EVALUATION KIT AVAILABLE
19-5902; Rev 0; 6/11
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042A single, high-linearity upconversion/
downconversion mixer provides up to +33dBm input
IP3, 7.25dB noise figure, and 7.2dB conversion loss for
1600MHz to 3900MHz GSM/EDGE, CDMA, TD-SCDMA,
WCDMA, LTE, TD-LTE, WiMAXK , and MMDS wireless
infrastructure applications. With an ultra-wide 1300MHz
to 4000MHz LO frequency range, the IC can be used in
either low-side or high-side LO injection architectures for
virtually all 1.7GHz to 3.5GHz applications (for a 2.5GHz
variant tuned specifically for low-side LO injection, refer
to the MAX2042).
In addition to offering excellent linearity and noise
performance, the IC also yields a high level of component
integration. This device includes a double-balanced
passive mixer core, an LO buffer, and on-chip baluns
that allow for single-ended RF and LO inputs. The
IC requires a nominal LO drive of 0dBm, and supply
current is typically 140mA at VCC = 5.0V or 122mA at
VCC = 3.3V.
The MAX2042A is pin compatible with the MAX2042
2000MHz to 3000MHz mixer. The MAX2042A is also pin
similar with the MAX2029/MAX2031/MAX2033 650MHz
to 1550MHz mixers, the MAX2039/MAX2041 1700MHz
to 3000MHz mixers, and the MAX2044 2300MHz to
4000MHz mixer, making the entire family of upconverters/
downconverters ideal for applications where a common
PCB layout is used for multiple frequency bands.
The MAX2042A is available in a compact, 20-pin TQFN
package (5mm x 5mm) with an exposed pad. Electrical
performance is guaranteed over the extended TC = -40NC
to +85N C temperature range.
Applications
Benefits and Features
S Wide-Band Coverage
1600MHz to 3900MHz RF Frequency Range
1300MHz to 4000MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
S 7.2dB Conversion Loss
S 7.25dB Noise Figure
S High Linearity
+33dBm Input IP3
+21.7dBm Input 1dB Compression Point
72dBc Typical 2LO - 2RF Spurious Rejection at
PRF = -10dBm
S Simple PCB Layout
Integrated LO Buffer
Integrated LO and RF Baluns for Single-Ended
Inputs
S Low -6dBm to +3dBm LO Drive
S Pin Compatible with the MAX2042 2000MHz to
3000MHz Mixer
S Pin-Similar with the MAX2029/MAX2031/MAX2033
650MHz to 1550MHz Mixers, MAX2039/MAX2041
1700MHz to 3000MHz Mixers, and MAX2044
2300MHz to 4000MHz Mixer
S Single +5.0V or +3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Ordering Information appears at end of data sheet.
1.8GHz/1.9GHz GSM/EDGE/CDMA Base Stations
2.1GHz WCDMA/LTE Base Stations
2.3GHz TD-SCDMA/TD-LTE Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
����������������������������������������������������������������� Maxim Integrated Products 1
For related parts and recommended products to use with this part,
refer to www.maxim-ic.com/MAX2042A.related .
WiMAX is a trademark of WiMAX Forum.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS
Absolute Maximum Ratings ...................................................................... 4
Package Thermal Characteristics.................................................................. 4
5.0V Supply DC Electrical Characteristics ........................................................... 4
3.3V Supply DC Electrical Characteristics ........................................................... 4
Recommended AC operating conditions............................................................5
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 5
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 7
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 8
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 9
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)............................................................... 10
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)............................................................... 11
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) .................................................................. 12
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) .................................................................. 13
Typical Operating Characteristics ................................................................ 14
Pin Configuration ............................................................................. 46
Pin Description ............................................................................... 46
Functional Diagram ........................................................................... 47
Detailed Description........................................................................... 47
RF Input and Balun ..........................................................................47
LO Inputs, Buffer, and Balun...................................................................47
High-Linearity Mixer .........................................................................47
Differential IF Ports ..........................................................................47
Applications Information ........................................................................ 48
Input and Output Matching....................................................................48
Reduced-Power Mode .......................................................................48
Layout Considerations........................................................................48
Power-Supply Bypassing .....................................................................48
Exposed Pad RF/Thermal Considerations ........................................................48
����������������������������������������������������������������� Maxim Integrated Products 2
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS (continued)
Typical Application Circuit ......................................................................50
Ordering Information .......................................................................... 51
Chip Information .............................................................................. 51
Package Information........................................................................... 51
Revision History .............................................................................. 52
LIST OF TABLES
Table 1. Component Values—Downconverter Mode.................................................. 49
Table 2. Component Values—Upconverter Mode .................................................... 49
����������������������������������������������������������������� Maxim Integrated Products 3
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND .......................................................... -0.3V to +5.5V
IF+, IF-, LOBIAS to GND ......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power ....................................................... +20dBm
IF Input Power (50ω source) ......................................... +18dBm
RF, LO Current (RF and LO are DC shorted to
GND through a balun) ....................................................50mA
Note 1: T C is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Note 2: Based on junction temperature T J = TC + (B JC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS
TQFN
Junction-to-Ambient
Thermal Resistance B JA (Notes 3, 4) ....................... +38°C/W
Operating Case Temperature Range (Note 1) ....... -40N C to +85NC
Continuous Power Dissipation (Note 2) ..............................5.0W
Junction Temperature .....................................................+150N C
Storage Temperature Range ............................ -65N C to +150NC
Lead Temperature (soldering 10s) .................................+300N C
Soldering Temperature (reflow) ......................................+260N C
Junction-to-Case
Thermal Resistance B JC (Notes 2, 4) ....................... +13°C/W
Note 3: Junction temperature TJ = TA + ( B JA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial .
