MAXIM MAX2063 User Manual

19-5303; Rev 0; 6/10
串行/并行控制的双通道数字
MAX2063 (VGA)
兼容接口控制作为从机外设的每路数字衰减器 ;也允许以
步长通过5位并行总线控制,可调节范围为
1dB
件还增加了“速 射”增益选择,可直接设置在 的一种,用户可通过 独立的控制引脚允许用户快速选择 一个,无需对
因为每一级电路都具有外部 置可以优化噪声系数 器配 置为最后一级
放大器本身),增益最大时噪声系数
(
减器的插入损耗 得该器件成为多通道接收器和发射器应用理想的
此外,器件采用
+3.3V
降低。器件采用紧凑、带裸焊盘的
(7mmx7mm)
内确保电气特性。
高线性 度、双 通 道数字调节可 变 增 益 放 大 器
工作在
50MHz至1000MHz
总线重新编程。
SPI
接口预先设 置四种增益选项。2个
SPI
放大器配置为第一级)或
(
。该器件还包含 增益为
)
频率范围。可通过
种定制衰减状态的任何
4
输入和RF输出,通过适当配
RF
24dB
(NF)为5.6dB(
,并提供
)
+5V
单电源时,具有先进的省电模式,但性能指标略有
,在扩展级温度范围
+41dBm的高OIP3
单电源供电时具有最优的性能;工作在
引脚、薄型
48
(TC=-40°C至+85°C)
。这些特性使
IF和RF
温度补偿电路
蜂窝频段
GSM850/GSM900EDGE WiMAX™和LTE
固定宽带无线接入
无线本地环路
军用系统
增益级设计
WCDMA和cdma2000
基站及用户端企业设备
基站
®
基站
概述
SPI™
。该器
31dB
种增益 选项
4
OIP3(
的放 大器
包括衰
选择。
VGA
QFN
应用
放大
封装
50MHz至1000MHz
两个通道可独立控制
50MHz至1000MHz RF
引脚兼容系列器件包括
MAX2062 ( MAX2064 (
21.3dB (
100MHz
31dB
200MHz
支持4种“速射”预编程衰减设置选项
200MHz +41dBm OIP3 +56dBm OIP2
5.6dB
25ns
超低失真
+5V
放大器关断模式支持
典型值)最大增益
带宽内保持
增益范围
频率下具有
快速设置4种定制衰减状态之一,无需对 理想用于快速响应和大信号阻塞保护 避免
输出
单电源供电(可选择
过驱动
ADC
时具有优异的线性特性
压缩点为
1dB
典型噪声系数
数字切换时间
VGA
PART TEMP RANGE PIN-PACKAGE
MAX2063ETM+ MAX2063ETM+T
表示无铅
+
*
EP=
T=
(Pb)/符合RoHS
裸焊盘。
卷带包装。
模拟/数字 模拟
VGA)
0.25dB
58dB
+19dBm
摆幅具有
TDD应用
-40NC to +85NC
-40NC to +85NC
标准的封装。
频率范围
VGA)
的增益平坦度
通道隔离
0.05dB
+3.3V供电)
、高线性度、
特性
总线重新编程
SPI
的过冲/下冲
定购信息
48 Thin QFN-EP* 48 Thin QFN-EP*
MAX2063
SPI是Motorola,Inc. cdma2000 WiMAX是WiMAX
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络 或访问
是电信工业协会的注册商标。
Maxim
的商标。
论坛的商标。
_______________________________________________________________ Maxim Integrated Products 1
的中文网站:
Maxim
亚洲销售中心:
china.maxim-ic.com
10800 852 1249 (
北中国区),
10800 152 1249 (
南中国区),
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
ABSOLUTE MAXIMUM RATINGS
V
CC_AMP_1
STA_A_1, STA_A_2, STA_B_1, STA_B_2, PD_1,
PD_2, AMPSET to GND ....................................-0.3V to +3.6V
DAT, CS, CLK, DA_SP to GND ............................-0.3V to +3.6V
D0_1, D1_1, D2_1, D3_1, D4_1, D0_2, D1_2,
D2_2, D3_2, D4_2 to GND ................................-0.3V to +3.6V
AMP_IN_1, AMP_IN_2 to GND ..........................+0.95V to +1.2V
MAX2063
AMP_OUT_1, AMP_OUT_2 to GND .....................-0.3V to +5.5V
D_ATT_IN_1, D_ATT_IN_2, D_ATT_OUT_1,
D_ATT_OUT_2 to GND ......................................... 0V to +3.6V
REG_OUT to GND ................................................-0.3V to +3.6V
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
Note 3: Junction temperature T
Note 4: T
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
, V
CC_AMP_2
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
layer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial.
