MAXIM MAX2067 Technical data

General Description
The MAX2067 high-linearity analog variable-gain ampli­fier (VGA) is a monolithic SiGe BiCMOS attenuator and amplifier designed to interface with 50systems oper­ating in the 50MHz to 1000MHz frequency range (see the
Typical Application Circuit
Because each stage has its own RF input and RF out­put, this component can be configured to either opti­mize NF (amplifier configured first), or OIP3 (amplifier last). The device’s performance features include 22dB amplifier gain (amplifier only), 4dB NF at maximum gain (includes attenuator insertion loss), and a high OIP3 level of +43dBm. Each of these features makes the MAX2067 an ideal VGA for numerous receiver and transmitter applications.
In addition, the MAX2067 operates from a single +5V supply with full performance, or a single +3.3V supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. This device is available in a compact 40­pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range (T
C
= -40°C to +85°C).
Applications
IF and RF Gain Stages
Temperature Compensation Circuits
Cellular Band WCDMA and cdma2000® Base Stations
GSM 850/GSM 900 EDGE Base Stations
WiMAX and LTE Base Stations and Customer Premise Equipment
Fixed Broadband Wireless Access
Wireless Local Loop
Military Systems
Video-on-Demand (VOD) and DOCSIS®­Compliant EDGE QAM Modulation
Cable Modem Termination Systems (CMTS)
RFID Handheld and Portal Readers
Features
50MHz to 1000MHz RF Frequency Range
Pin-Compatible Family Includes
MAX2065 (Analog/Digital VGA) MAX2066 (Digital VGA)
+21.9dB (typ) Maximum Gain
0.5dB Gain Flatness Over 100MHz Bandwidth
31dB Gain Range
Built-In DAC for Analog Attenuation Control
Excellent Linearity (Configured with Amplifier
Last)
+43dBm OIP3 +66dBm OIP2 +19dBm Output 1dB Compression Point
-70dBc HD2
-87dBc HD3
4dB Typical Noise Figure (NF)
Single +5V Supply (Optional +3.3V Operation)
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/ Reduced-Performance Mode
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4080; Rev 0; 4/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
+
Denotes a lead-free package.
*
EP = Exposed pad.
T = Tape and reel.
Pin Configuration appears at end of data sheet.
SPI is a trademark of Motorola, Inc.
cdma2000 is a registered trademark of Telecommunications Industry Association.
DOCSIS and CableLabs are registered trademarks of Cable Television Laboratories, Inc. (CableLabs®).
PART TEMP RANGE PIN-PACKAGE
MAX2067ETL+ -40°C to +85°C 40 Thin QFN-EP*
MAX2067ETL+T -40°C to +85°C 40 Thin QFN-EP*
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, high-current (HC) mode, VCC= VDD= +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at VCC=
V
DD
= +3.3V and TC= +25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a printed-circuit board (PCB). See the
Applications Information
section
for details. The junction temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
VCC_ to GND ........................................................-0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, VDAC_EN,
VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V)
ATTEN_IN, ATTEN_OUT........................................-1.2V to +1.2V
RSET to GND.........................................................-0.3V to +1.2V
RF Input Power (ATTEN_IN, ATTEN_OUT).....................+20dBm
RF Input Power (AMP_IN)...............................................+18dBm
Continuous Power Dissipation (Note 1) ...............................6.5W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Note 3) ...................................................................+10°C/W
Operating Temperature Range (Note 4).....T
C
= -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= VDD= +4.75V to +5.25V, TC= -40°C to +85°C. Typical values are at V
CC
= VDD= +5V and
T
C
= +25°C, unless otherwise noted.)
Supply Voltage V
Supply Current I
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage V
Input Low Voltage V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Note 5 3.0 3.3 3.6 V
IH
IL
Supply Voltage V
Supply Current I
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT)
Input High Voltage V
Input Low Voltage V
Input Current Logic-High I
Input Current Logic-Low I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
IH
Low-current (LC) mode 72 92
High-current (HC) mode 123 146
IH
IL
IL
60 82 mA
2V
0.8 V
4.75 5 5.25 V
mA
3V
0.8 V
-1 +1 µA
-1 +1 µA
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 3
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= VDD= +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF≤ 1000MHz,
T
C
= -40°C to +85°C. Typical values are at VCC= VDD= +5.0V, HC mode, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, unless
otherwise noted.) (Note 6)
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= VDD= +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at V
CC
= VDD= +3.3V, HC mode
with attenuator set for maximum gain, P
IN
