period t SCLK Pulse Width High t SCLK Pulse Width Low t CS Fall to SCLK Rise Time MOSI Hold Time t MOSI Setup Time t Output Data Propagation Delay t MISO Rise and Fall Times t CS Hold Time
Note 2: All units are production tested at TA = +25NC. Specifications over temperature are guaranteed by design. Note 3: Currents entering the IC are positive and currents exiting the IC are negative. Note 4: When V18 is powered by an external voltage supply, it must have current capability above or equal to I18. Note 5: Guaranteed by design; not production tested. Note 6: CB is the total capacitance of either the clock or data line of the synchronous bus in pF.
CH+tCL
= 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at
EXT
Standard mode 4.7 Fast mode 0.6 Fast mode plus 0.26 Standard mode (Note 5) 400
C
B
Fast mode plus (Note 5) 550 (Note 5) 10 pF
I/O
SP
38.4 ns
CH
t
CSS
DH
DO
t
CSH
CL
DS
FT
16 ns 16 ns
0 ns 3 ns 5 ns
30 ns
Fs
pFFast mode (Note 5) 400
50 ns
20 ns 10 ns
10 _____________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP

Timing Diagrams

MAX3108
START CONDITION
(S)
SDA
t
HD:STA
SCL
Figure 1. I2C Timing Diagram
CS
t
CSH
SCLK
t
CSS
t
HD:DAT
t
t
DS
t
SU:DAT
HIGH
t
DH
REPEATED START CONDITION
t
SU:STA
t
R
t
CL
t
F
t
CH
(Sr)
t
R
t
HD:STA
t
LOW
t
SU:STO
t
F
STOP CONDITION
t
CSH
(P)
t
BUF
START CONDITION
(S)
MOSI
MISO
t
Figure 2. SPI Timing Diagram
______________________________________________________________________________________ 11
t
DO
FT
SPI/I2C UART with 128-Word FIFOs in WLP

Typical Operating Characteristics

(VCC = 2.5V, VL = 2.5V, V
= 2.5V, V
EXT
= VL, TA = +25°C unless otherwise noted.)
LDOEN
180
160
MAX3108
(mA)
SINK
I
140
120
100
80
60
40
20
0
SINK CURRENT (OPEN DRAIN)
vs. GPIO_ OUTPUT LOW VOLTAGE
V
= 3.6V
EXT
V
= 2.5V
EXT
V
= 1.71V
EXT
0 4
VOL (V)
321
MAX3108 toc01
SOURCE CURRENT (PUSH-PULL)
vs. GPIO_ OUTPUT HIGH VOLTAGE
70
60
V
= 3.3V
50
V
= 2.5V
EXT
40
(mA)
30
V
= 1.8V
EXT
SOURCE
I
20
10
0
0 4
EXT
VOH (V)
MAX3108 toc02
321
12 _____________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP

Bump Configuration

TOP VIEW
(BUMPS ON BOTTOM)
+
A
CC
2 3 41
MISO/
SDA
MAX3108
CS/A0 IRQV
5
V
L
MAX3108
B
V
C
D
E
RST
18
LDOEN N.C.
XOUT SPI/I2C GPIO3 CTSXIN
GPIO2 RTS TX
EXT
SCLK/
SCL
MOSI/
A1
GPIO0
DGND
GPIO1AGND
RXV
WLP
(2.1mm × 2.1mm)