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit , VCC = 4.75V to 5.25V, no input AC signals. TC = -40N C to +85N C, unless otherwise noted. Typical values
are at VCC = 5.0V, TC = +25NC.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
4.75 5 5.25 V
140 162 mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit , VCC = 3.0V to 3.6V, no input AC applied. TC = -40N C to +85N C, unless otherwise noted. Typical values
are at VCC = 3.3V, TC = +25NC.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
3.0 3.3 3.6 V
122 mA
����������������������������������������������������������������� Maxim Integrated Products 4
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range Without
Tuning
RF Frequency Range With
Low-Band Tuning
RF Frequency Range With
High-Band Tuning
LO Frequency f
IF Frequency f
LO Drive P
f
RF1
f
RF2
f
RF3
LO
IF
LO
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40N C to +85N C. Typical values are for TC = +25N C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
f
= 300MHz.) (Note 7)
IF
Typical Application Circuit with C1 = 8.2pF
(Table 1) (Notes 5, 6)
Typical Application Circuit with C1 = 1.8pF,
L1 = 12nH (Table 1) (Notes 5, 6)
Typical Application Circuit with C1 = 1.5pF
(Table 1) (Notes 5, 6)
(Note 5, 6) 1300 4000 MHz
Using M/A-Com MABACT0069 1:1
transformer as defined in the Typical
Application Circuit , IF matching components
affect the IF frequency range (Notes 5, 6)
2000 2900 MHz
1600 2000 MHz
3000 3900 MHz
50 500 MHz
-6 0 +3 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature
Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature
Coefficient
Noise Figure Under Blocking NF
����������������������������������������������������������������� Maxim Integrated Products 5
TC
TC
Blocking
D L
C
C
CL
SSB
NF
fRF = 2600MHz, fLO = 2900MHz 7.2
fRF = 2900MHz, fLO = 3200MHz (Note 8) 7.8
fRF = 2010MHz to 2025MHz
fRF = 2305MHz to 2360MHz
fRF = 2500MHz to 2570MHz
fRF = 2570MHz to 2620MHz
fRF = 2500MHz to 2690MHz
fRF = 2700MHz to 2900MHz
TC = -40N C to +85NC
No blockers present 7.25 dB
fRF = 2600MHz, single sideband,
no blockers present, TC = -40N C to +85NC
+8dBm blocker tone applied to RF port,
f
2600MHz, fLO = 2900MHz,
RF =
f
BLOCKER
= 2400MHz (Note 9)
Q0.05
Q0.05
Q0.05
Q0.05
Q0.13
Q0.02
0.007
0.022
18 dB
dB
dB
dB
dB
dB
dB
dB/N C
dB/N C
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40N C to +85N C. Typical values are for TC = +25N C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
f
= 300MHz.) (Note 7)
IF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm (Note 8) 38 dB
LO Leakage at RF Port PLO = +3dBm (Note 8) -29 dBm
2LO Leakage at RF Port PLO = +3dBm -30.1 dBm
LO Leakage at IF Port PLO = +3dBm (Note 8) -31 dBm
C
1dB
IIP3
3 x 3
Z
(Note 10) 21.7 dBm
f
- f
RF1
(Note 8)
f
RF1
TC = -40N C to +85NC
fRF = 2600MHz,
fLO = 2900MHz,
f
SPUR
fRF = 2600MHz,
fLO = 2900MHz,
f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
IF
using external components shown in the
Typical Application Circuit
= 1MHz, P
RF2
- f
= 1MHz, P
RF2
= 2750MHz
= 2800MHz
= P
= P
= 0dBm
RF2
= 0dBm,
RF2
RF1
RF1
PRF = -10dBm 72
PRF = 0dBm 62
PRF = -10dBm 91
PRF = 0dBm 71
33 dBm
Q 0.3 dB
20 dB
19 dB
50
17.5 dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 6
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 , RF and LO ports are driven from 50I sources, Typical values
are for TC = +25N C, VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature
Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature
Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 38 dB
LO Leakage at RF Port PLO = +3dBm -31.5 dBm
2LO Leakage at RF Port PLO = +3dBm -30 dBm
LO Leakage at IF Port PLO = +3dBm -31.4 dBm
C
D L
TC
TC
IIP3
(Note 8) 7.4 dB
C
fRF = 2000MHz to 2900MHz, any 100MHz band
C
TC = -40N C to +85NC
CL
No blockers present 7.4 dB
SSB
Single sideband, no blockers present,
NF
TC = -40N C to +85NC
(Note 10) 19.7 dBm
1dB
f
2600MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 2600MHz,
fLO = 2900MHz,
f
SPUR
fRF = 2600MHz,
fLO = 2900MHz,
f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
2600MHz, f
= P
= 0dBm, TC = -40N C to +85NC
RF2
= 2750MHz
= 2800MHz
RF2 =
RF2 =
2601MHz,
2601MHz,
P
-10dBm 72
RF =
P
0dBm 62
RF =
PRF = -10dBm 85
PRF = 0dBm 65
Q 0.25
0.0079
0.022
31 dBm
Q 0.1
16 dB
32 dB
50
18 dB
dB
dB/N C
dB/N C
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 7
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 . Typical values are for TC = +25N C, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature
Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature
Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 35 dB
LO Leakage at RF Port PLO = +3dBm -29.5 dBm
2LO Leakage at RF Port PLO = +3dBm -23 dBm
LO Leakage at IF Port PLO = +3dBm -31.5 dBm
C
C
D L
C
TC
CL
SSB
TC
NF
1dB
IIP3 f
RF
LO
IF
IF
fRF = 3450MHz to 3750MHz, any 100MHz band
fRF = 3450MHz to 3750MHz, any 200MHz band
TC = -40N C to +85NC
No blockers present 7.6 dB
Single sideband, no blockers present,
TC = -40N C to +85NC
(Note 10) 20.6 dBm
- f
RF1
f
RF1
TC = -40N C to +85NC
fRF = 3500MHz,
fLO = 3200MHz,
f
SPUR
fRF = 3500MHz,
fLO = 3200MHz,
f
SPUR
LO on and IF terminated into a matched
impedance
RF and IF terminated into a matched
impedance
Nominal differential impedance at the
IC’s IF outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the
Typical Application Circuit
= 1MHz, P
RF2
- f
= 1MHz, P
RF2
= 3350MHz
= 3300MHz
= P
RF1
RF1
= 0dBm 31 dBm
RF2
= P
= 0dBm,
RF2
PRF = -10dBm 71
PRF = 0dBm 61
PRF = -10dBm 87
PRF = 0dBm 67
8.2 dB
Q0.085
Q0.17
0.0091
0.025
Q 0.5
15 dB
20 dB
50
16.5 dB