= -20dBm, fRF= 200MHz, and TC= +25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range f
Small-Signal Gain G 21.3 dB
Output Third-Order Intercept Point
Noise Figure NF Maximum gain setting 4.3 dB
Total Attenuation Range 31 dB
RF
OIP3 P
(Notes 5, 7) 50 1000 MHz
= 0dBm/tone, maximum gain setting 38 dBm
OUT
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range f
Small-Signal Gain G
Gain Variation vs. Temperature -0.006 dB/°C
Gain Flatness vs. Frequency
Noise Figure NF
Total Attenuation Range 31 dB
Output Second-Order Intercept Point
Output Third-Order Intercept Point
RF
OIP2 P
OIP3
(Notes 5, 7) 50 1000 MHz
200MHz 21.9
350MHz, TC = +25°C (Note 5) 20.3 21.3 22.3
450MHz 20.9
750MHz 19.4
900MHz 18.7
Any 100MHz frequency band from 50MHz to 500MHz
200MHz 4
350MHz, TC = +25°C (Note 5) 4.2 5.2
450MHz 4.3
750MHz 4.8
900MHz 5
= 0dBm/tone, f = 1MHz, f1 + f
OUT
P
= 0dBm/tone,
OUT
H C m od e, ∆ f = 1M H z
P
= 0dBm/tone,
OUT
LC mode, f = 1MHz
200MHz 43
350MHz 40.8
450MHz 39.8
750MHz 37.3
900MHz 36.2
200MHz 40
350MHz 38.2
450MHz 37.4
750MHz 35.5
900MHz 34.3
2
0.5 dB
66 dBm
dB
dB
dBm
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
4 _______________________________________________________________________________________
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC= VDD= +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF≤ 1000MHz,
T
C
= -40°C to +85°C. Typical values are at VCC= VDD= +5.0V, HC mode, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, unless
otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output -1dB Compression Point P
Second Harmonic
Third Harmonic
Attenuator Response Time (Note 9)
Group Delay
Input Return Loss 50 source, maximum gain setting 30 dB
Output Return Loss 50 load, maximum gain setting 16 dB
ANALOG ATTENUATOR
Insertion Loss 1.2 dB
Input Second-Order Intercept Point
Input Third-Order Intercept Point IIP3
Attenuation Range Analog control input 31 dB
Gain-Control Slope Analog control input -12.5 dB/V
Maximum Gain-Control Slope Over analog control input range -35 dB/V
Insertion Phase Change Over analog control input range 18 D eg r ees
Group Delay vs. Control Voltage Over analog control input range -0.25 ns
Analog Control Input Range 0.25 2.75 V
Analog Control Input Impedance 80 k
Input Return Loss 50 source, maximum gain setting 22 dB
Output Return Loss 50 load, maximum gain setting 22 dB
DAC
Number of Bits 8 Bits
Output Voltage
1dB
IIP2
350MHz, TC = +25°C (Notes 5, 8) 17 18.7 dBm
P
= +3dBm, fRF = 200MHz, TC = +25°C
OUT
(Note 5)
P
= +3dBm, fRF = 200MHz, TC = +25°C
OUT
(Note 5)
Input from ANALOG_VCTRL 1 Input from CS rising edge 3.2
Maximum gain setting, includes EV kit PCB delays
P
= 0dBm, P
RF1
setting, f = 1MHz, f
P
= 0dBm, P
RF1
setting, f = 1MHz
DAC code = 00000000 0.25
DAC code = 11111111 2.75
= 0dBm, maximum gain
RF2
+ f
1
2
= 0dBm, maximum gain
RF2
-61 -70 dBc
-74 -87 dBc
0.8 ns
70 dBm
36 dBm
µs
V
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 5
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC= VDD= +4.75 to +5.25V, HC mode with attenuator set for maximum gain, 50MHz ≤ fRF≤ 1000MHz,
T
C
= -40°C to +85°C. Typical values are at VCC= VDD= +5.0V, HC mode, PIN= -20dBm, fRF= 200MHz, and TC= +25oC, unless
otherwise noted.) (Note 6)
Note 5: Guaranteed by design and characterization. Note 6: All limits include external component losses. Output measurements are performed at RF output port of the
Typical
Application Circuit
Note 7: Operating outside this range is possible, but with degraded performance of some parameters. Note 8: It is advisable not to continuously operate the VGA RF input above +15dBm. Note 9: Response time includes full attenuation range change with output setting to within ±0.1dB.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed f
Data-to-Clock Setup Time t
Data-to-Clock Hold Time t Clock-to-CS Setup Time t
CS Positive Pulse Width t CS Setup Time t
Clock Pulse Width t
CLK
CS
CH
ES
EW
EWS
CW
20 MHz
2ns
2.5 ns
3ns
7ns
3.5 ns
5ns
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
6 _______________________________________________________________________________________
Typical Operating Characteristics
(VCC= VDD= +5.0V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
150
140
130
120
SUPPLY CURRENT (mA)
110
100
4.750 5.250
TC = +25°C
GAIN OVER ATTENENUATOR
SETTING vs. RF FREQUENCY
24
19
14
DAC CODE 32
9
4
GAIN (dB)
-1
DAC CODE 128
-6
-11
-16 50 1050
RF FREQUENCY (MHz)
GAIN vs. ATTENUATOR SETTING
24
19
14
9
4
GAIN (dB)
-1
-6
-11
-16
0256
96 22416012832 64 192
TC = -40°C
TC = +85°C
5.1255.0004.875
VCC (V)
DAC CODE 0
DAC CODE 64
DAC CODE 256
850450 650250
fRF = 200MHz
VCC = 4.75V, 5.00V, 5.25V
DAC CODE
MAX2067 toc01
GAIN (dB)
MAX2067 toc04
GAIN (dB)
MAX2067 toc07
INPUT MATCH (dB)
24
23
22
21
20
19
18
17
16
50 1050
TC = -40°C
TC = +25°C
TC = +85°C
850450 650250
RF FREQUENCY (MHz)
GAIN vs. ATTENUATOR SETTING
GAIN vs. RF FREQUENCY
24
19
14
9
1000MHz
4
-1
-6
-11
-16 32 9664 160 224192128
0 256
50MHz
200MHz
450MHz
DAC CODE
INPUT MATCH vs.
