MAXIM MAX2044 Technical data

19-5002; Rev 0; 10/09
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2044 single, high-linearity upconversion/down­conversion mixer provides +32.5dBm input IP3, 8.5dB noise figure, and 7.7dB conversion loss for 2300MHz to 4000MHz LTE, WiMAXK, and MMDS wireless infra­structure applications. With an ultra-wide 2600MHz to 4300MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection archi­tectures for virtually all 2.5GHz and 3.5GHz applications.
In addition to offering excellent linearity and noise performance, the MAX2044 also yields a high level of component integration. This device includes a double­balanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2044 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = 5.0V or 121mA at VCC = 3.3V.
The MAX2044 is pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers and the MAX2039/MAX2041/ MAX2042 1700MHz to 3000MHz mixers, making this entire family of up/downconverters ideal for applica­tions where a common PCB layout is used for multiple frequency bands.
The MAX2044 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range.
Features
2300MHz to 4000MHz RF Frequency Range
S
2600MHz to 4300MHz LO Frequency Range
S
50MHz to 500MHz IF Frequency Range
S
7.7dB Conversion Loss
S
8.5dB Noise Figure
S
+32.5dBm Typical Input IP3
S
21dBm Typical Input 1dB Compression Point
S
68dBc Typical 2RF - 2LO Spurious Rejection at
S
PRF = -10dBm
Integrated LO Buffer
S
Integrated RF and LO Baluns for Single-Ended
S
Inputs
Low -3dBm to +3dBm LO Drive
S
Pin Similar with the MAX2029/MAX2031 Series
S
of 650MHz to 1000MHz Mixers and the MAX2039/ MAX2041/MAX2042 Series of 1700MHz to 3000MHz Mixers
Single 5.0V or 3.3V Supply
S
External Current-Setting Resistor Provides Option
S
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX2044
Applications
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
WiMAX is a trademark of WiMAX Forum.
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX2044ETP+ MAX2044ETP+T
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.
T = Tape and reel.
-40NC to +85NC
-40NC to +85NC
20 Thin QFN-EP* 20 Thin QFN-EP*
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power .......................................................+20dBm
RF, LO Current (RF and LO is DC shorted
to GND through a balun)................................... .............50mA
Continuous Power Dissipation (Note 1) .................................5W
BJA (Notes 2, 3) ............................................................ +38NC/W
MAX2044
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
B
(Notes 1, 3) ............................................................ +13NC/W
JC
Operating Case Temperature
Range (Note 4) ..................................... TC = -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
4.75 5.0 5.25 V 138 155 mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
Total supply current, VCC = 3.3V 121 135 mA
3.0 3.3 3.6 V
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Typical Application Circuit with C1 = 3.3nH
RF Frequency Range f
LO Frequency f
IF Frequency f
LO Drive P
RF
LO
IF
LO
and C12 = 0.3pF, see Table 1 for details (Note 5)
Typical Application Circuit with C1 = 8.2pF and C12 not installed, see Table 1 for details (Note 5)
