MAXIM MAX2063 User Manual

19-5303; Rev 0; 6/10
串行/并行控制的双通道数字
MAX2063 (VGA)
兼容接口控制作为从机外设的每路数字衰减器 ;也允许以
步长通过5位并行总线控制,可调节范围为
1dB
件还增加了“速 射”增益选择,可直接设置在 的一种,用户可通过 独立的控制引脚允许用户快速选择 一个,无需对
因为每一级电路都具有外部 置可以优化噪声系数 器配 置为最后一级
放大器本身),增益最大时噪声系数
(
减器的插入损耗 得该器件成为多通道接收器和发射器应用理想的
此外,器件采用
+3.3V
降低。器件采用紧凑、带裸焊盘的
(7mmx7mm)
内确保电气特性。
高线性 度、双 通 道数字调节可 变 增 益 放 大 器
工作在
50MHz至1000MHz
总线重新编程。
SPI
接口预先设 置四种增益选项。2个
SPI
放大器配置为第一级)或
(
。该器件还包含 增益为
)
频率范围。可通过
种定制衰减状态的任何
4
输入和RF输出,通过适当配
RF
24dB
(NF)为5.6dB(
,并提供
)
+5V
单电源时,具有先进的省电模式,但性能指标略有
,在扩展级温度范围
+41dBm的高OIP3
单电源供电时具有最优的性能;工作在
引脚、薄型
48
(TC=-40°C至+85°C)
。这些特性使
IF和RF
温度补偿电路
蜂窝频段
GSM850/GSM900EDGE WiMAX™和LTE
固定宽带无线接入
无线本地环路
军用系统
增益级设计
WCDMA和cdma2000
基站及用户端企业设备
基站
®
基站
概述
SPI™
。该器
31dB
种增益 选项
4
OIP3(
的放 大器
包括衰
选择。
VGA
QFN
应用
放大
封装
50MHz至1000MHz
两个通道可独立控制
50MHz至1000MHz RF
引脚兼容系列器件包括
MAX2062 ( MAX2064 (
21.3dB (
100MHz
31dB
200MHz
支持4种“速射”预编程衰减设置选项
200MHz +41dBm OIP3 +56dBm OIP2
5.6dB
25ns
超低失真
+5V
放大器关断模式支持
典型值)最大增益
带宽内保持
增益范围
频率下具有
快速设置4种定制衰减状态之一,无需对 理想用于快速响应和大信号阻塞保护 避免
输出
单电源供电(可选择
过驱动
ADC
时具有优异的线性特性
压缩点为
1dB
典型噪声系数
数字切换时间
VGA
PART TEMP RANGE PIN-PACKAGE
MAX2063ETM+ MAX2063ETM+T
表示无铅
+
*
EP=
T=
(Pb)/符合RoHS
裸焊盘。
卷带包装。
模拟/数字 模拟
VGA)
0.25dB
58dB
+19dBm
摆幅具有
TDD应用
-40NC to +85NC
-40NC to +85NC
标准的封装。
频率范围
VGA)
的增益平坦度
通道隔离
0.05dB
+3.3V供电)
、高线性度、
特性
总线重新编程
SPI
的过冲/下冲
定购信息
48 Thin QFN-EP* 48 Thin QFN-EP*
MAX2063
SPI是Motorola,Inc. cdma2000 WiMAX是WiMAX
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络 或访问
是电信工业协会的注册商标。
Maxim
的商标。
论坛的商标。
_______________________________________________________________ Maxim Integrated Products 1
的中文网站:
Maxim
亚洲销售中心:
china.maxim-ic.com
10800 852 1249 (
北中国区),
10800 152 1249 (
南中国区),
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
ABSOLUTE MAXIMUM RATINGS
V
CC_AMP_1
STA_A_1, STA_A_2, STA_B_1, STA_B_2, PD_1,
PD_2, AMPSET to GND ....................................-0.3V to +3.6V
DAT, CS, CLK, DA_SP to GND ............................-0.3V to +3.6V
D0_1, D1_1, D2_1, D3_1, D4_1, D0_2, D1_2,
D2_2, D3_2, D4_2 to GND ................................-0.3V to +3.6V
AMP_IN_1, AMP_IN_2 to GND ..........................+0.95V to +1.2V
MAX2063
AMP_OUT_1, AMP_OUT_2 to GND .....................-0.3V to +5.5V
D_ATT_IN_1, D_ATT_IN_2, D_ATT_OUT_1,
D_ATT_OUT_2 to GND ......................................... 0V to +3.6V
REG_OUT to GND ................................................-0.3V to +3.6V
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
Note 3: Junction temperature T
Note 4: T
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
, V
CC_AMP_2
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
layer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial.
known. The junction temperature must not exceed +150NC.
is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
C
, V
to GND ..........-0.3V to +5.5V
CC_RG
= TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
J
RF Input Power (D_ATT_IN_1, D_ATT_IN_2) ............... +20dBm
RF Input Power (AMP_IN_1, AMP_IN_2) ...................... +18dBm
θ
(Notes 1, 2) ......................................................... +12.3NC/W
JC
θ
(Notes 2, 3) ............................................................ +38NC/W
JA
Continuous Power Dissipation (Note 1) ..............................5.3W
Operating Case Temperature Range (Note 4) .. -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
Soldering Temperature (reflow) ......................................+260NC
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V
-40NC to +85NC. Typical values are at V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I Power-Down Current I Input Low Voltage V Input High Voltage V Input Logic Current I
CC_AMP_1
CC_
DCPD
IH
= V
= +5.0V and T
CC
DC
PD_1 = PD_2 = 1, VIH = 3.3V 5.2 8 mA
IL
IH
, I
IL
CC_AMP_2
C
= V
= +25NC, unless otherwise noted.)
= +4.75V to +5.25V, AMPSET = 0, PD_1 = PD_2 = 0, T
CC_RG
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V = -40NC to +85NC. Typical values are at V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I Power-Down Current I Input Low Voltage V Input High Voltage V
CC_AMP_1
= +3.3V and T
CC_
CC
DC
DCPD
IL
IH
= V
CC_AMP_2
PD_1 = PD_2 = 1, VIH = 3.3V 4.3 8 mA
= V
= +25NC, unless otherwise noted.)