dB
dB
dB/N C
dB/N C
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 8
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 . Typical values are for TC = +25N C, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss
Temperature Coefficient
Single Sideband Noise
Figure
Noise Figure Temperature
Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 35 dB
LO Leakage at RF Port PLO = +3dBm -36.4 dBm
2LO Leakage at RF Port PLO = +3dBm -12.8 dBm
LO Leakage at IF Port PLO = +3dBm -31 dBm
C
NF
D L
TC
TC
IIP3
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC = -40N C to +85NC
CL
No blockers present 9 dB
SSB
Single sideband, no blockers present,
NF
TC = -40N C to +85NC
(Note 10) 18 dBm
1dB
f
3500MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 3500MHz,
fLO = 3800MHz,
f
SPUR
fRF = 3500MHz,
fLO = 3800MHz,
f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched impedance 18.5 dB
LO
Nominal differential impedance at the
IF
IC’s IF outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
3500MHz, f
= P
= 0dBm, TC = -40N C to +85NC
RF2
= 3650MHz
= 3700MHz
RF2 =
RF2 =
3501MHz,
3501MHz,
PRF = -10dBm 70
PRF = 0dBm 60
PRF = -10dBm 83
PRF = 0dBm 63
8.6 dB
Q0.1
Q0.2
0.01
0.025
28.6 dBm
Q 0.5
15.5 dB
50
16 dB
dB
dB
dB/N C
dB/N C
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 9
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 . Typical values are for TC = +25N C, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 2150MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss
Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature
Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
C
D L
TC
TC
IIP3
C
CL
SSB
NF
1dB
RF
LO
IF
fRF = 1650MHz to 1850MHz, any 100MHz band
fRF = 1850MHz to 2250MHz, any 100MHz band
C
fRF = 1650MHz to 1850MHz, any 200MHz band
fRF = 1850MHz to 2250MHz, any 200MHz band
TC = -40N C to +85NC
No blockers present 7 dB
Single sideband, no blockers present,
TC = -40N C to +85NC
(Note 10) 23 dBm
f
1850MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 1850MHz,
fLO = 2150MHz,
f
SPUR
fRF = 1850MHz,
fLO = 2150MHz,
f
SPUR
LO on and IF terminated into a matched
impedance
RF and IF terminated into a matched impedance 25.2 dB
Nominal differential impedance at the IC’s IF
outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
1850MHz, f
= P
= 0dBm, TC = -40N C to +85NC
RF2
= 2000MHz
= 2050MHz
RF2 =
RF2 =
1851MHz,
1851MHz,
PRF = -10dBm 83
PRF = 0dBm 73
PRF = -10dBm 94
PRF = 0dBm 74
7.5 dB
Q0.18
Q0.15
Q0.36
Q0.3
0.0067
0.021
34.8 dBm
Q 0.5
16.4 dB
50
17 dB
dB/N C
dB/N C
dB
dB
dBc
dBc
I
RF-to-IF Isolation PLO = +3dBm 48.7 dB
LO Leakage at RF Port PLO = +3dBm -28.8 dBm
2LO Leakage at RF Port PLO = +3dBm -35.3 dBm
LO Leakage at IF Port PLO = +3dBm -20.8 dBm
���������������������������������������������������������������� Maxim Integrated Products 10
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1 . Typical values are for TC = +25N C, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 1550MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss
Temperature Coefficient
Single Sideband Noise
Figure
Noise Figure Temperature
Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept
Point
IIP3 Variation with T
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 44.6 dB
LO Leakage at RF Port PLO = +3dBm -29.5 dBm
2LO Leakage at RF Port PLO = +3dBm -29.5 dBm
LO Leakage at IF Port PLO = +3dBm -29.7 dBm
C
NF
D L
TC
TC
IIP3
C
fRF = 1650MHz to 1850MHz, any 100MHz band
fRF = 1850MHz to 2250MHz, any 100MHz band
C
fRF = 1650MHz to 1850MHz, any 200MHz band
fRF = 1850MHz to 2250MHz, any 200MHz band
TC = -40N C to +85NC
CL
No blockers present 8.95 dB
SSB
Single sideband, no blockers present,
NF
TC = -40N C to +85NC
(Note 10) 17.2 dBm
1dB
f
1850MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 1850MHz,
fLO = 1550MHz,
f
SPUR
fRF = 1850MHz,
fLO = 1550MHz,
f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched impedance 17.3 dB
LO
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I , LO driven by 50I
source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
1850MHz, f
= P
= 0dBm, TC = -40N C to +85NC
RF2
= 1700MHz
= 1650MHz
1851MHz,
RF2 =
1851MHz,
RF2 =
PRF = -10dBm 71
PRF = 0dBm 61
PRF = -10dBm 83
PRF = 0dBm 63
8.5 dB
Q0.35
Q0.075
Q0.7
Q0.15
0.0095
0.024
26.7 dBm
Q 0.5
12.4 dB
50
19.3 dB
dB/N C
dB/N C
dB
dB
dBc
dBc
I
���������������������������������������������������������������� Maxim Integrated Products 11
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2 . Typical values are for TC = +25N C, VCC = 5.0V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Conversion Loss Variation
vs. Frequency
Conversion Loss
Temperature Coefficient
Input 1dB Compression Point IP
Input Third-Order Intercept
Point
IIP3 Variation with T
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor P
C
C
D L
C
TC
CL
1dB
IIP3 f
IIP3
fRF = 2010MHz to 2025MHz
fRF = 2305MHz to 2360MHz
fRF = 2500MHz to 2570MHz
fRF = 2570MHz to 2620MHz
fRF = 2500MHz to 2690MHz
fRF = 2700MHz to 2900MHz
TC = -40N C to +85NC
(Note 10) 22 dBm
= 300MHz, f
IF1
f
= 300MHz, f
IF1
TC = -40N C to +85NC
LO - 2IF 61
LO + 2IF 62
LO - 3IF 72
LO + 3IF 85
= 0dBm (Note 9) -163 dBm/Hz
OUT
IF2 =
IF2 =
301MHz, P
301MHz, P
0dBm/tone 32.8 dBm
IF =
0dBm/tone,
IF =
7.3 dB
Q0.05
Q0.05
Q0.05
Q0.05
Q0.15
Q0.2
0.007
Q 0.5
dB
dB/N C
dB
dBc
dBc
���������������������������������������������������������������� Maxim Integrated Products 12
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2 . Typical values are for TC = +25N C, VCC = 3.3V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Conversion Loss Variation vs.