ATTENUATOR SETTING
-10
-15
-20
-25
-30
-35
-40
1000MHz
200MHz
0 256
128 19216032 9664 224
DAC CODE
50MHz
450MHz
MAX2067 toc02
GAIN (dB)
MAX2067 toc05
GAIN (dB)
-11
-16
MAX2067 toc08
-10
-15
-20
OUTPUT MATCH (dB)
-25
-30
24
23
22
21
20
19
18
17
16
24
19
14
9
4
-1
-6
0
-5
GAIN vs. RF FREQUENCY
VCC = 4,75V, 5.00V, 5.25V
50 1050
RF FREQUENCY (MHz)
GAIN vs. ATTENUATOR SETTING
f
RF
TC = -40°C, +25°C, +85°C
0256
96 22416012832 64 192
DAC CODE
OUTPUT MATCH vs.
ATTENUATOR SETTING
450MHz
50MHz
0256
1000MHz
200MHz
128 19216032 9664 224
DAC CODE
MAX2067 toc03
850450 650250
= 200MHz
MAX2067 toc06
MAX2067 toc09
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 7
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
REVERSE ISOLATION OVER ATTENUATOR
SETTING vs. RF FREQUENCY
-25
-35
DAC CODE 0
-45
-55
REVERSE ISOLATION (dB)
-65
-75 50 1050
DAC CODE 255
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
7
6
VCC = 4.75V, 5.00V, 5.25V
5
4
NOISE FIGURE (dB)
3
2
50 450 850 1050650250
RF FREQUENCY (MHz)
80
70
MAX2067 toc10
60
50
40
30
20
S21 PHASE CHANGE (DEG)
10
0
MAX2067 toc13
-10
21
20
19
(dBm)
1dB
18
17
OUTPUT P
16
15
850450 650250
S21 PHASE CHANGE vs.
ATTENUATOR SETTING
REFERENCED TO HIGH GAIN STATE. POSITIVE PHASE = ELECTRICALLY SHORTER.
1000MHz
0256
OUTPUT P
TC = +85°C
TC = -40°C
50 450 850 1050650250
128 19216032 9664 224
DAC CODE
vs. RF FREQUENCY
1dB
TC = +25°C
TC = +25°C
RF FREQUENCY (MHz)
450MHz
50MHz
TC = -40°C
TC = +85°C
MAX2067 toc11
200MHz
MAX2067 toc14
NOISE FIGURE vs. RF FREQUENCY
7
6
TC = +85°C
5
4
NOISE FIGURE (dB)
3
2
50 450 850 1050650250
RF FREQUENCY (MHz)
21
20
19
(dBm)
1dB
18
17
OUTPUT P
16
15
OUTPUT P
50 450 850 1050650250
1dB
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
vs. RF FREQUENCY
TC = +25°C
TC = -40°C
VCC = 5.00V
MAX2067 toc12
MAX2067 toc15
OUTPUT IP3 vs. RF FREQUENCY
50
45
40
OUTPUT IP3 (dBm)
35
30
50 450 850 1050650250
OUTPUT IP3 vs.
ATTENUATOR STATE
TC = +25°C, +85°C
TONE = LSB, USB
TC = -40°C, TONE = LSB, USB
DAC CODE
P
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
P
= 0dBm/TONE
OUT
TC = +85°C
MAX2067 toc16
OUTPUT IP3 vs. RF FREQUENCY
50
45
40
OUTPUT IP3 (dBm)
35
30
50 450 850 1050650250
VCC = 5.00V
VCC = 4.75V
RF FREQUENCY (MHz)
P
= 0dBm/TONE
OUT
VCC = 5.25V
MAX2067 toc17
OUTPUT IP3 (dBm)
50
45
40
35
30
0 256192128 2241609632 64
= -3dBm/TONE
OUT
= 200MHz
f
RF
MAX2067 toc18
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc19
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
90
40
50
60
70
80
50 450 850 1050650250
TC = -40°C, +25°C, +85°C
P
OUT
= 3dBm
2nd HARMONIC vs. RF FREQUENCY
MAX2067 toc20
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
90
80
70
60
50
40
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
P
OUT
= 3dBm
2nd HARMONIC vs.
ATTENUATOR STATE
MAX2067 toc21
DAC CODE
2nd HARMONIC (dBc)
80
70
75
65
60
0 96 160 22432 25619212864
TC = +25°C
P
OUT
= 0dBm
f
RF
= 200MHz
TC = -40°C
TC = +85°C
3rd HARMONIC vs. FREQUENCY
MAX2067 toc22
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
110
80
90
100
70
60
50 450 850 1050650250
TC = +25°C
P
OUT
= 3dBm
TC = -40°C
TC = +85°C
3rd HARMONIC vs. RF FREQUENCY
MAX2067 toc23
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
110
100
90
80
70
60
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
P
OUT
= 3dBm
3rd HARMONIC vs.