C
= +3.135V to +3.465V, AMPSET = 1, PD_1 = PD_2 = 0, T
CC_RG
4.75 5 5.25 V 148 205 mA
0.5 V
1.7 3.465 V
-1 +1
3.135 3.3 3.465 V 88 145 mA
0.5 V
1.7 3.465 V
FA
=
C
C
2
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency f
RF
(Note 5) 50 1000 MHz
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Gain G
Gain vs. Temperature -0.006 dB/NC
Gain Flatness vs. Frequency
Noise Figure NF
Total Attenuation Range 30.8 dB
Output Second-Order Intercept Point (Minimum Attenuation)
Path Isolation
CC_AMP_1
CC_
OIP2 P
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
f
= 50MHz 22.0
RF
= 100MHz 21.7
f
RF
= 200MHz 21.3
f
RF
= 350MHz, TC = +25NC 18 21.0 23
f
RF
= 450MHz 20.8
f
RF
= 750MHz 19.9
f
RF
= 900MHz 18.3
f
RF
From 100MHz to 200MHz 0.35
Any 100MHz frequency band from 200MHz to 500MHz
= 50MHz 5.2
f
RF
= 100MHz 5.4
f
RF
= 200MHz 5.6
f
RF
= 350MHz 5.8
f
RF
= 450MHz 5.9
f
RF
= 750MHz 6.4
f
RF
= 900MHz 6.7
f
RF
OUT
RF input 1 amplified power measured at RF output 2 relative to RF output 1, all unused ports terminated to 50I
RF input 2 amplified power measured at RF output 1 relative to RF output 2, all unused ports terminated to 50I
= V
= 0dBm/tone, Df = 1MHz, f1 + f
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
2
= -40NC to +85NC. Typical
C
0.25
51.6 dBm
48.8
49.4
MAX2063
dB
dB
dB
dB
3
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC_AMP_1
CC_
MAX2063
Output Third-Order Intercept Point
Output -1dB Compression Point P Second Harmonic HD2 P Third Harmonic HD3 P Group Delay Includes EV kit PCB delays 0.87 ns
Amplifier Power-Down Time
Amplifier Power-Up Time
Input Return Loss RL Output Return Loss RL
DIGITAL ATTENUATOR (each path, unless otherwise noted)
Insertion Loss IL 3.0 dB
Input Second-Order Intercept Point
Input Third-Order Intercept Point
Attenuation Range 30.8 dB Step Size 1 dB Relative Attenuation Accuracy 0.11 dB Absolute Attenuation Accuracy 0.23 dB
Insertion Phase Step f
OIP3
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
P
OUT
Df = 1MHz, f
1dB
OUT
IIP2
IIP3
(Note 7) 18.8 dBm
OUT
OUT
PD_1 or PD_2 from 0 to 1, amplifier DC supply current settles to within 0.1mA
PD_1 or PD_2 from 1 to 0, amplifier DC supply current settles to within 1%
50I source 23.3 dB
IN
50I load 24.4 dB
P
RF1
attenuation), Df = 1MHz, f
P
IN1
attenuation), Df = 1MHz
= 170MHz
RF
= V
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= 0dBm/tone,
RF
= +3dBm -54.8 dBc = +3dBm -72.9 dBc
= 0dBm, P
= 0dBm, P
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
= 50MHz
= 100MHz
= 200MHz
= 350MHz
= 450MHz
= 750MHz
= 900MHz
= 0dBm (minimum
RF2
+ f
1
2
= 0dBm (minimum
IN2
0dB to 16dB -0.4
0dB to 31dB 0.9
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical
C
47.1
43.9
41.0
37.0
35.2
28.7
26.5
0.5 Fs
0.5 Fs
53.1 dBm
43.2 dBm
dBm
Degrees0dB to 24dB 0.6
4
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = V RF ports are driven from 50I sources, AMPSET = 0, PD_1 = PD_2 = 0, 100MHz f values are at maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Amplitude Overshoot/ Undershoot
Switching Speed
Input Return Loss RL Output Return Loss RL
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed f Data-to-Clock Setup Time t Data-to-Clock Hold Time t Clock-to-CS Setup Time t
CS Positive Pulse Width t CS Setup Time t
Clock Pulse Width t
CC_AMP_1
CC_
= V
CC_AMP_2
= +5.0V, PIN = -20dBm, fRF = 350MHz, and T
Between any two states
RF settled to within Q0.1dB
50I source 21.6 dB
IN
OUT
CLK
CS
CH
ES
EW
EWS
CW
50I load 21.2 dB
= V
= +4.75V to +5.25V, attenuators are set for maximum gain,
CC_RG
Elapsed time = 15ns 1.0 Elapsed time = 40ns 0.05 31dB to 0dB 25 0dB to 31dB 21
500MHz, T
RF
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical
C
dB
ns
20 MHz
2 ns
2.5 ns 3 ns 7 ns
3.5 ns 5 ns
MAX2063
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = V are driven from 50I sources, AMPSET = 1, PD_1 = PD_2 = 0, 100MHz fRF 500MHz, T maximum gain setting, V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Gain G 20.9 dB
Output Third-Order Intercept Point
Noise Figure NF 5.9 dB Total Attenuation Range 30.8 dB
Path Isolation
Output -1dB Compression Point P
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: All limits include external component losses. Output measurements are performed at the RF output port of the Typical
Application Circuit.
Note 7: It is advisable not to continuously operate RF input 1 or RF input 2 above +15dBm.
= +3.3V, PIN = -20dBm, fRF = 350MHz, and T
CC_
CC_AMP_1
OIP3 P
1dB
= V
CC_AMP_2
OUT
RF input 1 amplified power measured at RF output 2 relative to RF output 1, all unused ports terminated to 50I
RF input 2 amplified power measured at RF output 1 relative to RF output 2, all unused ports terminated to 50I
(Note 7) 13.4 dBm
= V
= 0dBm/tone 29.6 dBm
= +3.3V, attenuators are set for maximum gain, RF ports
CC_RG
= +25NC, unless otherwise noted.) (Note 6)
C
= -40NC to +85NC. Typical values are at
C
48.8
49.1
dB
5
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
MAX2063
170
SUPPLY CURRENT vs. V
TC = -40°C
160
TC = +25°C
150
SUPPLY CURRENT (mA)
140
130
4.750 5.250 VCC (V)
CC
TC = +85°C
5.1255.0004.875
GAIN OVER ATTENUATOR SETTING
vs. RF FREQUENCY
25
15
5
-5
GAIN OVER ATTENUATOR SETTING (dB)
-15 50 1050
RF FREQUENCY (MHz)
850650450250
= V
MAX2063 toc01
GAIN (dB)
MAX2063 toc04
-0.25
RELATIVE ERROR (dB)
-0.50
-0.75
-1.00
CC_AMP_2
= V
= -20dBm, f
IN
GAIN vs. RF FREQUENCY
24
TC = -40°C
22
20
18
16
TC = +85°C
50 1050
RF FREQUENCY (MHz)
ATTENUATOR RELATIVE
ERROR vs. RF FREQUENCY
1.00
0.75
0.50
0.25
0
ERROR FROM 23dB TO 24dB
50 1050
RF FREQUENCY (MHz)
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
TC = +25°C
850650450250
850650250 450
= +25°C, unless otherwise noted.)