(Note 5) 2600 4300 MHz
Using an M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
(Note 5) -3 0 +3 dBm
2300 3000
MHz
3000 4000
50 500 MHz
2 ______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input Compression Point IP
Third-Order Input Intercept Point
Third-Order Input Intercept Point Variation Over Temperature
Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Conditions
TC
TC
DL
1dB
IIP3
SSB
NF
C
TC = +25NC (Notes 7, 8)
fRF = 3100MHz to 3900MHz, over any 100MHz band
C
fRF = 3100MHz to 3900MHz, over any 200MHz band
fRF = 3100MHz to 3900MHz,
CL
TC = -40NC to +85NC
(Note 9) 21 dBm
f
- f
RF1
(Note 7, 8)
fRF = 3500MHz, f PRF = 0dBm per tone. TC = +25NC (Notes 7, 8)
fRF = 3100MHz to 3900MHz, fIF = 300MHz, f
RF1
TC = -40NC to +85NC
Single sideband, no blockers present (Notes 7, 10)
Single sideband, no blockers present, TC = +25NC (Notes 7, 10)
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
+8dBm blocker tone applied to RF port, f
BLOCKER
B
fLO = 3200MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 7, 10, 11)
= 1MHz, PRF = 0dBm per tone
RF2
- f
RF1
- f
= 1MHz, PRF = 0dBm per tone,
RF2
= 3750MHz, fRF = 3500MHz,
= 1MHz,
RF2
7.2 7.7 8.5 dB
0.15
0.25
0.01
28.3 32.5
30.0 32.5
±0.5 dBm
8.5 10
8.5 9.2
0.018
17.5 20 dB
dB/NC
dBm
dB/NC
dB
dB
MAX2044
2RF - 2LO Spurious Rejection 2 x 2
_______________________________________________________________________________________ 3
f
= fLO +
SPUR
150MHz, TC = +25NC
f
= fLO +
SPUR
150MHz
PRF = -10dBm (Notes 7, 10)
PRF = 0dBm (Notes 7, 8) 52 58
PRF = -10dBm (Notes 7, 10)
PRF = 0dBm (Notes 7, 8) 50 58
62 68
60 68
dBc
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX2044
3RF - 3LO Spurious Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation fRF = 3500MHz, PLO = +3dBm (Note 8) 33 42 dB
LO Leakage at RF Port
2LO Leakage at RF Port PLO = +3dBm -35 dBm LO Leakage at IF Port PLO = +3dBm (Note 8) -28 dBm
IF
f
= fLO +
SPUR
100MHz, TC = +25NC
f
= fLO +
SPUR
100MHz
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using
IF
external components shown in the Typical
Application Circuit
fLO = 2500MHz to 4000MHz, PLO = +3dBm (Notes 7, 8)
PRF = -10dBm (Notes 7, 10)
PRF = 0dBm (Notes 7, 8) 62 69
PRF = -10dBm (Notes 7, 10)
PRF = 0dBm (Notes 7, 8) 61 69
82 89
81 89
16 dB
14 dB
50
16 dB
-31 dBm
dBc
I
4 ______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input Compression Point IP
Third-Order Input Intercept Point
Third-Order Input Intercept Variation Over Temperature
Noise Figure NF
Noise Figure Temperature Coefficient
2RF - 2LO Spurious Rejection 2 x 2
3RF - 3LO Spurious Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation
LO Leakage at RF Port
2LO Leakage at RF Port
LO Leakage at IF Port
C
DL
TC
CL
1dB
IIP3 f
SSB
TC
NF
RF
LO
IF
fRF = 3100MHz to 3900MHz, over any
C
100MHz band
fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC
(Note 9) 19.5 dBm
- f
RF1
f
RF1
TC = -40NC to +85NC
Single sideband, no blockers present 8.5 dB
Single sideband, no blockers present, TC = -40NC to +85NC
f
SPUR
150MHz
f
SPUR
100MHz
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using
IF
external components shown in the Typical
Application Circuit
fRF = 3100MHz to 3900MHz, PLO = +3dBm
fLO = 2800MHz to 3600MHz, PLO = +3dBm
fLO = 2800MHz to 3600MHz, PLO = +3dBm
fLO = 2800MHz to 3600MHz, PLO = +3dBm