known. The junction temperature must not exceed +150NC.
is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
C
, V
to GND ..........-0.3V to +5.5V
CC_RG
= TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
J
RF Input Power (D_ATT_IN_1, D_ATT_IN_2) ............... +20dBm
RF Input Power (AMP_IN_1, AMP_IN_2) ...................... +18dBm
θ
(Notes 1, 2) ......................................................... +12.3NC/W
JC
θ
(Notes 2, 3) ............................................................ +38NC/W
JA
Continuous Power Dissipation (Note 1) ..............................5.3W
Operating Case Temperature Range (Note 4) .. -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
Soldering Temperature (reflow) ......................................+260NC
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V
-40NC to +85NC. Typical values are at V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I Power-Down Current I Input Low Voltage V Input High Voltage V Input Logic Current I
CC_AMP_1
CC_
DCPD
IH
= V
= +5.0V and T
CC
DC
PD_1 = PD_2 = 1, VIH = 3.3V 5.2 8 mA
IL
IH
, I
IL
CC_AMP_2
C
= V
= +25NC, unless otherwise noted.)
= +4.75V to +5.25V, AMPSET = 0, PD_1 = PD_2 = 0, T
CC_RG
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V = -40NC to +85NC. Typical values are at V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I Power-Down Current I Input Low Voltage V Input High Voltage V
CC_AMP_1
= +3.3V and T
CC_
CC
DC
DCPD
IL
IH
= V
CC_AMP_2
PD_1 = PD_2 = 1, VIH = 3.3V 4.3 8 mA
= V
= +25NC, unless otherwise noted.)
C
= +3.135V to +3.465V, AMPSET = 1, PD_1 = PD_2 = 0, T
CC_RG
4.75 5 5.25 V 148 205 mA
0.5 V
1.7 3.465 V
-1 +1
3.135 3.3 3.465 V 88 145 mA
0.5 V
1.7 3.465 V
FA
=
C
C
2
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency f
RF
(Note 5) 50 1000 MHz
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Gain G
Gain vs. Temperature -0.006 dB/NC
Gain Flatness vs. Frequency
Noise Figure NF
Total Attenuation Range 30.8 dB
Output Second-Order Intercept Point (Minimum Attenuation)
Path Isolation
CC_AMP_1
CC_
OIP2 P
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
f
= 50MHz 22.0
RF
= 100MHz 21.7
f
RF
= 200MHz 21.3
f
RF
= 350MHz, TC = +25NC 18 21.0 23
f
RF
= 450MHz 20.8
f
RF
= 750MHz 19.9
f
RF
= 900MHz 18.3
f
RF
From 100MHz to 200MHz 0.35
Any 100MHz frequency band from 200MHz to 500MHz
= 50MHz 5.2
f
RF
= 100MHz 5.4
f
RF
= 200MHz 5.6
f
RF
= 350MHz 5.8
f
RF
= 450MHz 5.9
f
RF
= 750MHz 6.4
f
RF
= 900MHz 6.7
f
RF
OUT
RF input 1 amplified power measured at RF output 2 relative to RF output 1, all unused ports terminated to 50I
RF input 2 amplified power measured at RF output 1 relative to RF output 2, all unused ports terminated to 50I
= V
= 0dBm/tone, Df = 1MHz, f1 + f
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
2
= -40NC to +85NC. Typical
C
0.25
51.6 dBm
48.8
49.4
MAX2063
dB
dB
dB
dB
3
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC_AMP_1
CC_
MAX2063
Output Third-Order Intercept Point
Output -1dB Compression Point P Second Harmonic HD2 P Third Harmonic HD3 P Group Delay Includes EV kit PCB delays 0.87 ns
Amplifier Power-Down Time
Amplifier Power-Up Time
Input Return Loss RL Output Return Loss RL
DIGITAL ATTENUATOR (each path, unless otherwise noted)
Insertion Loss IL 3.0 dB
Input Second-Order Intercept Point
Input Third-Order Intercept Point
Attenuation Range 30.8 dB Step Size 1 dB Relative Attenuation Accuracy 0.11 dB Absolute Attenuation Accuracy 0.23 dB
Insertion Phase Step f
OIP3