C
24
MAX2063 toc02
22
20
GAIN (dB)
18
16
1.00
0.75
MAX2063 toc05
0.50
0.25
0
-0.25
ABSOLUTE ERROR (dB)
-0.50
-0.75
-1.00
GAIN vs. RF FREQUENCY
VCC = 4.75V, 5.00V, 5.25V
50 1050
RF FREQUENCY (MHz)
ATTENUATOR ABSOLUTE
ERROR vs. RF FREQUENCY
50 1050
RF FREQUENCY (MHz)
典型工作特性
MAX2063 toc03
850650450250
MAX2063 toc06
25dB
24dB
850650250 450
INPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
16dB
-10
-20
-30
-40
INPUT MATCH OVER ATTENUATOR SETTING (dB)
-50 0 1000
8dB
1dB
2dB
31dB
RF FREQUENCY (MHz)
0dB
4dB
MAX2063 toc07
800600400200
OUTPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
-10
16dB, 31dB
-20
-30
OUTPUT MATCH OVER ATTENUATOR SETTING (dB)
-40
1dB, 4dB, 8dB
0dB
0 1000
2dB
800600400200
RF FREQUENCY (MHz)
MAX2063 toc08
6
50MHz至1000MHz
、高线性度、
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
REVERSE GAIN OVER ATTENUATOR
SETTING vs. RF FREQUENCY
-30
-40
-50
-60
-70
REVERSE GAIN OVER ATTENUATOR SETTING (dB)
-80 50 1050
ATTEN 0dB
ATTEN 31dB
850650450250
RF FREQUENCY (MHz)
CHANNEL ISOLATION vs. RF FREQUENCY
(MINIMUM GAIN)
75
RELATIVE POWERS AT RF OUTPUTS
65
55
45
CHANNEL ISOLATION (dB)
35
25
50 1050
RF FREQUENCY (MHz)
CH1 TO CH2
CH2 TO CH1
850650450250
= V
CC_AMP_2
ATTENUATOR PHASE CHANGE
BETWEEN STATES vs. RF FREQUENCY
60
REFERENCED TO HIGH GAIN STATE
50
MAX2063 toc09
POSITIVE PHASE = ELECTRICALLY SHORTER
40
30
20
10
0
-10
-20
-30 50 1050
ATTENUATOR PHASE CHANGE BETWEEN STATES (DEGREES)
NOISE FIGURE vs. RF FREQUENCY
9
MAX2063 toc12
8
7
6
NOISE FIGURE (dB)
5
4
3
50 1050
串行/并行控制的双通道数字
典型工作特性(续
= V
= -20dBm, f
IN
RF FREQUENCY (MHz)
TC = -40°C
RF FREQUENCY (MHz)
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
= +25°C, unless otherwise noted.)
C
CHANNEL ISOLATION vs. RF FREQUENCY
(MAXIMUM GAIN)
75
MAX2063 toc10
65
55
45
CHANNEL ISOLATION (dB)
35
850650450250
25
RELATIVE POWERS AT RF OUTPUTS
CH1 TO CH2
50 1050
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
9
TC = +85°C
MAX2063 toc13
TC = +25°C
850650450250
8
7
6
NOISE FIGURE (dB)
5
4
3
50 1050
VCC = 4.75V, 5.00V, 5.25V
RF FREQUENCY (MHz)
MAX2063
)
MAX2063 toc11
CH2 TO CH1
850650450250
MAX2063 toc14
850650450250
OUTPUT P
22
20
18
(dBm)
1dB
TC = +85°C
16
OUTPUT P
14
12
50 1050
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
RF FREQUENCY (MHz)
OUTPUT P
22
MAX2063 toc15
850650450250
20
18
(dBm)
1dB
VCC = 4.75V
16
OUTPUT P
14
12
50 1050
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 5.00V
RF FREQUENCY (MHz)
MAX2063 toc16
850650450250
7
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
OUTPUT IP3 vs. RF FREQUENCY
MAX2063
50
45
40
35
30
OUTPUT IP3 (dBm)
25
20
50 1050
TC = -40°C
RF FREQUENCY (MHz)
TC = +85°C
P
= 0dBm/TONE
OUT
TC = +25°C
850650450250
2ND HARMONIC vs. RF FREQUENCY
70
60
50
TC = -40°C
2ND HARMONIC (dBc)
40
TC = +85°C
TC = +25°C
P
OUT
= 3dBm
= V
MAX2063 toc17
OUTPUT IP3 (dBm)
MAX2063 toc20
2ND HARMONIC (dBc)
CC_AMP_2
= V
= -20dBm, f
IN
OUTPUT IP3 vs. RF FREQUENCY
50
VCC = 5.00V
45
40
35
VCC = 4.75V
30
25
20
50 1050
RF FREQUENCY (MHz)
2ND HARMONIC vs. RF FREQUENCY
70
VCC = 5.25V
60
50
40
VCC = 4.75V
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
P
= 0dBm/TONE
OUT
VCC = 5.25V
850650450250
P
= 3dBm
OUT
VCC = 5.00V
典型工作特性(续
= +25°C, unless otherwise noted.)