Frequency
Conversion Loss
Temperature Coefficient
Input 1dB Compression Point IP
Input Third-Order Intercept
Point
IIP3 Variation with T
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor P
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance
transformer. Output measurements were taken at IF outputs of the Typical Application Circuit .
Note 8: 100% production tested for functional performance.
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz at 100MHz offset. This specification
reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021:
Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers .
Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50I source.
C
C
D L
C
TC
CL
1dB
IIP3 f
IIP3
fRF = 2000MHz to 2900MHz, any 100MHz band
TC = -40N C to +85NC
(Note 10) 20.5 dBm
= 300MHz, f
IF1
f
= 300MHz, f
IF1
TC = -40N C to +85NC
LO - 2IF 60
LO + 2IF 64
LO - 3IF 68
LO + 3IF 80
= 0dBm (Note 9) -160 dBm/Hz
OUT
IF2 =
IF2 =
301MHz, P
301MHz, P
0dBm/tone 30 dBm
IF =
0dBm/tone,
IF =
7.3 dB
Q 0.25
0.008
Q 0.6
dB
dB/N C
dB
dBc
dBc
���������������������������������������������������������������� Maxim Integrated Products 13
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
TC = +25°C
TC = -40°C
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
TC = +25°C
35
TC = -40°C
INPUT IP3 (dBm)
30
PRF = 0dBm/TONE
TC = +85°C
9
MAX2042A toc01
MAX2042A toc04
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
40
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
9
MAX2042A toc02
MAX2042A toc05
8
7
CONVERSION LOSS (dB)
6
5
40
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2000 2900
RF FREQUENCY (MHz)
2600 2300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042A toc03
MAX2042A toc06
25
RF FREQUENCY (MHz)
2600 2300 2000 2900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
TC = +85°C
70
65
TC = -40°C
60
2LO - 2RF RESPONSE (dBc)
55
50
TC = +25°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 14
PRF = 0dBm
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc07
65
60
2LO - 2RF RESPONSE (dBc)
55
50
RF FREQUENCY (MHz)
PLO = -3dBm
RF FREQUENCY (MHz)
PLO = +3dBm
2600 2300 2000 2900
PRF = 0dBm
PLO = 0dBm
PLO = -6dBm
2600 2300 2000 2900
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc08
65
60
2LO - 2RF RESPONSE (dBc)
55
50
2600 2300 2000 2900
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc09
VCC = 4.75V, 5.0V, 5.25V
2600 2300 2000 2900
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
75
65
3LO - 3RF RESPONSE (dBc)
55
TC = -40°C, +25°C, +85°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
4
TC = +85°C
TC = +25°C
TC = -40°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
PRF = 0dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
MAX2042A toc10
75
65
3LO - 3RF RESPONSE (dBc)
55
10
MAX2042A toc13
9
8
7
NOISE FIGURE (dB)
6
5
4
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300 2000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300 2000 2900
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
MAX2042A toc11
75
65
3LO - 3RF RESPONSE (dBc)
55
10
MAX2042A toc14
9
8
7
NOISE FIGURE (dB)
6
5
4
PRF = 0dBm
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
2600 2300 2000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2600 2300 2000 2900
RF FREQUENCY (MHz)
MAX2042A toc12
MAX2042A toc15
(dBm)
1dB
P
INPUT P
25
23
21
19
17
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
TC = +85°C
MAX2042A toc16
INPUT P
25
23
(dBm)
21
1dB
PLO = -6dBm, -3dBm, 0dBm, +3dBm
P
19
17
vs. RF FREQUENCY
1dB
2600 2300 2000 2900
RF FREQUENCY (MHz)
MAX2042A toc17
(dBm)
1dB
P
25
23
21
19
17
INPUT P
VCC = 5.0V
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 4.75V
2600 2300 2000 2900
RF FREQUENCY (MHz)
MAX2042A toc18
���������������������������������������������������������������� Maxim Integrated Products 15
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
TC = +25°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = -40°C
TC = +85°C
2900 2600 2300 3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
TC = +85°C
40
RF-TO-IF ISOLATION (dB)
TC = -40°C
30
TC = +25°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc19
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc22
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2900 2600 2300 3200
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc20
-20
-30
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc23
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc21
2900 2600 2300 3200
LO FREQUENCY (MHz)
MAX2042A toc24
VCC = 4.75V, 5.0V, 5.25V
20
RF FREQUENCY (MHz)
2600 2300 2000 2900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
-30
TC = -40°C, +25°C, +85°C
-35
LO LEAKAGE AT RF PORT (dBm)
-40
LO FREQUENCY (MHz)
2900 2600 2300 3200
���������������������������������������������������������������� Maxim Integrated Products 16
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc25
-25
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-35
LO LEAKAGE AT RF PORT (dBm)
-40
2600 2300 2000 2900
RF FREQUENCY (MHz)
2900 2600 2300 3200
LO FREQUENCY (MHz)
20
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc26
-25
VCC = 5.25V
-30
VCC = 4.75V
-35
LO LEAKAGE AT RF PORT (dBm)
-40
VCC = 5.0V
LO FREQUENCY (MHz)
2600 2300 2000 2900
MAX2042A toc27
2900 2600 2300 3200
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
TC = -40°C
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
LO FREQUENCY (MHz)
TC = +25°C
TC = +85°C