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
1dB
OUT
IIP2
IIP3
(Note 7) 18.8 dBm
OUT
OUT
PD_1 or PD_2 from 0 to 1, amplifier DC supply current settles to within 0.1mA
PD_1 or PD_2 from 1 to 0, amplifier DC supply current settles to within 1%
50I source 23.3 dB
IN
50I load 24.4 dB
P
RF1
attenuation), Df = 1MHz, f
P
IN1
attenuation), Df = 1MHz
= 170MHz
RF
= V
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= +3dBm -54.8 dBc = +3dBm -72.9 dBc
= 0dBm, P
= 0dBm, P
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
= 50MHz
= 100MHz
= 200MHz
= 350MHz
= 450MHz
= 750MHz
= 900MHz
= 0dBm (minimum
RF2
+ f
1
2
= 0dBm (minimum
IN2
0dB to 16dB -0.4
0dB to 31dB 0.9
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical
C
47.1
43.9
41.0
37.0
35.2
28.7
26.5
0.5 Fs
0.5 Fs
53.1 dBm
43.2 dBm
dBm
Degrees0dB to 24dB 0.6
4
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Amplitude Overshoot/ Undershoot
Switching Speed
Input Return Loss RL Output Return Loss RL
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed f Data-to-Clock Setup Time t Data-to-Clock Hold Time t Clock-to-CS Setup Time t
CS Positive Pulse Width t CS Setup Time t
Clock Pulse Width t
CC_AMP_1
CC_
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
Between any two states
RF settled to within Q0.1dB
50I source 21.6 dB
IN
OUT
CLK
CS
CH
ES
EW
EWS
CW
50I load 21.2 dB
= V
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
Elapsed time = 15ns 1.0 Elapsed time = 40ns 0.05 31dB to 0dB 25 0dB to 31dB 21
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical
C
dB
ns
20 MHz
2 ns
2.5 ns 3 ns 7 ns
3.5 ns 5 ns
MAX2063
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V are driven from 50I sources, AMPSET = 1, PD_1 = PD_2 = 0, 100MHz fRF 500MHz, T maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Gain G 20.9 dB
Output Third-Order Intercept Point
Noise Figure NF 5.9 dB Total Attenuation Range 30.8 dB
Path Isolation
Output -1dB Compression Point P
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: All limits include external component losses. Output measurements are performed at the RF output port of the Typical
Application Circuit.
Note 7: It is advisable not to continuously operate RF input 1 or RF input 2 above +15dBm.
= +3.3V, PIN = -20dBm, fRF = 350MHz, and T
CC_
CC_AMP_1
OIP3 P
1dB
= V
CC_AMP_2
OUT
RF input 1 amplified power measured at RF output 2 relative to RF output 1, all unused ports terminated to 50I
RF input 2 amplified power measured at RF output 1 relative to RF output 2, all unused ports terminated to 50I
(Note 7) 13.4 dBm
= V
= 0dBm/tone 29.6 dBm
= +3.3V, attenuators are set for maximum gain, RF ports
CC_RG
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical values are at
C
48.8
49.1
dB
5
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
MAX2063
170
SUPPLY CURRENT vs. V
TC = -40°C
160
TC = +25°C
150
SUPPLY CURRENT (mA)
140
130
4.750 5.250 VCC (V)
CC
TC = +85°C
5.1255.0004.875
GAIN OVER ATTENUATOR SETTING
vs. RF FREQUENCY
25
15
5
-5
GAIN OVER ATTENUATOR SETTING (dB)
-15 50 1050
RF FREQUENCY (MHz)
850650450250
= V
MAX2063 toc01
GAIN (dB)
MAX2063 toc04
-0.25
RELATIVE ERROR (dB)
-0.50
-0.75
-1.00
CC_AMP_2
= V
= -20dBm, f
IN
GAIN vs. RF FREQUENCY
24
TC = -40°C
22
20
18
16
TC = +85°C
50 1050
RF FREQUENCY (MHz)
ATTENUATOR RELATIVE
ERROR vs. RF FREQUENCY
1.00
0.75
0.50
0.25
0
ERROR FROM 23dB TO 24dB
50 1050
RF FREQUENCY (MHz)
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
TC = +25°C
850650450250
850650250 450
= +25°C, unless otherwise noted.)