ATTENUATOR STATE
MAX2067 toc24
DAC CODE
3rd HARMONIC (dBc)
110
80
90
100
70
60
0 96 160 22432 25619212864
TC = +25°C
P
OUT
= 0dBm
f
RF
= 200MHz
TC = -40°C
TC = +85°C
OIP2 vs. RF FREQUENCY
MAX2067 toc25
RF FREQUENCY (MHz)
OIP2 (dBm)
90
40
50
60
70
80
50 450 850 1050650250
TC = -40°C, +25°C, +85°C
P
OUT
= 0dBm/TONE
OIP2 vs. RF FREQUENCY
MAX2067 toc26
RF FREQUENCY (MHz)
OIP2 (dBm)
90
80
70
60
50
40
50 450 850 1050650250
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
P
OUT
= 0dBm/TONE
OIP2 vs. ATTENUATOR STATE
MAX2067 toc27
DAC CODE
OIP2 (dBm)
80
60
70
50
40
0 96 160 22432 25619212864
TC = +25°C
P
OUT
= -3dBm/TONE
f
RF
= 200MHz
TC = -40°C
TC = +85°C
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
_______________________________________________________________________________________ 9
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
3.0
2.5
2.0
1.5
DAC VOLTAGE (V)
1.0
0.5
0
0 96 160 22432 25619212864
TC = -40°C, +25°C, +85°C
DAC CODE
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
0.05
0.04
0.03
TC CHANGED FROM +25°C to -40°C
0.02
0.01
0
-0.01
-0.02
DAC VOLTAGE CHANGE (V)
-0.03 TC CHANGED FROM +25°C to +85°C
-0.04
-0.05
0 96 160 22432 25619212864
DAC CODE
MAX2067 toc28
MAX2067 toc30
DAC VOLTAGE (V)
0.0100
0.0075
0.0050
0.0025
-0.0025
DAC VOLTAGE CHANGE (V)
-0.0050
-0.0075
-0.0100
DAC VOLTAGE USING INTERNAL
REFERENCE vs. DAC CODE
3.0
2.5
2.0
1.5
1.0
0.5
0
0 96 160 22432 25619212864
VCC = 4.75V, 5.00V, 5.25V
DAC CODE
DAC VOLTAGE DRIFT USING
INTERNAL REFERENCE vs. DAC CODE
VCC CHANGED FROM 5.00V to 5.25V
0
VCC CHANGED FROM 5.00V to 4.75V
0 96 160 22432 25619212864
DAC CODE
MAX2067 toc29
MAX2067 toc31
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, attenuator only, maximum gain, PIN= -20dBm, and TC= +25°C, unless otherwise noted.)
GAIN vs. RF FREQUENCY
0
-1
-2
GAIN (dB)
-3
-4
-5 50 1050
(ATTENUATOR ONLY)
TC = -40°C
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
GAIN vs. RF FREQUENCY
0
MAX2067 toc32
850450 650250
-1
-2
GAIN (dB)
-3
-4
-5 50 1050
(ATTENUATOR ONLY)
MAX2067 toc33
VCC = 4.75V, 5.00V, 5.25V
850450 650250
RF FREQUENCY (MHz)
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc36
RF FREQUENCY (MHz)
GAIN (dB)
22
23
24
19
20
17
18
21
16
50 450 850 1050650250
VCC = 4.75V, 5.00V, 5.25V
GAIN vs. RF FREQUENCY
(LOW-CURRENT MODE)
MAX2067 toc35
RF FREQUENCY (MHz)
GAIN (dB)
22
23
24
19
20
17
18
21
16
50 450 850 1050650250
TC = +25°C
TC = -40°C
TC = +85°C
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(LOW-CURRENT MODE)
MAX2067 toc34
VCC (V)
SUPPLY CURRENT (mA)
65
75
85
55
4.750 5.125 5.2504.875 5.000
TC = +25°C
TC = -40°C
TC = +85°C
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 11
O
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, LC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
INPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
0
-10
-20
-30
INPUT MATCH (dB)
-40
1000MHz
200MHz
50MHz
450MHz
MAX2067 toc37
OUTPUT MATCH vs. ATTENUATOR SETTING
(LOW-CURRENT MODE)
0
-5
-10
-15
-20
OUTPUT MATCH (dB)
50MHz
-25
450MHz
1000MHz
200MHz
MAX2067 toc38
NOISE FIGURE (dB)
NOISE FIGURE vs. RF FREQUENCY
(LOW-CURRENT MODE)
7
6
5
4
3
TC = +85°C
TC = +25°C
TC = -40°C
MAX2067 toc39
-50 0 96 160 22432 25619212864
NOISE FIGURE vs. RF FREQUENCY
7
6
5
4
NOISE FIGURE (dB)
3
2
50 450 850 1050650250
DAC CODE
(LOW-CURRENT MODE)
VCC = 4.75V, 5.00V, 5.25V