2900 2600 2300 3200
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
MAX2042A toc28
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
IF = 300MHz
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042A toc31
2900 2600 2300 3200
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
MAX2042A toc29
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
2900 2600 2300 3200
LO FREQUENCY (MHz)
IF PORT RETURN LOSS vs. IF FREQUENCY
LO = 2900MHz
VCC = 4.75V, 5.0V, 5.25V
MAX2042A toc30
MAX2042A toc32
30
2000 3000
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
LO RETURN LOSS (dB)
40
50
1000 4000
PLO = -6dBm
LO FREQUENCY (MHz)
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
2800 2600 2400 2200
MAX2042A toc33
3400 2800 2200 1600
30
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410 320 230 140
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 17
MAX2042A toc34
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
TC = -40°C
RF FREQUENCY (MHz)
TC = +25°C
2600 2300
INPUT IP3 vs. RF FREQUENCY
35
33
31
29
INPUT IP3 (dBm)
27
TC = -40°C, +25°C, +85°C
PRF = 0dBm/TONE
9
MAX2042A toc35
MAX2042A toc38
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
35
33
31
29
INPUT IP3 (dBm)
27
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -6dBm, -3dBm, 0dBm, +3dBm
9
MAX2042A toc36
MAX2042A toc39
8
7
CONVERSION LOSS (dB)
6
5
35
33
31
29
INPUT IP3 (dBm)
27
CONVERSION LOSS vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
2000 2900
RF FREQUENCY (MHz)
2600 2300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX2042A toc37
MAX2042A toc40
25
RF FREQUENCY (MHz)
2600 2300 2000 2900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
65
60
2LO - 2RF RESPONSE (dBc)
55
50
TC = -40°C, +25°C, +85°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 18
PRF = 0dBm
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc41
65
60
2LO - 2RF RESPONSE (dBc)
55
50
RF FREQUENCY (MHz)
PLO = -6dBm
RF FREQUENCY (MHz)
PLO = +3dBm
2600 2300 2000 2900
PRF = 0dBm
PLO = 0dBm
PLO = -3dBm
2600 2300 2000 2900
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc42
65
60
2LO - 2RF RESPONSE (dBc)
55
50
RF FREQUENCY (MHz)
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
2600 2300 2000 2900
PRF = 0dBm
MAX2042A toc43
2600 2300 2000 2900
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
70
65
3LO - 3RF RESPONSE (dBc)
60
55
TC = -40°C, +25°C, +85°C
2600 2300 2000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
TC = +85°C
TC = -40°C
PRF = 0dBm
TC = +25°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
MAX2042A toc44
70
65
3LO - 3RF RESPONSE (dBc)
60
55
10
MAX2042A toc47
9
8
7
NOISE FIGURE (dB)
6
5
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300 2000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
MAX2042A toc45
70
65
3LO - 3RF RESPONSE (dBc)
60
55
10
MAX2042A toc48
9
8
7
NOISE FIGURE (dB)
6
5
PRF = 0dBm
VCC = 3.6V
VCC = 3.0V
RF FREQUENCY (MHz)
VCC = 3.3V
2600 2300 2000 2900
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
MAX2042A toc46
MAX2042A toc49
(dBm)
1dB
P
4
RF FREQUENCY (MHz)
INPUT P
24
22
20
18
16
1dB
TC = +25°C
RF FREQUENCY (MHz)
2600 2300 2000 2900
vs. RF FREQUENCY
TC = -40°C
TC = +85°C
2600 2300 2000 2900
MAX2042A toc50
(dBm)
1dB
P
4
RF FREQUENCY (MHz)
INPUT P
24
22
20
18
16
1dB
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2600 2300 2000 2900
vs. RF FREQUENCY
2600 2300 2000 2900
MAX2042A toc51
(dBm)
1dB
P
24
22
20
18
16
4
INPUT P
VCC = 3.3V
2600 2300 2000 2900
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
VCC = 3.6V
VCC = 3.0V
2600 2300 2000 2900
RF FREQUENCY (MHz)
MAX2042A toc52
���������������������������������������������������������������� Maxim Integrated Products 19
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
TC = -40°C
-20
TC = +25°C
-30
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
-40
2900 2600 2300 3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
TC = +85°C
40
TC = -40°C
RF-TO-IF ISOLATION (dB)
30
TC = +25°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc53
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc56
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2900 2600 2300 3200
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc54
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc57
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc55
VCC = 3.0V, 3.3V, 3.6V
2900 2600 2300 3200
LO FREQUENCY (MHz)
MAX2042A toc58
VCC = 3.0V, 3.3V, 3.6V
20
RF FREQUENCY (MHz)
2600 2300 2000 2900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
TC = -40°C, +25°C, +85°C
2900 2600 2300 3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 20
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc59
-25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
2600 2300 2000 2900
RF FREQUENCY (MHz)
2900 2600 2300 3200
LO FREQUENCY (MHz)
20
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc60
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
LO FREQUENCY (MHz)
2600 2300 2000 2900
MAX2042A toc61
2900 2600 2300 3200
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
TC = -40°C
TC = +85°C
LO FREQUENCY (MHz)
TC = +25°C
2900 2600 2300 3200
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
MAX2042A toc62
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
IF = 300MHz
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042A toc65
2900 2600 2300 3200
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
MAX2042A toc63
-30