= 1MHz, PRF = 0dBm per tone 29.5 dBm
RF2
- f
= 1MHz, PRF = 0dBm per tone,
RF2
= fLO +
= fLO +
PRF = -10dBm 69 PRF = 0dBm 64 PRF = -10dBm 73.3 PRF = 0dBm 63.3
7.7 dB
0.1 dB
0.009
±0.2 dB
0.018
18 dB
19 dB
50
14.5 dB
41 dB
-30 dBm
-25.6 dBm
-27 dBm
dB/NC
dB/NC
dBc
dBc
I
MAX2044
_______________________________________________________________________________________ 5
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
MAX2044
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Third-Order Input Intercept Point
Third-Order Input Intercept Variation Over Temperature
2LO - 2RF Spurious Rejection 2 x 2 f
3LO - 3RF Spurious Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation
LO Leakage at RF Port
2LO Leakage at RF Port
LO Leakage at IF Port
C
DL
C
TC
CL
IIP3 f
RF
LO
IF
IF
fRF = 2300MHz to 2900MHz, over any 100MHz band
fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC
- f
RF1
f
RF1
TC = -40NC to +85NC
SPUR
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical
Application Circuit
fRF = 2300MHz to 2900MHz, PLO = +3dBm
fLO = 2600MHz to 3200MHz, PLO = +3dBm
fLO = 2600MHz to 3200MHz, PLO = +3dBm
fLO = 2600MHz to 3200MHz, PLO = +3dBm
= 1MHz, PRF = 0dBm per tone 34 dBm
RF2
- f
= 1MHz, PRF = 0dBm per tone,
RF2
= fLO - 150MHz
= fLO - 100MHz
PRF = -10dBm 67 PRF = 0dBm 62 PRF = -10dBm 79 PRF = 0dBm 69
8.1 dB
0.15 dB
0.008
±0.2 dB
23 dB
17 dB
50
13.6 dB
39 dB
-29.5 dBm
-43 dBm
-28.6 dBm
dB/NC
dBc
dBc
I
6 ______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Third-Order Input Intercept Point
Third-Order Input Intercept Variation Over Temperature
2LO - 2RF Spurious Rejection 2 x 2 f
3LO - 3RF Spurious Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation
LO Leakage at RF Port
2LO Leakage at RF Port
LO Leakage at IF Port
C
DL
C
TC
CL
IIP3 f
RF
LO
IF
IF
fRF = 3100MHz to 3900MHz, over any 100MHz band
fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC
- f
RF1
f
RF1
TC = -40NC to +85NC
SPUR
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by a 50I source, IF transformed to 50I using external components shown in the Typical
Application Circuit
fRF = 3100MHz to 3900MHz, PLO = +3dBm
fLO = 3400MHz to 4200MHz, PLO = +3dBm
fLO = 3400MHz to 4200MHz, PLO = +3dBm
fLO = 3400MHz to 4200MHz, PLO = +3dBm
= 1MHz, PRF = 0dBm per tone 31.5 dBm
RF2
- f
= 1MHz, PRF = 0dBm per tone,
RF2
= fLO - 150MHz
= fLO - 100MHz
PRF = -10dBm 67 PRF = 0dBm 62 PRF = -10dBm 76.7 PRF = 0dBm 66.7
7.8 dB
0.15 dB
0.008
±0.2 dB
17.7 dB
16.3 dB
50
15 dB
41 dB
-30 dBm
-21 dBm
-27.2 dBm
dB/NC
dBc
dBc
I
MAX2044
_______________________________________________________________________________________ 7
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3300MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
MAX2044
Conversion Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input Third-Order Intercept Point IIP3
IIP3 Variation with T
LO ± 2IF Spur 1 x 2
LO ± 3IF Spur 1 x 3
Output Noise Floor P
C
DL
TC
C
fRF = 3100MHz to 3900MHz, over any 100MHz band
C
fRF = 3100MHz to 3900MHz, over any 200MHz band
TC = -40NC to +85NC
CL
f
= 200MHz, f
IF1
PIF = 0dBm/tone
f
= 200MHz, f
IF1
P
= 0dBm/tone, TC = -40NC to +85NC
IF
LO - 2IF 61.6 LO + 2IF 60.2 LO - 3IF 78.2 LO + 3IF 80.3
= 0dBm (Note 11) -165 dBm/Hz
OUT
= 201MHz,
IF2
= 201MHz,
IF2
7.7 dB
0.2
0.25
0.01
33.5 dBm