C
OUTPUT IP3 vs. ATTENUATOR STATE
45
MAX2063 toc18
TC = -40°C, LSB, USB
40
OUTPUT IP3 (dBm)
35
TC = +85°C, LSB, USB
30
0 28
ATTENUATOR STATE (dB)
2ND HARMONIC vs. ATTENUATOR STATE
65
TC = +85°C
MAX2063 toc21
60
55
50
2ND HARMONIC (dBc)
TC = -40°C
45
P
= 0dBm/TONE
OUT
f
= 350MHz
RF
TC = +25°C, LSB, USB
2420161284
P
= 3dBm
OUT
f
= 350MHz
RF
TC = +25°C
)
MAX2063 toc19
MAX2063 toc22
30
50 1050
RF FREQUENCY (MHz)
3RD HARMONIC vs. RF FREQUENCY
100
90
80
70
3RD HARMONIC (dBc)
TC = +85°C
60
50
50 1050
TC = -40°C
RF FREQUENCY (MHz)
8
850650450250
P
= 3dBm
OUT
TC = +25°C
850650450250
30
100
MAX2063 toc23
90
80
70
3RD HARMONIC (dBc)
60
50
50 1050
RF FREQUENCY (MHz)
850650450250
3RD HARMONIC vs. RF FREQUENCY
P
= 3dBm
OUT
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
50 1050
RF FREQUENCY (MHz)
850650450250
40
80
MAX2063 toc24
75
70
3RD HARMONIC (dBc)
65
0 28
ATTENUATOR STATE (dB)
2420161284
3RD HARMONIC vs. ATTENUATOR STATE
P
= 3dBm
OUT
f
= 350MHz
TC = -40°C
TC = +85°C
0 28
ATTENUATOR STATE (dB)
RF
TC = +25°C
2420161284
MAX2063 toc25
50MHz至1000MHz
RF FREQUENCY (MHz)
、高线性度、
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 0, PD_1 = PD_2 = 0, P
OUTPUT IP2 vs. RF FREQUENCY
70
TC = +85°C
60
50
TC = +25°C
40
OUTPUT IP2 (dBm)
30
20
50 1050
TC = -40°C
RF FREQUENCY (MHz)
P
= 0dBm/TONE
OUT
850650450250
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
0
MAX2063 toc26
OUTPUT IP2 (dBm)
= V
CC_AMP_2
OUTPUT IP2 vs. RF FREQUENCY
70
60
50
40
30
20
50 1050
串行/并行控制的双通道数字
典型工作特性(续
= V
= -20dBm, f
IN
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
= 5V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
= +25°C, unless otherwise noted.)
C
OUTPUT IP2 vs. ATTENUATOR STATE
MAX2063 toc27
OUTPUT IP2 (dBm)
60
55
50
45
40
TC = +85°C
TC = -40°C
0 28
TC = +25°C
ATTENUATOR STATE (dB)
P
OUT
VCC = 5.00V
= 0dBm/TONE
850650450250
GAIN vs. RF FREQUENCY
(ATTENUATOR ONLY)
0
P
= 0dBm/TONE
OUT
f
= 350MHz
RF
20161284
MAX2063
)
MAX2063 toc28
24
-1
-2
GAIN (dB)
-3
-4
-5 50 1050
TC = -40°C
TC = +25°C
TC = +85°C
MAX2063 toc29
850650450250
-1
-2
GAIN (dB)
-3
-4
-5
VCC = 4.75V, 5.00V, 5.25V
50 1050
RF FREQUENCY (MHz)
850650450250
MAX2063 toc30
9
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 1, PD_1 = PD_2 = 0, P
MAX2063
120
SUPPLY CURRENT vs. V
110
100
90
80
SUPPLY CURRENT (mA)
70
60
TC = -40°C
TC = +25°C
TC = +85°C
3.1 3.5 VCC (V)
CC
3.43.33.2
INPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
-10
16dB
8dB
-20
-30
-40 31dB
INPUT MATCH OVER ATTENUATOR SETTING (dB)
-50
50 1050
2dB
4dB
RF FREQUENCY (MHz)
0dB
MAX2063 toc31
= V
GAIN (dB)
VCC = 3.3V
1dB
850650450250
CC_AMP_2
= V
= -20dBm, f
IN
GAIN vs. RF FREQUENCY
24
TC = -40°C
22
20
TC = +85°C
18
16
50 1050
RF FREQUENCY (MHz)
MAX2063 toc34
= 3.3V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
VCC = 3.3V
TC = +25°C
850650450250
OUTPUT MATCH OVER ATTENUATOR SETTING (dB)
典型工作特性(续
= +25°C, unless otherwise noted.)
C
GAIN vs. RF FREQUENCY
24
MAX2063 toc32
22
20
GAIN (dB)
18
16
VCC = 3.465V
VCC = 3.135V
50 1050
RF FREQUENCY (MHz)
OUTPUT MATCH OVER ATTENUATOR
SETTING vs. RF FREQUENCY
0
-10
16dB, 31dB
1dB
2dB
-20
-30
-40 50 1050
8dB
4dB
0dB
RF FREQUENCY (MHz)
VCC = 3.3V
850650450250
)
MAX2063 toc33
VCC = 3.3V
850650450250
MAX2063 toc35
10
NOISE FIGURE vs. RF FREQUENCY
9
8
TC = +85°C
7
6
5
NOISE FIGURE (dB)
4
TC = -40°C
3
2
50 1050
RF FREQUENCY (MHz)
TC = +25°C
VCC = 3.3V
850650450250
MAX2063 toc36
NOISE FIGURE vs. RF FREQUENCY
9
8
7
6
5
NOISE FIGURE (dB)
4
3
2
50 1050
VCC = 3.135V
VCC = 3.3V
VCC = 3.465V
RF FREQUENCY (MHz)
MAX2063 toc37
850650450250
50MHz至1000MHz
ATTENUATOR STATE (dB)
、高线性度、
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 1, PD_1 = PD_2 = 0, P
OUTPUT P
16
TC = +25°C
14
(dBm)
12
1dB
10
OUTPUT P
8
6
TC = +85°C
50 1050
vs. RF FREQUENCY
1dB
TC = -40°C
RF FREQUENCY (MHz)
VCC = 3.3V
850650450250
OUTPUT IP3 vs. RF FREQUENCY
50
40
30
OUTPUT IP3 (dBm)
VCC = 3.135V
20
VCC = 3.465V
P
= 0dBm/TONE
OUT
VCC = 3.3V
= V
MAX2063 toc38
(dBm)
1dB
OUTPUT P
MAX2063 toc41
OUTPUT IP3 (dBm)
CC_AMP_2
OUTPUT P
16
14
12
VCC = 3.465V
10
8
6
50 1050
OUTPUT IP3 vs. ATTENUATOR STATE
34
TC = -40°C LSB, USB
32
30
28
26
TC = +85°C LSB, USB
24
串行/并行控制的双通道数字
典型工作特性(续
= V
= -20dBm, f
IN
1dB
RF FREQUENCY (MHz)
TC = +25°C LSB, USB
= 3.3V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
vs. RF FREQUENCY
VCC = 3.3V
VCC = 3.135V
850650450250
= +25°C, unless otherwise noted.)