-35
VCC = 3.6V
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
VCC = 3.0V
VCC = 3.3V
2900 2600 2300 3200
LO FREQUENCY (MHz)
IF PORT RETURN LOSS vs. IF FREQUENCY
LO = 2900MHz
VCC = 3.0V, 3.3V, 3.6V
MAX2042A toc64
MAX2042A toc66
30
2000 3000
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
40
LO RETURN LOSS (dB)
50
60
1000 4000
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = -6dBm
2800 2600 2400 2200
MAX2042A toc67
3400 2800 2200 1600
30
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
140
135
130
125
120
SUPPLY CURRENT (mA)
115
110
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410 320 230 140
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 21
MAX2042A toc68
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
11
10
TC = +85°C
9
8
CONVERSION LOSS (dB)
7
T
6
3100 3900
TC = +25°C
= -40°C
C
RF FREQUENCY (MHz)
3700 3500 3300
INPUT IP3 vs. RF FREQUENCY
40
35
INPUT IP3 (dBm)
30
TC = -40°C
TC = +85°C
PRF = 0dBm/TONE
TC = +25°C
11
10
MAX2042A toc69
9
8
CONVERSION LOSS (dB)
7
6
3100 3900
40
MAX2042A toc72
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3700 3500 3300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
11
10
MAX2042A toc70
9
8
CONVERSION LOSS (dB)
7
6
40
MAX2042A toc73
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042A toc71
MAX2042A toc74
25
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
65
60
2RF - 2LO RESPONSE (dBc)
55
50
3100 3900
TC = +25°C
TC = -40°C
3700 3500 3300
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 22
PRF = 0dBm
TC = +85°C
25
3100 3900
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc75
65
60
2RF - 2LO RESPONSE (dBc)
55
50
3100 3900
PLO = +3dBm
PLO = -6dBm
RF FREQUENCY (MHz)
PLO = 0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
3700 3500 3300
PRF = 0dBm
3700 3500 3300
25
3100 3900
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc76
65
60
2RF - 2LO RESPONSE (dBc)
55
50
3100 3900
3700 3500 3300
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc77
VCC = 4.75V, 5.0V, 5.25V
3700 3500 3300
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
75
65
3RF - 3LO RESPONSE (dBc)
TC = -40°C, +25°C, +85°C
55
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
NOISE FIGURE vs. RF FREQUENCY
12
10
8
NOISE FIGURE (dB)
6
4
3100 3900
TC = +85°C
TC = +25°C
3700 3500 3300
RF FREQUENCY (MHz)
PRF = 0dBm
TC = -40°C
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
MAX2042A toc78
75
65
3RF - 3LO RESPONSE (dBc)
55
3100 3900
12
MAX2042A toc81
10
8
NOISE FIGURE (dB)
6
4
3100 3900
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3700 3500 3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3700 3500 3300
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
MAX2042A toc79
75
65
3RF - 3LO RESPONSE (dBc)
55
3100 3900
12
MAX2042A toc82
10
8
NOISE FIGURE (dB)
6
4
3100 3900
PRF = 0dBm
MAX2042A toc80
VCC = 4.75V, 5.0V, 5.25V
3700 3500 3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc83
VCC = 4.75V, 5.0V, 5.25V
3700 3500 3300
RF FREQUENCY (MHz)
INPUT P
25
23
(dBm)
21
1dB
P
19
17
3100 3900
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
TC = +85°C
RF FREQUENCY (MHz)
3700 3500 3300
���������������������������������������������������������������� Maxim Integrated Products 23
MAX2042A toc84
INPUT P
25
23
(dBm)
21
1dB
P
19
PLO = -6dBm, -3dBm, 0dBm, +3dBm
17
3100 3900
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
3700 3500 3300
MAX2042A toc85
INPUT P
25
VCC = 5.25V
23
(dBm)
21
1dB
P
19
17
3100 3900
vs. RF FREQUENCY
1dB
VCC = 5.0V
VCC = 4.75V
RF FREQUENCY (MHz)
3700 3500 3300
MAX2042A toc86
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
TC = -40°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40
2800 3600
TC = +25°C
TC = +85°C
3400 3200 3000
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
TC = +85°C
40
RF-TO-IF ISOLATION (dB)
30
TC = -40°C
TC = +25°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc87
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
2800 3600
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc90
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3400 3200 3000
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc88
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
2800 3600
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc91
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc89
VCC = 4.75V, 5.0V, 5.25V
3400 3200 3000
LO FREQUENCY (MHz)
MAX2042A toc92
VCC = 4.75V, 5.0V, 5.25V
20
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
TC = -40°C
-25
TC = +25°C
-30
TC = +85°C
-35
LO LEAKAGE AT RF PORT (dBm)
-40
2800 3600
LO FREQUENCY (MHz)
3400 3200 3000
���������������������������������������������������������������� Maxim Integrated Products 24
20
3100 3900
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc93
-25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
2800 3600
LO FREQUENCY (MHz)
3700 3500 3300
20
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc94
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
LO LEAKAGE AT RF PORT (dBm)
3400 3200 3000
-40
2800 3600
LO FREQUENCY (MHz)
3400 3200 3000
MAX2042A toc95
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, V CC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25 N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-15
-20
-25
-30
2LO LEAKAGE AT RF PORT (dBm)
-35
-40
2800 3600
TC = +25°C
LO FREQUENCY (MHz)
TC = -40°C
TC = +85°C
3400 3200 3000
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-15