RF FREQUENCY (MHz)
MAX2067 toc40
-30
18
17
(dBm)
16
1dB
15
OUTPUT P
14
13
0 96 160 22432 25619212864
OUTPUT P
(LOW-CURRENT MODE)
TC = -40°C
TC = +85°C
50 450 850 1050650250
RF FREQUENCY (MHz)
DAC CODE
vs. RF FREQUENCY
1dB
TC = +25°C
MAX2067 toc41
2
18
17
(dBm)
16
1dB
15
OUTPUT P
14
13
50 450 850 1050650250
UTPUT P
(LOW-CURRENT MODE)
VCC = 5.25V
50 450 850 1050650250
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
VCC = 5.00V
RF FREQUENCY (MHz)
MAX2067 toc42
VCC = 4.75V
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, LC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
45
40
P
= 0dBm/TONE
OUT
TC = -40°C
MAX2067 toc43
OUTPUT IP3 vs. RF FREQUENCY
(LOW-CURRENT MODE)
45
VCC = 5.25V
40
P
= 0dBm/TONE
OUT
VCC = 5.00V
MAX2067 toc44
OUTPUT IP3 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
45
TC = +25°C, +85°C
40
TONE = LSB, USB
P
OUT
f
= -3dBm/TONE
= 200MHz
RF
MAX2067 toc45
35
OUTPUT IP3 (dBm)
30
25
TC = +85°C
50 450 850 1050650250
RF FREQUENCY (MHz)
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
90
80
70
60
2nd HARMONIC (dBc)
50
40
50 450 850 1050650250
TC = -40°C
RF FREQUENCY (MHz)
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
100
90
TC = +25°C
TC = +85°C
P
= 3dBm
OUT
TC = +25°C
P
= 3dBm
OUT
TC = -40°C
35
OUTPUT IP3 (dBm)
30
25
90
MAX2067 toc46
80
70
60
2nd HARMONIC (dBc)
50
40
100
MAX2067 toc49
90
VCC = 4.75V
50 450 850 1050650250
RF FREQUENCY (MHz)
2nd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
P
VCC = 5.25V
VCC = 4.75V
50 450 850 1050650250
RF FREQUENCY (MHz)
OUT
VCC = 5.00V
3rd HARMONIC vs. RF FREQUENCY
(LOW-CURRENT MODE)
P
OUT
VCC = 5.00V
VCC = 5.25V
= 3dBm
= 3dBm
OUTPUT IP3 (dBm)
MAX2067 toc47
2nd HARMONIC (dBc)
100
MAX2067 toc50
35
30
0256192128 2241609632 64
TC = -40°C, TONE = LSB, USB
DAC CODE
2nd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
90
80
70
60
50
0 96 160 22432 25619212864
TC = +25°C
TC = -40°C
DAC CODE
P
OUT
= 200MHz
f
RF
TC = +85°C
3rd HARMONIC vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
P
OUT
= 200MHz
f
95
TC = +25°C
90
RF
= 0dBm
MAX2067 toc48
= 0dBm
MAX2067 toc51
80
3rd HARMONIC (dBc)
70
60
50 450 850 1050650250
TC = +25°C
TC = +85°C
RF FREQUENCY (MHz)
80
3rd HARMONIC (dBc)
70
60
50 450 850 1050650250
VCC = 4.75V
RF FREQUENCY (MHz)
85
80
3rd HARMONIC (dBc)
75
70
TC = -40°C
0 96 160 22432 25619212864
TC = +85°C
DAC CODE
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 13
Typical Operating Characteristics (continued)
(VCC= VDD= +5.0V, LC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
90
80
70
OIP2 (dBm)
60
50
40
50 450 850 1050650250
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
P
= 0dBm/TONE
TC = -40°C
TC = +85°C
RF FREQUENCY (MHz)
OUT
TC = +25°C
MAX2067 toc52
90
80
70
OIP2 (dBm)
60
50
40
50 450 850 1050650250
OIP2 vs. RF FREQUENCY
(LOW-CURRENT MODE)
P
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
RF FREQUENCY (MHz)
= 0dBm/TONE
OUT
MAX2067 toc53
OIP2 (dBm)
OIP2 vs. ATTENUATOR STATE
(LOW-CURRENT MODE)
90
80
70
60
50
40
0 96 160 22432 25619212864
TC = -40°C
TC = +85°C
DAC CODE
P
= -3dBm/TONE
OUT
= 200MHz
f
RF
TC = +25°C
MAX2067 toc54
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= VDD= +3.3V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
75
TC = -40°C
65
55
SUPPLY CURRENT (mA)
TC = +85°C
45
3.00 3.45 3.603.15 3.30
INPUT MATCH vs. ATTENUATOR SETTING
0
-10
1000MHz
-20