C
24
MAX2063 toc02
22
20
GAIN (dB)
18
16
1.00
0.75
MAX2063 toc05
0.50
0.25
0
-0.25
ABSOLUTE ERROR (dB)
-0.50
-0.75
-1.00
GAIN vs. RF FREQUENCY
VCC = 4.75V, 5.00V, 5.25V
50 1050
RF FREQUENCY (MHz)
ATTENUATOR ABSOLUTE
ERROR vs. RF FREQUENCY
50 1050
RF FREQUENCY (MHz)
典型工作特性
MAX2063 toc03
850650450250
MAX2063 toc06
25dB
24dB
850650250 450
INPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
16dB
-10
-20
-30
-40
INPUT MATCH OVER ATTENUATOR SETTING (dB)
-50 0 1000
8dB
1dB
2dB
31dB
RF FREQUENCY (MHz)
0dB
4dB
MAX2063 toc07
800600400200
OUTPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
-10
16dB, 31dB
-20
-30
OUTPUT MATCH OVER ATTENUATOR SETTING (dB)
-40
1dB, 4dB, 8dB
0dB
0 1000
2dB
800600400200
RF FREQUENCY (MHz)
MAX2063 toc08
6
50MHz至1000MHz
、高线性度、
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
REVERSE GAIN OVER ATTENUATOR
SETTING vs. RF FREQUENCY
-30
-40
-50
-60
-70
REVERSE GAIN OVER ATTENUATOR SETTING (dB)
-80 50 1050
ATTEN 0dB
ATTEN 31dB
850650450250
RF FREQUENCY (MHz)
CHANNEL ISOLATION vs. RF FREQUENCY
(MINIMUM GAIN)
75
RELATIVE POWERS AT RF OUTPUTS
65
55
45
CHANNEL ISOLATION (dB)
35
25
50 1050
RF FREQUENCY (MHz)
CH1 TO CH2
CH2 TO CH1
850650450250
= V
CC_AMP_2
ATTENUATOR PHASE CHANGE
BETWEEN STATES vs. RF FREQUENCY
60
REFERENCED TO HIGH GAIN STATE
50
MAX2063 toc09
POSITIVE PHASE = ELECTRICALLY SHORTER
40
30
20
10
0
-10
-20
-30 50 1050
ATTENUATOR PHASE CHANGE BETWEEN STATES (DEGREES)
NOISE FIGURE vs. RF FREQUENCY
9
MAX2063 toc12
8
7
6
NOISE FIGURE (dB)
5
4
3
50 1050
串行/并行控制的双通道数字
典型工作特性(续
= V
= -20dBm, f
IN
RF FREQUENCY (MHz)
TC = -40°C
RF FREQUENCY (MHz)
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
= +25°C, unless otherwise noted.)
C
CHANNEL ISOLATION vs. RF FREQUENCY
(MAXIMUM GAIN)
75
MAX2063 toc10
65
55
45
CHANNEL ISOLATION (dB)
35
850650450250
25
RELATIVE POWERS AT RF OUTPUTS
CH1 TO CH2
50 1050
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
9
TC = +85°C
MAX2063 toc13
TC = +25°C
850650450250
8
7
6
NOISE FIGURE (dB)
5
4
3
50 1050
VCC = 4.75V, 5.00V, 5.25V
RF FREQUENCY (MHz)
MAX2063
)
MAX2063 toc11
CH2 TO CH1
850650450250
MAX2063 toc14
850650450250
OUTPUT P
22
20
18
(dBm)
1dB
TC = +85°C
16
OUTPUT P
14
12
50 1050
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
RF FREQUENCY (MHz)
OUTPUT P
22
MAX2063 toc15
850650450250
20
18
(dBm)
1dB
VCC = 4.75V
16
OUTPUT P
14
12
50 1050
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 5.00V
RF FREQUENCY (MHz)
MAX2063 toc16
850650450250
7
Loading...
+ 15 hidden pages