MAX2042A toc96
-20
-25
-30
2LO LEAKAGE AT RF PORT (dBm)
-35
-40
2800 3600
IF = 300MHz
MAX2042A toc99
PLO = -0dBm
PLO = 3dBm
PLO = -6dBm, -3dBm
LO FREQUENCY (MHz)
3400 3200 3000
IF PORT RETURN LOSS vs. IF FREQUENCY
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-15
MAX2042A toc97
-20
-25
-30
2LO LEAKAGE AT RF PORT (dBm)
-35
-40
2800 3600
VCC = 4.75V, 5.0V, 5.25V
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
LO = 3200MHz
MAX2042A toc98
3400 3200 3000
MAX2042A toc100
30
3000 4000
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
0
10
PLO = -6dBm
20
LO RETURN LOSS (dB)
30
40
2700 3700
PLO = -3dBm
PLO = +3dBm
LO FREQUENCY (MHz)
PLO = -0dBm
3800 3600 3400 3200
MAX2042A toc101
3500 3300 3100 2900
30
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410 320 230 140
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 25
MAX2042A toc102
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
11
10
9
8
CONVERSION LOSS (dB)
7
6
TC = +85°C
3100 3900
RF FREQUENCY (MHz)
TC = +25°C
TC = -40°C
3700 3500 3300
INPUT IP3 vs. RF FREQUENCY
35
30
INPUT IP3 (dBm)
25
TC = -40°C
PRF = 0dBm/TONE
TC = +25°C
TC = +85°C
11
10
MAX2042A toc103
CONVERSION LOSS (dB)
35
MAX2042A toc106
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
9
8
PLO = -6dBm, -3dBm, 0dBm, +3dBm
7
6
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
11
10
MAX2042A toc104
9
8
CONVERSION LOSS (dB)
7
6
35
MAX2042A toc107
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
MAX2042A toc105
MAX2042A toc108
20
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
65
60
2LO - 2RF RESPONSE (dBc)
55
50
3100 3900
TC = +85°C
RF FREQUENCY (MHz)
PRF = 0dBm
TC = +25°C
TC = -40°C
3700 3500 3300
���������������������������������������������������������������� Maxim Integrated Products 26
20
3100 3900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc109
65
60
2LO - 2RF RESPONSE (dBc)
55
50
3100 3900
PLO = 0dBm
RF FREQUENCY (MHz)
PLO = +3dBm
PLO = -6dBm
RF FREQUENCY (MHz)
3700 3500 3300
PRF = 0dBm
PLO = -3dBm
3700 3500 3300
20
3100 3900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc110
65
60
2LO - 2RF RESPONSE (dBc)
55
50
3100 3900
3700 3500 3300
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc111
VCC = 4.75V, 5.0V, 5.25V
3700 3500 3300
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
70
65
60
TC = -40°C, +25°C, +85°C
3LO - 3RF RESPONSE (dBc)
55
50
3100 3900
RF FREQUENCY (MHz)
PRF = 0dBm
3700 3500 3300
NOISE FIGURE vs. RF FREQUENCY
12
TC = +85°C
10
8
NOISE FIGURE (dB)
6
TC = +25°C
TC = -40°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc112
65
60
3LO - 3RF RESPONSE (dBc)
55
50
3100 3900
12
MAX2042A toc115
10
8
NOISE FIGURE (dB)
6
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3700 3500 3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm
PLO = -3dBm
PLO = 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc113
65
60
3LO - 3RF RESPONSE (dBc)
55
50
3100 3900
12
MAX2042A toc116
10
8
NOISE FIGURE (dB)
6
PRF = 0dBm
MAX2042A toc114
VCC = 4.75V, 5.0V, 5.25V
3700 3500 3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc117
VCC = 4.75V, 5.0V, 5.25V
4
3100 3700
RF FREQUENCY (MHz)
INPUT P
21
19
(dBm)
1dB
P
17
15
3100 3900
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
RF FREQUENCY (MHz)
3550 3400 3250
TC = +85°C
3700 3500 3300
���������������������������������������������������������������� Maxim Integrated Products 27
MAX2042A toc118
(dBm)
P
4
3100 3700
RF FREQUENCY (MHz)
INPUT P
21
PLO = -3dBm, 0dBm, +3dBm
19
1dB
17
15
3100 3900
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
3550 3400 3250
PLO = -6dBm
3700 3500 3300
MAX2042A toc119
4
3100 3700
RF FREQUENCY (MHz)
INPUT P
21
19
(dBm)
1dB
P
17
15
3100 3900
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 5.0V
RF FREQUENCY (MHz)
3550 3400 3250
VCC = 4.75V
3700 3500 3300
MAX2042A toc120
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50
3400 4200
TC = -40°C
TC = +25°C
TC = +85°C
4000 3800 3600
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
40
RF-TO-IF ISOLATION (dB)
30
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc121
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50
3400 4200
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc124
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
4000 3800 3600
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc122
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50
3400 4200
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc125
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc123
VCC = 4.75V, 5.0V, 5.25V
4000 3800 3600
LO FREQUENCY (MHz)
MAX2042A toc126
VCC = 4.75V, 5.0V, 5.25V
20
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
-30
-35
-40
LO LEAKAGE AT RF PORT (dBm)
-45
3400 4200
TC = -40°C
TC = +85°C
TC = +25°C
4000 3800 3600
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 28
20
3100 3900
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
MAX2042A toc127
-30
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
LO LEAKAGE AT RF PORT (dBm)
-45
3400 4200
LO FREQUENCY (MHz)
3700 3500 3300
20
3100 3900
RF FREQUENCY (MHz)
3700 3500 3300
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
MAX2042A toc128
-30
-35
-40
LO LEAKAGE AT RF PORT (dBm)
4000 3800 3600
-45
VCC = 4.75V, 5.0V, 5.25V
3400 4200
LO FREQUENCY (MHz)
4000 3800 3600
MAX2042A toc129
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
0
-5
-10
-15
-20
2LO LEAKAGE AT RF PORT (dBm)