C
OUTPUT IP3 vs. RF FREQUENCY
50
MAX2063 toc39
40
30
OUTPUT IP3 (dBm)
20
10
50 1050
TC = -40°C
TC = +85°C
RF FREQUENCY (MHz)
2ND HARMONIC vs. RF FREQUENCY
VCC = 3.3V P
= 0dBm/TONE
OUT
= 350MHz
f
RF
80
70
MAX2063 toc42
60
50
40
2ND HARMONIC (dBc)
30
T
= +25°C
C
TC = -40°C
P
= 0dBm/TONE
OUT
V
CC
TC = +25°C
V
= 3.3V
CC
P
OUT
TC = +85°C
= 3.3V
850650450250
= 3dBm
MAX2063
)
MAX2063 toc40
MAX9888 toc43
10
50 1050
RF FREQUENCY (MHz)
2ND HARMONIC vs. RF FREQUENCY
80
70
60
50
40
2ND HARMONIC (dBc)
30
20
50 1050
850650450250
VCC = 3.465V
VCC = 3.135V
RF FREQUENCY (MHz)
P
OUT
VCC = 3.3V
22
0 28
ATTENUATOR STATE (dB)
= 3dBm
MAX9888 toc44
850650450250
20
2420161284
50 1050
2ND HARMONIC vs. ATTENUATOR STATE
80
70
TC = +85°C
60
50
2ND HARMONIC (dBc)
40
30
TC = -40°C
0 28
VCC = 3.3V P f
TC = +25°C
RF FREQUENCY (MHz)
= 3dBm
OUT
= 350MHz
RF
MAX2063 toc45
2420161284
850650450250
11
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
(Typical Application Circuit, V
CC
= V
CC_AMP_1
driven from 50ω sources, AMPSET = 1, PD_1 = PD_2 = 0, P
3RD HARMONIC vs. RF FREQUENCY
80
MAX2063
70
60
3RD HARMONIC (dBc)
50
40
70
65
TC = -40°C
TC = +85°C
50 1050
RF FREQUENCY (MHz)
3RD HARMONIC vs. ATTENUATOR STATE
TC = -40°C
= V
VCC = 3.3V P
OUT
TC = +25°C
VCC = 3.3V P
= 3dBm
OUT
= 350MHz
f
RF
CC_AMP_2
= 3dBm
850650450250
= V
= -20dBm, f
IN
MAX2063 toc46
MAX2063 toc48
典型工作特性(续
= 3.3V, attenuators are set for maximimum gain, RF ports are
CC_RG
= 350MHz, T
RF
= +25°C, unless otherwise noted.)
C
3RD HARMONIC vs. RF FREQUENCY
80
70
VCC = 3.465V
VCC = 3.135V
60
3RD HARMONIC (dBc)
50
40
50 1050
VCC = 3.3V
RF FREQUENCY (MHz)
P
= 3dBm
OUT
850650450250
OUTPUT IP2 vs. RF FREQUENCY
70
TC = +85°C
60
VCC = 3.3V P
= 0dBm/TONE
OUT
)
MAX2063 toc47
MAX2063 toc49
60
TC = +25°C
3RD HARMONIC (dBc)
55
TC = +85°C
50
0 28
ATTENUATOR STATE (dB)
OUTPUT IP2 vs. RF FREQUENCY
70
60
VCC = 3.465V
50
40
OUTPUT IP2 (dBm)
30
20
50 1050
RF FREQUENCY (MHz)
VCC = 3.3V
VCC = 3.135V
P
= 0dBm/TONE
OUT
50
40
OUTPUT IP2 (dBm)
2420161284
TC = +25°C
30
TC = -40°C
20
50 1050
RF FREQUENCY (MHz)
850650450250
OUTPUT IP2 vs. ATTENUATOR STATE
70
P
= 0dBm/TONE
OUT
MAX2063 toc50
850650450250
60
50
OUTPUT IP2 (dBm)
40
30
0 28
TC = +85°C
TC = -40°C
ATTENUATOR STATE (dB)
fRF = 350MHz
TC = +25°C
V
= 3.3V
CC
MAX2063 toc51
2420161284
12
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
MAX2063
TOP VIEW
V
CC_AMP_1
GND
GND
GND
GND
D4_1
D_ATT_OUT_1
D3_1
D2_1
D1_1
D0_1
GND
AMP_IN_1
PD_1
GND
35
34 33 32 31 30 29 28 27
36
37
38
39
40
41
42
43
44
45
46
47
48
+
ACTIVE
BIAS
DIGITAL
ATTENUATOR
1
2
3 4 5 6 7 8 9 10
1
GND
STA_A_1
D_ATT_IN_1
AMPSET
AMP_OUT_1
GND
AMP AMP
MAX2063
SPI
CLK
DAT
STA_B_1
THIN QFN
(7mm O 7mm)
AMP_OUT_2
REG_OUT
ATTENUATOR
CS
CC_RG
V
GND
ACTIVE
BIAS
EXPOSED
PAD
DIGITAL
2
STA_B_2
AMP_IN_2
PD_2
26
11
STA_A_2
D_ATT_IN_2
GND
25
V
24
CC_AMP_2
GND
23
22
GND
21
DA_SP
GND
20
D4_2
19
18