Bump Description

BUMP NAME FUNCTION
A1 V
CC
A2 MISO/SDA
A3
A4
A5 V
B1 V
B2
CS/A0
IRQ
L
18
RST
B3 SCLK/SCL
Analog Power Supply. VCC powers the PLL and internal LDO. Bypass VCC with a 0.1FF ceramic capaci­tor to AGND.
Serial-Data Output. When SPI/I2C is high, MISO/SDA functions as the SPI master input, slave output (MISO). When SPI/I2C is low, MISO/SDA functions as the SDA, I2C serial-data input/output.
Active-Low Chip-Select and Address 0 Input. When SPI/I2C is high, CS/A0 functions as the CS, SPI active-low chip-select. When SPI/I2C is low, CS/A0 functions as the A0 I2C device address program­ming input. Connect CS/A0 to DGND, VL, SCL, or SDA when SPI/I2C is low.
Active-Low Interrupt Open-Drain Output. IRQ is asserted when an interrupt is pending and during initial power-up.
Digital Interface Power Supply. VL powers the internal logic-level translators for RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL, MISO/SDA, LDOEN, and SPI/I2C. Bypass VL with a 0.1FF ceramic capacitor to DGND.
Internal 1.8V LDO Output and 1.8V Power-Supply Input. Bypass V18 with a 0.1FF ceramic capacitor to DGND.
Active-Low Reset Input. Drive RST low to force the UART into hardware reset mode. In hardware reset mode, the internal PLL is shut down and there is no clock activity.
Serial-Clock Input. When SPI/I2C is high, SCLK/SCL functions as the SCLK SPI serial-clock input (up to 26MHz). When SPI/I2C is low, SCLK/SCL functions as the SCL, I2C serial-clock input (up to 1MHz in fast mode plus).
______________________________________________________________________________________ 13
SPI/I2C UART with 128-Word FIFOs in WLP
Bump Description (continued)
BUMP NAME FUNCTION
Serial-Data Input and Address 1 Input. When SPI/I2C is high, MOSI/A1 functions as the SPI master
B4 MOSI/A1
B5 DGND Digital Ground C1 AGND Analog Ground
MAX3108
C2 LDOEN
C3 N.C. Not Connected. Internally not connected.
C4 GPIO0
C5 GPIO1
D1 XIN
D2 XOUT
D3
D4 GPIO3
D5
E1 V
E2 GPIO2
E3 E4 TX Serial Transmitting Data Output E5 RX Serial Receiving Data Input. RX has an internal weak pullup resistor to V
SPI/I2C SPI Selector Input or Active-Low I2C. Drive SPI/I2C low to enable I2C. Drive SPI/I2C high to enable SPI.
CTS Active-Low Clear-to-Send Input. CTS is a flow-control status input.
EXT
RTS Active-Low Request-to-Send Output. RTS can be set high or low by programming the LCR register.
output-slave input (MOSI). When SPI/I2C is low, MOSI/A1 functions as the A1 I2C device address pro­gramming input. Connect MOSI/A1 to DGND, VL, SCL, or SDA when SPI/I2C is low.
LDO Enable Input. Drive LDOEN high to enable the internal 1.8V LDO. Drive LDOEN low to disable the internal LDO. Supply V
General-Purpose Input/Output 0. GPIO0 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO0 has a weak pulldown resistor to DGND when configured as an input.
General-Purpose Input/Output 1. GPIO1 is user programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO1 has a weak pulldown resistor to DGND when configured as an input.
Crystal/Clock Input. When using an external crystal, connect one end of the crystal to XIN and the other end to XOUT. When using an external clock source, drive XIN with the single-ended external clock.
Crystal Output. When using an external crystal, connect one end of the crystal to XOUT and the other end to XIN. When using an external clock source, leave XOUT unconnected.
General-Purpose Input/Output 3. GPIO3 is user-programmable as input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO3 has a weak pulldown resistor to DGND when configured as an input.
Transceiver Interface Power Supply. V CTS, and GPIO_. Bypass V
General-Purpose Input/Output 2. GPIO2 is user programmable as input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO2 has a weak pulldown resistor to DGND when configured as an input.
with an external voltage source when LDOEN is low.
18
powers the internal logic-level translators for RX, TX, RTS,
EXT
with a 0.1FF ceramic capacitor to DGND.
EXT
EXT
.
14 _____________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP

Detailed Description

The MAX3108 universal asynchronous receiver-trans­mitter (UART) bridges an SPI/MICROWIREK or I2C microprocessor bus to an asynchronous serial-data communication link. The MAX3108 contains an advanced UART, a fractional baud-rate generator, and four GPIOs. Eight-bit registers configure and monitor the MAX3108 and are accessed through SPI or I2C, selectable by an external pin. The registers are organized by related func­tion as shown in the Register Map section.
The host controller loads data into the Transmit Hold register (THR) through the SPI or I2C interface. This data is automatically pushed into the transmit first-in/first-out (FIFO), formatted, and sent out at TX. The MAX3108 adds START, STOP, and parity bits to the data before transmitting at the selected baud rate. The clock configu­ration registers determine the baud rate, clock source, and clock frequency prescaling.
The MAX3108 receiver detects a START bit as a high­to-low transition on RX. An internal clock samples this data at 16 times the baud rate. The received data is automatically placed in the receive FIFO and can be read out by the host microcontroller through the Receive Hold register (RHR).
The MAX3108’s register set is compatible with the MAX3107.
levels are programmed through the FIFOTrgLvl register with a resolution of eight FIFO locations. The receive FIFO trigger signals to the host either that the receive FIFO has a defined number of words waiting to be read out in a block or that a known number of vacant FIFO locations are available and ready to be filled. The trans­mit FIFO trigger generates an interrupt when the transmit FIFO fill level is above the programmed trigger level. The host then knows to throttle data writing to the transmit FIFO through THR.
The host can read out the number of words pres­ent in each of the FIFOs through the TxFIFOLvl and RxFIFOLvl registers.
The contents of the TxFIFO and RxFIFO are both cleared when the MODE2[1]: FIFORst bit is set high.

Transmitter Operation

Figure 3 shows the structure of the transmitter with the TxFIFO. The transmit FIFO can hold up to 128 words of data that are added by writing to the THR register.
The current number of words in the TxFIFO can be manually read out by the host controller through the TxFIFOLvl register. The transmit FIFO fill level can be
2
DATA FROM SPI/I
C INTERFACE
MAX3108

Register Set

The MAX3108 has a flat register structure without shadow registers. The registers are 8 bits wide. The MAX3108 registers have some similarities to the 16C550 registers.