INPUT MATCH (dB)
-30
-40 0 96 160 22432 25619212864
TC = +25°C
VCC (V)
450MHz
DAC CODE
50MHz
VCC = 3.3V
200MHz
MAX2067 toc55
GAIN (dB)
MAX2067 toc58
-10
-15
-20
OUTPUT MATCH (dB)
-25
-30
24
23
22
21
20
19
18
17
16
50 450 850 1050650250
TC = -40°C
TC = +85°C
RF FREQUENCY (MHz)
VCC = 3.3V
TC = +25°C
OUTPUT MATCH vs. ATTENUATOR SETTING
GAIN vs. RF FREQUENCY
0
-5
1000MHz
0 96 160 22432 25619212864
DAC CODE
450MHz
VCC = 3.3V
50MHz
200MHz
MAX2067 toc56
MAX2067 toc59
24
23
22
21
20
GAIN (dB)
19
18
17
16
VCC = 3.3V
50 450 850 1050650250
VCC = 3.6V
VCC = 3.0V
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
7
GAIN vs. RF FREQUENCY
6
5
4
NOISE FIGURE (dB)
3
2
TC = +85°C
TC = -40°C
50 450 850 1050650250
RF FREQUENCY (MHz)
MAX2067 toc57
VCC = 3.3V
MAX2067 toc60
TC = +25°C
1dB
17
16
15
14
13
12
11
10
9
50 450 850650 1050250
OUTPUT P
VCC = 3.3V
VCC = 3.0V
1dB
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
7
6
5
4
NOISE FIGURE (dB)
3
2
VCC = 3.0V
50
450
RF FREQUENCY (MHz)
VCC = 3.6V
650250
VCC = 3.3V
850
1050
MAX2067 toc61
17
16
15
14
(dBm)
1dB
13
12
OUTPUT P
11
10
9
OUTPUT P
50 450 850 1050650250
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
VCC = 3.3V
MAX2067 toc62
(dBm)
OUTPUT P
vs. RF FREQUENCY
VCC = 3.6V
MAX2067 toc63
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 15
Typical Operating Characteristics (continued)
(VCC= VDD= +3.3V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
OUTPUT IP3 vs. RF FREQUENCY
50
45
40
35
OUTPUT IP3 (dBm)
30
25
20
50 450 850 1050650250
TC = +25°C
TC = +85°C
RF FREQUENCY (MHz)
2nd HARMONIC vs. RF FREQUENCY
80
70
60
50
2nd HARMONIC (dBc)
40
TC = +25°C
TC = -40°C
VCC = 3.3V
P
= 0dBm/TONE
OUT
TC = -40°C
VCC = 3.3V
P
OUT
TC = +85°C
= 3dBm
MAX2067 toc64
OUTPUT IP3 (dBm)
MAX2067 toc67
2nd HARMONIC (dBc)
OUTPUT IP3 vs. RF FREQUENCY
50
45
40
35
30
25
20
50 450 850 1050650250
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
2nd HARMONIC vs. RF FREQUENCY
80
70
VCC = 3.3V
60
50
40
VCC = 3.0V
P
= 0dBm/TONE
OUT
VCC = 3.6V
P
VCC = 3.6V
OUT
= 3dBm
MAX2067 toc65
OUTPUT IP3 (dBm)
MAX2067 toc68
2nd HARMONIC (dBc)
OUTPUT IP3 vs. ATTENUATOR STATE
45
TC = +25°C, +85°C
TONE = LSB, USB
40
35
30
25
0256192128 2241609632 64
TC = -40°C, TONE = LSB, USB
DAC CODE
VCC = 3.3V
P
= -3dBm/TONE
OUT
= 200MHz
f
RF
2nd HARMONIC vs. ATTENUATOR STATE
80
TC = +85°C
70
60
T
= +25°C
C
50
TC = -40°C
VCC = 3.3V
P
OUT
= 200MHz
f
RF
= 0dBm
MAX2067 toc66
MAX2067 toc69
30
50 450 850 1050650250
RF FREQUENCY (MHz)
3rd HARMONIC vs. RF FREQUENCY
110
100
90
80
70
3rd HARMONIC (dBc)
60
50
50 450 850 1050650250
TC = +25°C
TC = +85°C
RF FREQUENCY (MHz)
VCC = 3.3V
= 3dBm
P
OUT
TC = -40°C
MAX2067 toc70
3rd HARMONIC (dBc)
30
50 450 850 1050650250
RF FREQUENCY (MHz)
3rd HARMONIC vs. RF FREQUENCY
110
100
90
80
70
60
50
VCC = 3.3V
VCC = 3.0V
50 450 850 1050650250
RF FREQUENCY (MHz)
P
OUT
VCC = 3.6V
= 3dBm
MAX2067 toc71
3rd HARMONIC (dBc)
40
0256192128 2241609632 64
DAC CODE
3rd HARMONIC vs. ATTENUATOR STATE
100
90
80
70
60
0256192128 2241609632 64
TC = +85°C
TC = -40°C
TC = +25°C
DAC CODE
VCC = 3.3V
P
OUT
= 200MHz
f
RF
= 0dBm
MAX2067 toc72
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
16 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= VDD= +3.3V, HC mode, attenuator set for maximum gain, PIN= -20dBm, fRF= 200MHz, and TC= +25°C, internal DAC refer­ence used, unless otherwise noted.)