D_ATT_OUT_2
17
D3_2
16
D2_2
D1_2
15
D0_2
14
13
GND
12
GND
引脚配置
引脚 名称 功能
1, 12, 13, 20,
22, 23, 25, 28, 33, 36,
38–41, 48
2 D_ATT_IN_1
3 STA_A_1
4 STA_B_1
5 DAT 6 CLK 7 CS
GND
地。
位数字衰减器RF输入
5
,通道1。需要外接隔直流电容。
(50Ω)
数字衰减器预编程衰减状态逻辑输入,通道
状态
逻辑电平 逻辑电平 逻辑电平 逻辑电平
数据输入。
SPI
时钟输入。
SPI
片选输入。
SPI
A
=0 =1 =0 =1
状态
B
逻辑电平 逻辑电平 逻辑电平 逻辑电平
=0 =0 =1 =1
1
数字衰减器
预编程状态 预编程状态 预编程状态 预编程状态
引脚说明
1
1 2 3 4
13
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
引脚 名称 功能
稳压电源输入,连接到 电容旁路该引脚,电容应尽可能靠近该引脚放置。
数字衰减器预编程衰减状态逻辑输入,通道
状态
A
逻辑电平 逻辑电平 逻辑电平 逻辑电平
位数字衰减器RF输入
5 1dB 2dB 4dB 8dB
位数字衰减器输出
5 16dB
数字衰减器串行
,选择并行控制。
0
驱动放大器电源输入,通道2。在尽可能靠近该引脚的位置安装 驱动放大器输入 关断控制,通道 驱动放大器输出 稳压器输出,通过
3.3V
供电时,置为逻辑0。
5V
驱动放大器输出 关断控制,通道 驱动放大器输入 驱动放大器电源输入,通道1。在尽可能靠近该引脚的位置安装
16dB
位数字衰减器输出
5 8dB 4dB 2dB 1dB
裸焊盘,内部连接到
=0 =1 =0 =1
衰减器逻辑输入,通道2。逻辑 衰减器逻辑输入,通道2。逻辑 衰减器逻辑输入,通道2。逻辑 衰减器逻辑输入,通道2。逻辑
衰减器逻辑输入,通道2。逻辑
供电时,驱动放大器的偏置设置。
衰减器逻辑输入,通道1。逻辑
衰减器逻辑输入,通道1。逻辑 衰减器逻辑输入,通道1。逻辑 衰减器逻辑输入,通道1。逻辑 衰减器逻辑输入,通道1。逻辑
MAX2063
8 V
9 STA_B_2
10 STA_A_2
11 D_ATT_IN_2 14 D0_2 15 D1_2 16 D2_2 17 D3_2 18 D_ATT_OUT_2 19 D4_2
21 DA_SP
24 V 26 AMP_IN_2 27 PD_2 29 AMP_OUT_2 30 REG_OUT
31 AMPSET
32 AMP_OUT_1 34 PD_1 35 AMP_IN_1 37 V 42 D4_1 43 D_ATT_OUT_1 44 D3_1 45 D2_1 46 D1_1 47 D0_1 — EP
CC_RG
CC_AMP_2
CC_AMP_1
3.3V或5V
状态
逻辑电平 逻辑电平 逻辑电平 逻辑电平
(50Ω)
(50Ω)
并行控制选择输入。将
/
,通道2。通过
(50Ω)
。详细操作请参考表2。
2
,通道2。在
(50Ω)
电容旁路。
1μF
,通道1。在
(50Ω)
。详细操作请参考表2。
1
,通道1。通过
(50Ω)
(50Ω)
GND
外部电源。
B
=0 =0 =1 =1
,通道2。需要外接隔直流电容。
0= 0= 0= 0=
,通道2。需要外接隔直流电容,通过
0=
AMP_OUT_2与V
AMP_OUT_1与V
0=
,通道1。需要外接隔直流电容,通过
0= 0= 0= 0=
。将其连接到大面积的
V
CC_RG
2
数字衰减器
预编程状态 预编程状态 预编程状态 预编程状态
关闭;逻辑 关闭;逻辑 关闭;逻辑 关闭;逻辑
关闭;逻辑
DA_SP
电容连接到
1000pF
V
CC_AMP1
电容连接到
1000pF
关闭;逻辑
关闭;逻辑 关闭;逻辑 关闭;逻辑 关闭;逻辑
引脚说明(续
为驱动放大器以外的所有电路供电,利用
2
1 2 3 4
使能。
1=
使能。
1=
使能。
1=
使能。
1=
电容连接到
1000pF
使能。
1=
设置为逻辑1,选择串行控制;将
旁路电容。
10nF
D_ATT_OUT_2
之间连接上拉电感。
CC_
V
CC_
采用
CC_AMP2
之间连接上拉电感。
D_ATT_OUT_1
使能。
1=
使能。
1=
使能。
1=
使能。
1=
使能。
1=
接地区域有利于改善RF性能,增强散热。
PCB
供电时,该引脚置为逻辑1;
3.3V
旁路电容。
10nF
电容连接到
1000pF
AMP_IN_2
DA_SP
AMP_IN_1
)
10nF
设置为逻辑
14
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
MAX2063
针对 计。器件的每个通 道集成了一个数字衰减器,可提供 的增 益控制,同时可优化 放 大 器驱动设 计来提供高 增益、 高输出
可通过 也允许以
31dB
种增益选项的一种,用户可通过 选项。 状态的任何一个,无需对
因为每通 道中两级 放 大电路的 每一级都具有 输出,通过适当配置可以优化 或
OIP3(
24dB
括衰减器的插入损耗 性使得该器件成为多通道接收器和发射器应用理想的 选择。
器件集成了两个5位数字衰减器,用于实现高动态范围控制。 每个数字衰减器具有 用的 分和表 用于静态和动态功率控制。
器件包括两个 大器优化于
高线性度数字
50MHz至1000MHz
IP3、低NF
SPI
1dB
。该器件还增加了“速射”增益选择,可直接设置在
个独立的控制引脚允许用户快速选择4种定制衰 减
2
放大器配 置为最后一级)。该器件还提供增益为
的放大器(放大器本身),增益最大时NF为
和低功耗指标。
兼容接口控制作为从机外设的每个数字衰减器;
步长通过5位并 行总线控制, 可调节范围为
,并提供
)
31dB
位并行总线或3线
5
所示的衰减器设置,获得更多信息。这些衰减器可
1
固定增益的高性能驱动器。每个驱动放
24dB
50MHz至1000MHz
是一款通用的高性能放大器,
VGA
频率范围、
总线重新编程。
SPI
50
接口预先设置四种增益
SPI
放大器 配 置为第一级
NF(
+41dBm的高OIP3
位数字衰减器控制
5
控制范围、
接口设置。请参考
SPI
1dB
频率范围的高线性度指标。
详细说明
接口的应用而设
Ω
31dB
输入和
RF
5.6dB(
。这些特
步长,可通过专
应用信息
驱动放大器
4
RF
)
VGA
控制逻辑
1.
DA_SP DIGITAL ATTENUATOR
0 Parallel controlled
1
2.