Receive and Transmit FIFOs

The UART’s receiver and transmitter each have a 128-word-deep FIFO, reducing the number of intervals that the host processor needs to dedicate for high­speed, high-volume data transfer to and from the device. As the data rates of the asynchronous RX/TX interfaces increase and get closer to those of the host controller’s SPI/I2C data rates, UART management and flow-control can make up a significant portion of the host’s activity. By increasing FIFO size, the host is interrupted less often and can use data block transfers to and from the FIFOs.
FIFO trigger levels can generate interrupts to the host controller, signaling that programmed FIFO fill levels have been reached. The transmitter and receiver trigger
MICROWIRE is a trademark of National Semiconductor Corp.
______________________________________________________________________________________ 15
ISR[4]
TxFIFOLvl
ISR[5]
Figure 3. Transmit FIFO Signals
TRIGGER
LEVEL
EMPTY
THR
FIFOTrgLvl[3:0]
CURRENT FILL LEVEL
TRANSMIT FIFO
TRANSMITTER TX
128
3 2 1
SPI/I2C UART with 128-Word FIFOs in WLP
LSB
RECEIVED DATA
MIDDATA
SAMPLING
Figure 4. Receive Data Format
START D0 D1 D2 D3 D4 D5 D6 D7 PARITY STOP STOP
MAX3108
RECEIVED
RECEIVER RX
ISR[3]
ISR[6]
OVERRUN
TRIGGER
TIMEOUT
EMPTY
ERRORS
LSR[1]
CURRENT FILL LEVEL
I2C/SPI INTERFACE
LSR[0]
LSR[5:2]
Figure 5. Receive FIFO
programmed to generate an interrupt when more than a programmed number of words are present in the TxFIFO through the FIFOTrgLvl register. This TxFIFO interrupt trigger level is selectable by the FIFOTrgLvl[3:0] bits. When the transmit FIFO fill level increases beyond the
WORD ERROR 128
FIFOTrgLvl[7:4]
RECEIVE FIFO
RxFIFOLvl
RHR
4 3 2 1
DATA
MSB
programmed trigger level, an interrupt is generated in ISR[4]: TxTrgInt.
An interrupt is generated in ISR[5]: TFifoEmptyInt when the transmit FIFO is empty. ISR[5] goes high when the transmitter starts transmitting the last word in the TxFIFO. An additional interrupt is generated in STSInt[7]: TxEmptyInt when the transmitter completes transmitting the last word.
To halt transmission, set the MODE1[1]: TxDisabl bit high. After TxDisabl is set, the transmitter completes the transmission of the current character and then ceases transmission. Turn the transmitter off prior to enabling auto software flow control and AutoRTS flow control.
The TX output logic can be inverted through the IrDA[5]: TxInv bit. Unless otherwise noted, all transmitter logic described in this data sheet assumes that TxInv is set low.

Receiver Operation

The receiver expects the format of the data at RX to be as shown in Figure 4. The quiescent logic state is logic-high and the first bit (the START bit) is logic-low. The 8-bit data word expected to be received LSB first. The receiver samples the data near the midbit instant (Figure 4). The received words and their associated errors are deposited into the receive FIFO. Errors and status information are stored for every received word (Figure 5). The host reads the data out of the receive FIFO by reading RHR, which comes out oldest data first. The status and error information for the word most recently read from RHR is located in the Line Status register (LSR). After a word is read out of RHR, LSR contains the status information for that word.
16 _____________________________________________________________________________________
SPI/I2C UART with 128-Word FIFOs in WLP
ONE BIT PERIOD
RX
A
MAX3108
BAUD
BLOCK
Figure 6. Midbit Sampling
Figure 7. Clock Selection Diagram
1
2 3 4 5 6 7 8 9
CrystalEn
XOUT
XIN
CRYSTAL
OSCILLATOR
The following three error conditions are checked for each received word: parity error, frame error, and noise on the line. Parity errors are detected by calculating either even or odd parity of the received word as programmed by register settings. Framing errors are detected when the received data frame does not match the expected frame format in length. Line noise is detected by checking the logical congruency of the three samples taken of each bit (Figure 6).
The receiver can be turned off by setting the MODE1[0]: RxDisabl bit high. After this bit is set high, the MAX3108 turns the receiver off immediately following the current word and does not receive any further data.
10 11
MAJORITY
CENTER
SAMPLER
PLLPREDIVIDER
PLLEn
12 13 14 15 16
PLLBypass
BAUD-RATE
GENERATOR
The RX input logic can be inverted by setting the IrDA[4]: RxInv bit high. Unless otherwise noted, all receiver logic described in this data sheet assumes that RxInv is set low.

Line Noise Indication

When operating in standard or 2x (i.e., not 4x) rate mode, the MAX3108 checks that the binary logic level of the three samples per received bit are identical. If any of the three samples per received bit have differing logic levels, then noise on the transmission line has affected the received data and it is considered to be noisy. This noise indication is reflected in the LSR[5]: RxNoise bit for each received byte. Parity errors are another indication of noise, but are not as sensitive.
______________________________________________________________________________________ 17
Loading...
+ 39 hidden pages