70
OIP2 vs. RF FREQUENCY
60
50
OIP2 (dBm)
40
30
TC = +25°C
50 450 850 1050650250
RF FREQUENCY (MHz)
TC = -40°C
VCC = 3.3V
= 0dBm/TONE
P
OUT
TC = +85°C
MAX2067 toc73
70
60
50
OIP2 (dBm)
40
30
50 450 850 1050650250
OIP2 vs. RF FREQUENCY
P
OUT
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
VCC = 3.6V
= 0dBm/TONE
MAX2067 toc74
70
60
50
OIP2 (dBm)
40
30
0256192128 2241609632 64
OIP2 vs. ATTENUATOR STATE
VCC = 3.3V
P
TC = +85°C
TC = +25°C
DAC CODE
= -3dBm/TONE
OUT
= 200MHz
f
RF
TC = -40°C
MAX2067 toc75
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 17
Pin Description
PIN NAME DESCRIPTION
1, 16, 19, 22, 24–28,
30, 31, 33–36
2 VREF_SELECT
3 VDAC_EN
4 DATA SPI Data Digital Input
5 CLK SPI Clock Digital Input 6 CS SPI Chip-Select Digital Input
7 VDD_LOGIC
8–15, 23, 29 GND Ground. See the Pin-Compatibility Considerations section.
17 AMP_OUT Driver Amplifier Output (50). See the Typical Application Circuit for details.
18 RSET Driver Amplifier Bias-Setting Input. See the External Bias section.
20 AMP_IN Driver Amplifier Input (50). See the Typical Application Circuit for details.
21 VCC_AMP
32 ATTEN_OUT
37 ATTEN_IN
38 VCC_ANALOG
39 ANALOG_VCTRL Analog Attenuator Voltage-Control Input
40 VREF_IN External DAC Voltage Reference Input
—EP
GND Ground
DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don’t care) when VDAC_EN = Logic 0.
DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit.
Digital Logic Supply Input. Connect to the digital logic power supply, V to GND with a 10nF capacitor as close as possible to the pin.
Driver Amplifier Supply Voltage Input. Connect to the V GND with 1000pF and 10nF capacitors as close as possible to the pin, with the smaller value capacitor closer to the part.
Analog Attenuator Output. Internally matched to 50. Requires an external DC­blocking capacitor.
Analog Attenuator Input. Internally matched to 50. Requires an external DC­blocking capacitor.
Analog Bias and Control Supply Voltage Input. Bypass to GND with a 10nF capacitor as close as possible to the pin.
Exposed Pad. Internally connected to GND. Connect EP to ground for proper RF performance and enhanced thermal dissipation.
, Bypass
DD
power supply. Bypass to
CC
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
18 ______________________________________________________________________________________
Detailed Description
The MAX2067 high-linearity analog variable-gain ampli­fier is a general-purpose, high-performance amplifier designed to interface with 50systems operating in the 50MHz to 1000MHz frequency range.
The MAX2067 integrates an analog attenuator to provide 31dB of total gain control, as well as a driver amplifier optimized to provide high gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption.
The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip DAC. Because each stage has its own exter­nal RF input and RF output, this component can be con­figured to either optimize NF (amplifier configured first), or OIP3 (amplifier last). The device’s performance fea­tures include 22dB stand-alone amplifier gain (amplifier only), 4dB NF at maximum gain (includes attenuator insertion loss), and a high OIP3 level of +43dBm. Each of these features makes the MAX2067 an ideal VGA for numerous receiver and transmitter applications.
In addition, the MAX2067 operates from a single +5V supply, or a single +3.3V supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance.
Analog Attenuator
The MAX2067’s analog attenuator has a dynamic range of 31dB and is controlled using an external voltage or through the 3-wire SPI using an on-chip 8-bit DAC. See the
Applications Information
section and Table 1 for attenuator programming details. The attenuator can be used for both static and dynamic power control.
Driver Amplifier
The MAX2067 includes a high-performance driver with a fixed gain of 22dB. The driver amplifier circuit is opti­mized for high linearity for the 50MHz to 1000MHz fre­quency range.
Applications Information
Attenuator Control
The analog attenuator is controlled by either an external control voltage applied at ANALOG_VCTRL (pin 39) or by the on-chip 8-bit DAC. Through the utilization of this control DAC, the user can easily adjust the analog attenuation in 0.12dB increments through a simple SPI command. The DAC enable/disable logic-input pin (VDAC_EN), and the DAC reference voltage selection logic-input pin (VREF_SELECT) determine how the attenuator is controlled. When the DAC is enabled, either the on-chip voltage reference or the external volt­age reference can be selected. See Table 1 for the attenuator and DAC operation truth table.
Although this on-chip DAC eliminates the need for an external analog control voltage, the user still has the option of disabling the DAC and using an external ana­log control voltage for instances where additional atten­uation resolution is needed, or in cases where the gain trim/automatic gain-control (AGC) loop is purely analog.
SPI Interface and Attenuator Settings
The MAX2067 employs a 3-wire SPI/MICROWIRE™­compatible serial interface to program the on-chip DAC. Eight bits of data are shifted in MSB first and framed by CS. When CS is low, the clock is active and data is shifted on the rising edge of the clock. When CS transi­tions high, the data is latched and the attenuator setting changes (Figure 1). See Table 2 for details on the SPI data format.
Table 1. Control Logic
X = Don’t care.
MICROWIRE is a trademark of National Semiconductor Corp.