RESULT V
All on
AMP1 off AMP2 on
AMP1 on AMP2 off
All off
器 件 可以 工作 在
AMPSET
示。此外,还可以独立控制驱动 放 大器关断,以降低直流 电源的功耗,详细信息请参考表
数字衰减器可采用5位字长通过3线 容串行接口进行控制。移入
打包成帧。前28位数据用于设置第一路衰减器,后续
CS
位数据用于设置第二路衰减器。当CS为低电平时,时钟有 效,数据在时钟的上升沿移入。当 据被锁存,改变衰减器设置 的详细信息。
SPI controlled (control voltages show up on the parallel control pins)
工作模式
(V) AMPSET PD_1 PD_2
CC_
5 0 0 0
3.3 1 0 0 5 0 1 0
3.3 1 1 0 5 0 0 1
3.3 1 0 1 5 0 1 1
3.3 1 1 1
应用信息
电 源 电 压, 但 会 降 低 线 性 指 标。
+3.3V
引脚需要在不同模式下进行适当偏 置,如表2所
所示的偏置配置。
2
接口和衰减器设置
SPI
SPI/MICROWIRE™
位数据,
56
CS
(图1)。表3
在前,并通 过
MSB
跳变到高电平时,数
给出了
SPI
工作模式
数据格式
MAX2063
28
MICROWIRE是NationalSemiconductorCorp.
的商标。
15
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
第1路数字衰减器编程
D0:D7 D8:D12
D8=1d B
D13:D17
MAX2063
D13=1dB
D18:D22  D18=1dB
D23:D27  D23=1dB
保留位,置于逻辑
预编程衰减状态
D11=8dB位,D12=16dB
预编程衰减状态
0
1
位,
D9=2d B
位,
2
位,
D14=2dB位,D15=4dB
D16=8dB位,D17=16dB位
预编程衰减状态
D21=8dB位,D22=16dB
预编程衰减状态
3
位,
D19=2dB位,D20=4dB
4
位,
D24=2dB位,D25=4dB
D26=8dB位,D27=16dB位
MSB LSB
DAT
DN D1 D0D(N-1)
D10=4d B
位,
位,
位,
位,
D28:D35 D36:D40
保留位,置于逻辑
预编程衰减状态
D36=1dB
D39=8dB位,D40=16dB
D41:D45
预编程衰减状态
D41=1dB
D44=8dB位,D45=16dB位
D46:D50
预编程衰减状态
D46=1dB
D49=8dB位,D50=16dB
D51:D55
预编程衰减状态
D51=1dB
D54=8dB位,D55=16dB位
第2路数字衰减器编程
0
1
位,
D37=2dB位,D38=4dB
2
位,
D42=2dB位,D43=4dB
3
位,
D47=2dB位,D48=4dB
4
位,
D52=2dB位,D53=4dB
位,
位,
位,
位,
1.SPI
时序图
CLK
t
CS
t
EWS
NOTES:
DATA ENTERED ON CLOCK RISING EDGE. ATTENUATOR REGISTER STATE CHANGE ON CS RISING EDGE. N = NUMBER OF DATA BITS.
CS
t
t
CH
CW
t
ES
t
EW
16
50MHz至1000MHz
、高线性度、
3. SPI
2nd Digital Attenuator State 4
2nd Digital Attenuator State 3
2nd Digital Attenuator State 2
2nd Digital Attenuator State 1
Reserved
1st Digital Attenuator State 4
1st Digital Attenuator State 3
1st Digital Attenuator State 2
数据格式
FUNCTION BIT DESCRIPTION
串行/并行控制的双通道数字
D55 (MSB) 16dB step (MSB of the 5-bit word used to program the digital attenuator state 4)
D54 8dB step D53 4dB step D52 2dB step D51 1dB step D50 16dB step (MSB of the 5-bit word used to program the digital attenuator state 3) D49 8dB step D48 4dB step D47 2dB step D46 1dB step D45 16dB step (MSB of the 5-bit word used to program the digital attenuator state 2) D44 8dB step D43 4dB step D42 2dB step D41 1dB step D40 16dB step (MSB of the 5-bit word used to program the digital attenuator state 1) D39 8dB step D38 4dB step D37 2dB step D36 1dB step D35 D34 D33 D32 D31 D30 D29 D28 D27 16dB step (MSB of the 5-bit word used to program the digital attenuator state 4) D26 8dB step D25 4dB step D24 2dB step D23 1dB step D22 16dB step (MSB of the 5-bit word used to program the digital attenuator state 3) D21 8dB step D20 4dB step D19 2dB step D18 1dB step D17 16dB step (MSB of the 5-bit word used to program the digital attenuator state 2) D16 8dB step D15 4dB step D14 2dB step D13 1dB step
Bits D[35:28] are reserved. Set to logic 0.
MAX2063
17
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
3. SPI
1st Digital Attenuator State 1
MAX2063
Reserved
为了达到 个辅助的 脚总线
直接访问 何
SPI
通过 直接访问 增益控制
注意,当数字衰减器由 控制电压由五个并行控制引脚设置 制数字衰减器 当数字衰减器处于
器件能够 在4个预置衰减等级之间提供“速射”增益选择。 与上述辅助 速进入4个预先设定的数字衰减状态的任意一个,消除了通 过
SPI
数据格式(续
FUNCTION BIT DESCRIPTION
的快速切换能力,器件为每路衰减器提供一
25ns
位并行控制接口。这两组数字逻辑衰减器控制引
5
(D0__至D4__)
位总线可以使用户省去
5
总线的速率都受限于指令逐位传递到外围器件的时间。
位并行接口,用户可以在“快速建立”自动
5
应用中实现数字衰减状态的迅速切换。
(AGC)
,引脚42和引脚
2
SPI
位总 线类似,“速射”增益选择 使用户能够快
5
总线重新编程的相关延时。
)
D12 16dB step (MSB of the 5-bit word used to program the digital attenuator state 1) D11 8dB step D10 4dB step
D9 2dB step D8 1dB step D7 D6 D5 D4 D3 D2 D1
D0 (LSB)
利用并行控制总线设置数字衰减器
用于设置衰减器的工作状态(表4)。
SPI
总线控制时,每个数字衰减器的
SPI
(引脚14-17
44-47
控制模式时,并行控制引脚必须开路。
“速射”预编程衰减状态
Bits D[7:0] are reserved. Set to logic 0.