±0.2 dB
dB
dB/NC
dBc
dBc
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Conversion Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input Third-Order Intercept Point IIP3
IIP3 Variation with T
8 ______________________________________________________________________________________
C
DL
TC
C
fRF = 3100MHz to 3900MHz, over any 100MHz band
C
fRF = 3100MHz to 3900MHz, over any 200MHz band
TC = -40NC to +85NC
CL
f
= 200MHz, f
IF1
PIF = 0dBm/tone
f
= 200MHz, f
IF1
PIF = 0dBm/tone, TC = -40NC to +85NC
= 201MHz,
IF2
= 201MHz,
IF2
8 dB
0.2 dB
0.25
0.01
29.5 dBm
±0.2 dB
dB/NC
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LO ± 2IF Spur 1 x 2
LO ± 3IF Spur 1 x 3
Output Noise Floor P
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: Guaranteed by design and characterization. Note 8: 100% production tested for functional performance. Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source. Note 10: Not production tested. Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
LO - 2IF 58.9 LO + 2IF 57.8 LO - 3IF 69.4 LO + 3IF 69.5
= 0dBm (Note 11) -165 dBm/Hz
OUT
dBc
dBc
MAX2044
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
CONVERSION LOSS (dB)
7
6
TC = +85°C
3000 4000
RF FREQUENCY (MHz)
T
C
TC = +25°C
= -40°C
_______________________________________________________________________________________ 9
MAX2044 toc01
3800360034003200
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
CONVERSION LOSS (dB)
7
6
3000 4000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc02
9
8
CONVERSION LOSS (dB)
7
3800360034003200
6
3000 4000
VCC = 4.75V, 5.0V, 5.25V
3800360034003200
RF FREQUENCY (MHz)
MAX2044 toc03
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
INPUT IP3 vs. RF FREQUENCY
37
MAX2044
35
33
31
INPUT IP3 (dBm)
29
27
75
70
65
60
2RF - 2LO RESPONSE (dBc)
55
50
TC = +25°C
3000 4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
3000 4000
RF FREQUENCY (MHz)
= -40°C
T
C
TC = +85°C
TC = +25°C
P
= 0dBm/TONE
RF
TC = +85°C
3800360034003200
T
3800360034003200
= -40°C
C
37
MAX2044 toc04
35
33
31
INPUT IP3 (dBm)
29
27
3000 4000
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
MAX2044 toc07
70
65
60
2RF - 2LO RESPONSE (dBc)
55
50
3000 4000
INPUT IP3 vs. RF FREQUENCY
P
RF
P
= +3dBm
LO
PLO = 0dBm
RF FREQUENCY (MHz)
PRF = 0dBm
PLO = +3dBm
PLO = -3dBm
RF FREQUENCY (MHz)
P
LO
= 0dBm/TONE
PLO = -3dBm
3800360034003200
= 0dBm
3800360034003200
37
MAX2044 toc05
35
33
31
INPUT IP3 (dBm)
29
27
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
MAX2044 toc08
70
65
60
2RF - 2LO RESPONSE (dBc)
55
50
3000 4000
INPUT IP3 vs. RF FREQUENCY
P
RF
V
= 5.25V
CC
VCC = 5.0V
VCC = 4.75V
RF FREQUENCY (MHz)
PRF = 0dBm
VCC = 4.75V
VCC = 5.0V
RF FREQUENCY (MHz)
V
CC
= 5.25V
= 0dBm/TONE
MAX2044 toc06
38003600340032003000 4000
MAX2044 toc09
3800360034003200
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
75
65
3RF - 3LO RESPONSE (dBc)
55
3000 4000
T
= -40°C
C
RF FREQUENCY (MHz)
PRF = 0dBm
TC = +25°C
MAX2044 toc10
TC = +85°C
3800360034003200
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
75
65
= 0dBm
P
3RF - 3LO RESPONSE (dBc)
LO
55
3000 4000
RF FREQUENCY (MHz)
PRF = 0dBm
PLO = +3dBm
PLO = -3dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
MAX2044 toc11
75
65
3RF - 3LO RESPONSE (dBc)
3800360034003200
55
3000 4000
RF FREQUENCY (MHz)