VDAC_EN VR EF _ SEL EC T ANALOG ATTENUATOR D/A CONVERTER
0 X Controlled by external control voltage Disabled
1 1 Controlled by on-chip DAC Enabled (DAC uses on-chip voltage reference)
1 0 Controlled by on-chip DAC E nab l ed ( D AC uses exter nal vol tag e r efer ence)
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 19
Figure 1. SPI Timing Diagram
Table 2. SPI Data Format
MSB LSB
DATA
CLOCK
CS
DN
t
EWS
FUNCTION BIT DESCRIPTION
D7 Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
D6 Bit 6 of DAC
D5 Bit 5 of DAC
On-Chip DAC
D4 Bit 4 of DAC
D3 Bit 3 of DAC
D2 Bit 2 of DAC
D1 Bit 1 of DAC
D0 (LSB) Bit 0 (LSB) of the on-chip DAC
D(N - 1) D1 D0
t
CS
t
CH
t
CW
t
ES
t
EW
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
20 ______________________________________________________________________________________
Table 4. Typical Application Circuit Component Values (HC Mode)
External Bias
Bias currents for the driver amplifier are set and opti­mized through external resistors. Resistors R1 and R1A connected to RSET (pin 18) set the bias current for the amplifier. The external biasing resistor values can be increased for reduced current operation at the expense of performance. See Tables 4 and 5 for details.
Pin-Compatibility Considerations
The MAX2067 is a simplified version of the MAX2065 analog/digital VGA. The MAX2067 does not contain a digital attenuator and parallel inputs D0–D4. The asso­ciated input/output pins are internally connected to ground (Table 3). Ground the unused input/output pins to optimize isolation. (See the
Typical Application
Circuit.)
+5V and +3.3V Supply Voltage
The MAX2067 features an optional +3.3V supply voltage operation with slightly reduced linearity performance.
Layout Considerations
The pin configuration of the MAX2067 has been opti­mized to facilitate a very compact physical layout of the device and its associated discrete components.
The exposed paddle (EP) of the MAX2067’s 40-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2067 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP must be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
Table 3. MAX2065/MAX2067 Pin Comparison
PIN MAX2065 MAX2067
8 SER/PAR GND
9 STATE_A GND
10 STATE_B GND
11 D4 GND
12 D3 GND
13 D2 GND
14 D1 GND
15 D0 GND
23 ATTEN2_OUT GND
29 ATTEN2_IN GND
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1, R1A 10 0402 Panasonic Corp. 1%
R2 (+3.3V applications only) 1k 0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2k 0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only)
U1
47k 0402 Panasonic Corp. 1%
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2067ETL+
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
______________________________________________________________________________________ 21
Table 5. Typical Application Circuit Component Values (LC Mode)
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C12 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
C10, C11 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitors
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1 24 0402 Vishay 1%
R1A 10nF 0402 Murata Mfg. Co., Ltd. X7R
R2 (+3.3V applications only) 1k 0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2k 0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only)
U1
47k 0402 Panasonic Corp. 1%
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2067ETL+
MAX2067
50MHz to 1000MHz High-Linearity, Serial/Analog-Controlled VGA
22 ______________________________________________________________________________________
Typical Application Circuit
V
CC
ANALOG_VCTRL
VREF_IN
V
DD
C1
C12
R4
C11
GND
VREF_SELECT
DATA
CLK GND
CS GND
VDD_LOGIC GND
GND
GND
GND
C10
VCC_ANALOG
38
13
GND
ATTEN_IN
37
VREF
DAC
14
GND
ANALOG_VCTRL
VREF_IN
+
130
2
3
4
5
6
40
11
GND
39
SPI INTERFACE
12
GND
V
CC
RF INPUT
C9
GND
36
35
ANALOG ATTENUATOR
EP
15
16
GND GND
GND
L1
34
MAX2067
DRIVER AMP
17
AMP_OUT GND
GND
33
18
RSET
32
19
R1
R1A*
ATTEN_OUT
31
29
28
27
26
25
247
238
229
2110
20
GND
AMP_IN GND
GND
GND
GNDVDAC_EN
GND
GND
GND
VCC_AMP
R2
R3
C8
V
CC
C7C6
C3
C2
NOTE: REMOVE R4 AND C10 WHEN DRIVING ANALOG_VCTRL WITH AN EXTERNAL VOLTAGE.
C4
RF OUTPUT
*IN LC MODE, R1A IS A 10nF CAPACITOR. SEE TABLE 5 FOR DETAILS.
MAX2067
50MHz to 1000MHz High-Linearity,
Serial/Analog-Controlled VGA
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
23
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Pin Configuration/Functional Block Diagram
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information, go to
www.maxim-ic.com/packages
.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
40 Thin QFN-EP T4066-3
21-0141
TOP VIEW
VCC_ANALOG
+
40
GND
1
2
3
DATA
4
CLK GND
5
CS GND
6
VDD_LOGIC GND
GND GND
GND GND
GND VCC_AMP
11
38
39
SPI INTERFACE
13
12
GND
36
37
ANALOG ATTENUATOR
VREF
DAC
15
14
GND
GND
ATTEN_OUT
33
35
34
32
31
MAX2067
DRIVER AMP
16
17
18
19
20
GND
30
GNDVREF_SELECT
29
GNDVDAC_EN
28
GND
27
26
25
247
238
229
2110
GND
GND ANALOG_VCTRL
GND VREF_IN
GND
GND ATTEN_IN
EXPOSED PAD ON BOTTOM.
CONNECT EP TO GND.
GND GND
TQFN
AMP_OUT
RSET
GND
AMP_IN GND
Loading...