接口的编程延时。任
和引脚19控
控制数字衰减器1)。
这种方式的切换速度与采用辅助 但这一特殊功能可以使数字衰减器的 个控制位与1个或2个控制位),具体取决于所要求的状态数。
用户可通过
A_2
考表 个预先设定的衰减状态,同时使用 引脚(2个控制位),可以得到4个预先设定的衰减状态。
例如,假设 增益不一致的问题。该 敏度下降以及 例中,器件可以预先设置 个状态用于处理静 态增益调节,另一 信号。
用户只需要对一个 即可在静态和动态衰减控制之间快速切换。
STA_A_1和STA_B_1(
STA_B_2)
和表6)。利用
5
逻辑输入引脚设置所要求的各级状态(参
STA_A_1引脚(1
应用需要静态调节衰减器,以解决接收器
AGC
过驱动的干扰信号进行动态衰减。该实
ADC
I/O引脚(即STA_A_1
AGC
(
通过
位并行总线的速度相当。
5
降低5倍或
I/O
衰减器2对应于
个控制位)可以得到
2.5倍(5
STA_
STA_A_1和STA_B_1
电路还需要对可能引起接收器灵
SPI总线)2
种衰减状态 :一
个状态用于处理干扰
控制位)进行控制,
2
18
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
需要时,用户还可以使用第二个 位
设置另外两个衰减状态。这两个附加的衰减设置非常适
)
合软件定义的无线 通信装置,这些装置往往需要多个静态 增益设置,以满足不同工作频率的要求;也适合需要多个动 态衰减设置以处理不同阻塞电平 定义
的应用。
)
所采用的供电顺序为:
电源上电
1)
施加控制信号
2)
数字衰减器设置(并行控制,
4.
INPUT LOGIC = 0 (OR GROUND) LOGIC = 1
D0_ _ Disable 1dB attenuator Enable 1dB attenuator D1_ _ Disable 2dB attenuator Enable 2dB attenuator D2_ _ Disable 4dB attenuator Enable 4dB attenuator D3_ _ Disable 8dB attenuator Enable 8dB attenuator D4_ _ Disable 16dB attenuator Enable 16dB attenuator
I/O引脚(即STA_B_1
按照多个无线通信标准的
(
DA_SP = 0)
控制
供电顺序
布局考虑
器件经过优化的引脚配置有助于实现紧凑的器件布局和相关 分立元件的布局。器件采用 焊盘 设计需要利用EP散热, 这一点非常关键。另外,EP与电气 地的连接需要通过低电感路径。 电镀过孔焊接到
提供了一条到管芯的低热阻通道。安装器件的
(EP)
的地层。
PCB
给出了典型应用电路的元件值。
7
引脚薄型
48
QFN-EP
必须直接或通过一系列
EP
封装,其裸
PCB
MAX2063
衰减器1的可编程衰减状态设置
5.
STA_A_1 STA_B_1 SETTING FOR DIGITAL ATTENUATOR 1*
0 0 Preprogrammed attenuation state 1 1 0 Preprogrammed attenuation state 2 0 1 Preprogrammed attenuation state 3 1 1 Preprogrammed attenuation state 4
*
编程位
*
SPI
6.
SPI
D8:D27定义(
衰减器2的可编程衰减状态设置
STA_A_2 STA_B_2 SETTING FOR DIGITAL ATTENUATOR 2*
0 0 Preprogrammed attenuation state 1 1 0 Preprogrammed attenuation state 2 0 1 Preprogrammed attenuation state 3 1 1 Preprogrammed attenuation state 4
编程位
D36:D55定义(
详细信息请参考表3)。
详细信息请参考表3)。
(DA_SP = 1)
(DA_SP = 1)
19
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
典型应用电路的元件值
7.
DESIGNATION QTY DECRIPTION COMPONENT SUPPLIER
MAX2063
C1, C2, C6, C8,
C9, C13
C4, C7, C11,
C14, C16
C15 1
L1, L2 2
U1 1
1000pF capacitors (0402)
6
Murata GRM1555C1H102J
10nF capacitors (0402)
5
Murata GRM155R71E103K
1µF capacitor (0603) Murata GRM188R71C105K
820nH inductors (1008) Coilcraft 1008CS-821XJLC
VGA (48-pin thin QFN-EP, 7mm x 7mm) Maxim MAX2063ETM+
Murata North America Electronics, Inc.
Murata North America Electronics, Inc.
Murata North America Electronics, Inc.
Coilcraft, Inc.
Maxim Integrated Products, Inc.
20
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
MAX2063
GND
AMP_IN_2
GND
D_ATT_IN_2
RF OUTPUT 2
C13
V
24
GND
23
GND
22
DA_SP
21
GND
20
D4_2
19
D_ATT_OUT_2
18
D3_2
17
D2_2
16
D1_2
15
D0_2
14
GND
13
CC_AMP_2
RF
OUTPUT 1
C6
L1 L2
AMP_IN_1
GND
PD_1
GND
35
34 33 32 31 30 29 28 272625
V
CC
C4
C2
V
CC_AMP_1
GND
GND
GND
GND
D4_1
D_ATT_OUT_1
D3_1
D2_1
D1_1
D0_1
GND
36
37
38
39
40
41
42
43
44
45
46
47
48
+
ACTIVE
BIAS
DIGITAL
ATTENUATOR
1
2
3 4 5 6 7 8 9 101112
1
GND
STA_B_1
STA_A_1
D_ATT_IN_1
C7
C15
REG_OUT
AMPSET
AMP_OUT_1
AMP AMP
MAX2063
SPI
CS
CLK
DAT
V
CC
GND
AMP_OUT_2
ACTIVE
BIAS
EXPOSED
DIGITAL
ATTENUATOR
2
CC_RG
V
STA_B_2
C14
PD_2
PAD
STA_A_2
典型应用电路
V
CC
C11
C9
PROCESS: SiGe BiCMOS
C1
RF
INPUT 1
芯片信息
V
CC
C16
如需最近的封装外形信息和焊盘布局,请查询
packages
C8
RF INPUT 2
封装信息
china.maxim-ic.com/
。请注意,封装编码中的“+”、“#”或“-”仅表示
RoHS
状态。封装图中可能包含不同的尾 缀字符,但封装图只与封装有关, 与
状态无关。
RoHS
封装类型 封装编码 外形编号
48引脚薄型QFN-EP T4877+7
焊盘布局
21-0144 90-0133
编号
21
50MHz至1000MHz
、高线性度、
串行/并行控制的双通道数字
修订号 修订日期 说明 修改页
0 6/10
最初版本。
MAX2063
修订历史
Maxim
北京 免费电话: 电话: 传真:
Maxim不对Maxim
22 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©
2010MaximIntegratedProducts Maxim是MaximIntegratedProducts,Inc.
北京办事处
8328信箱
010-6211 5199 010-6211 5299
邮政编码
800 810 0310
100083
产品以外的任何电路使用负责,也不提供其专利许可。
保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。
Maxim
的注册商标。
Loading...