10 _____________________________________________________________________________________
PRF = 0dBm
MAX2044 toc12
VCC = 5.25V
V
= 5.0V
CC
VCC = 4.75V
3800360034003200
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2044
NOISE FIGURE vs. RF FREQUENCY
11
10
9
8
NOISE FIGURE (dB)
7
6
5
25
23
(dBm)
1dB
21
INPUT P
19
TC = +85°C
T
= -40°C
C
RF FREQUENCY (MHz)
INPUT P
TC = -40°C
1dB
TC = +85°C
TC = +25°C
38003600340032003000 4000
vs. RF FREQUENCY
TC = +25°C
MAX2044 toc13
NOISE FIGURE (dB)
MAX2044 toc16
(dBm)
1dB
INPUT P
NOISE FIGURE vs. RF FREQUENCY
11
10
9
8
7
6
5
25
23
21
19
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
1dB
PLO = +3dBm
PLO = -3dBm
vs. RF FREQUENCY
38003600340032003000 4000
PLO = 0dBm
MAX2044 toc14
NOISE FIGURE (dB)
MAX2044 toc17
(dBm)
1dB
INPUT P
NOISE FIGURE vs. RF FREQUENCY
11
10
V
9
8
7
6
5
CC
RF FREQUENCY (MHz)
INPUT P
25
23
21
19
VCC = 5.25V
= 4.75V
VCC = 5.0V
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 5.0V
MAX2044 toc15
38003600340032003000 4000
MAX2044 toc18
VCC = 4.75V
17
3000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3700
LO FREQUENCY (MHz)
TC = +25°C
T
= -40°C
C
______________________________________________________________________________________ 11
3800360034003200
TC = +85°C
3500330031002900
17
3000 4000
-10
MAX2044 toc19
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3700
3800360034003200
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3500330031002900
LO FREQUENCY (MHz)
17
3000 4000
-10
MAX2044 toc20
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3700
3800360034003200
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2044 toc21
VCC = 4.75V, 5.0V, 5.25V
3500330031002900
LO FREQUENCY (MHz)
SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044
50
40
RF-TO-IF ISOLATION (dB)
30
20
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
TC = -40°C
3000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +25°C
= +85°C
T
C
TC = +25°C
T
= +85°C
C
TC = -40°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044 toc22
50
40
RF-TO-IF ISOLATION (dB)
30
3800360034003200
20
3000 4000
PLO = -3dBm, 0dBm, +3dBm
3800360034003200
RF FREQUENCY (MHz)
MAX2044 toc23
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX2044 toc25
-30
PLO = -3dBm, 0dBm, +3dBm
-40
LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc26
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
40
RF-TO-IF ISOLATION (dB)
30
20
3000 4000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc24
3800360034003200
MAX2044 toc27
-50 2500 4000
3000 3500
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
T
= -40°C
C
-30
TC = +85°C
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2500 4000
3000 3500
LO FREQUENCY (MHz)
TC = +25°C
-50 2500 4000
-20
MAX2044 toc28
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2500 4000
3000 3500
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
= +3dBm
P
LO
PLO = 0dBm
PLO = -3dBm
3000 3500
LO FREQUENCY (MHz)
-50 2500 4000
-20
MAX2044 toc29
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2500 4000
3000 3500
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
3000 3500
LO FREQUENCY (MHz)
12 _____________________________________________________________________________________
VCC = 4.75V
MAX2044 toc30
VCC = 5.0V
VCC = 5.25V
Loading...
+ 27 hidden pages