-25
-30
3400 4200
TC = -40°C
TC = +25°C
TC = +85°C
4000 3800 3600
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
0
-5
MAX2042A toc130
-10
-15
-20
2LO LEAKAGE AT RF PORT (dBm)
-25
-30
3400 4200
IF = 300MHz
MAX2042A toc133
PLO = 0dBm
PLO = 3dBm
PLO = -6dBm, -3dBm
LO FREQUENCY (MHz)
4000 3800 3600
IF PORT RETURN LOSS vs. IF FREQUENCY
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
0
-5
MAX2042A toc131
-10
-15
-20
2LO LEAKAGE AT RF PORT (dBm)
-25
-30
3400 4200
VCC = 4.75V, 5.0V, 5.25V
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
LO = 3800MHz
MAX2042A toc132
4000 3800 3600
MAX2042A toc134
30
3000 4000
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
0
PLO = -6dBm
10
20
PLO = 0dBm
LO RETURN LOSS (dB)
30
40
3300 4300
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = +3dBm
3800 3600 3400 3200
MAX2042A toc135
4100 3900 3700 3500
30
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs.TEMPERATURE (TC)
155
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
V
= 5.0V
CC
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410 320 230 140
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 29
MAX2042A toc136
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
10
9
TC = +85°C
TC = +25°C
8
CONVERSION LOSS (dB)
7
TC = -40°C
6
1650 2250
RF FREQUENCY (MHz)
2050 1850
INPUT IP3 vs. RF FREQUENCY
40
TC = -40°C
35
30
INPUT IP3 (dBm)
25
TC = +85°C
PRF = 0dBm/TONE
TC = +25°C
10
MAX2042A toc137
MAX2042A toc140
9
8
CONVERSION LOSS (dB)
7
6
40
35
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -6dBm, -3dBm, 0dBm, +3dBm
10
MAX2042A toc138
MAX2042A toc141
9
8
CONVERSION LOSS (dB)
7
6
40
35
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc139
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
MAX2042A toc142
VCC = 4.75V, 5.0V, 5.25V
20
2050 1850 1650 2250
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
80
TC = +85°C
70
TC = -40°C
60
2LO - 2RF RESPONSE (dBc)
50
2050 1850 1650 2250
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 30
PRF = 0dBm
TC = +25°C
20
2LO - 2RF RESPONSE vs. RF FREQUENCY
80
MAX2042A toc143
70
60
2LO - 2RF RESPONSE (dBc)
50
2050 1850 1650 2250
RF FREQUENCY (MHz)
PLO = +3dBm
PLO = -3dBm
PLO = -6dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
PRF = 0dBm
PLO = 0dBm
20
2LO - 2RF RESPONSE vs. RF FREQUENCY
80
MAX2042A toc144
70
60
2LO - 2RF RESPONSE (dBc)
50
2050 1850 1650 2250
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc145
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
TC = -40°C
70
60
3LO - 3RF RESPONSE (dBc)
50
TC = +85°C
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
TC = +85°C
TC = +25°C
TC = -40°C
PRF = 0dBm
TC = +25°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
MAX2042A toc146
70
60
3LO - 3RF RESPONSE (dBc)
50
10
MAX2042A toc149
9
8
7
NOISE FIGURE (dB)
6
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
MAX2042A toc147
70
60
3LO - 3RF RESPONSE (dBc)
50
10
MAX2042A toc150
9
8
7
NOISE FIGURE (dB)
6
PRF = 0dBm
MAX2042A toc148
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042A toc151
VCC = 4.75V, 5.0V, 5.25V
5
1650 2250
RF FREQUENCY (MHz)
INPUT P
1dB
RF FREQUENCY (MHz)
(dBm)
1dB
P
25
TC = -40°C
23
TC = +25°C
21
19
2050 1850
vs. RF FREQUENCY
TC = +85°C
2050 1850 1650 2250
���������������������������������������������������������������� Maxim Integrated Products 31
MAX2042A toc152
(dBm)
P
5
1650 2250
RF FREQUENCY (MHz)
INPUT P
25
23
1dB
21
19
1dB
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2050 1850
vs. RF FREQUENCY
2050 1850 1650 2250
MAX2042A toc153
5
1650 2250
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 4.75V
RF FREQUENCY (MHz)
(dBm)
1dB
P
25
23
21
19
2050 1850
vs. RF FREQUENCY
VCC = 5.25V
VCC = 5.0V
2050 1850 1650 2250
MAX2042A toc154
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
TC = -40°C
TC = +25°C
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
LO FREQUENCY (MHz)
TC = +85°C
2350 2150 1950 2550
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
40
RF-TO-IF ISOLATION (dB)
30
TC = +25°C
TC = +85°C
TC = -40°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc155
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc158
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2350 2150 1950 2550
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc156
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc159
50
40
RF-TO-IF ISOLATION (dB)
30
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
VCC = 5.25V
VCC = 4.75V
2350 2150 1950 2550
VCC = 5.0V
MAX2042A toc157
MAX2042A toc160
20
RF FREQUENCY (MHz)
2050 1850 1650 2250
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
TC = -40°C, +25°C, +85°C
2350 2150 1950 2550
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 32
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc161
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
2050 1850 1650 2250
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2350 2150 1950 2550
LO FREQUENCY (MHz)
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc162
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
RF FREQUENCY (MHz)
VCC = 5.0V
VCC = 4.75V
LO FREQUENCY (MHz)
2050 1850 1650 2250
MAX2042A toc163
VCC = 5.25V
2350 2150 1950 2550
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
1950 2550
TC = -40°C
LO FREQUENCY (MHz)
TC = +25°C
TC = +85°C
2350 2150
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
20
RF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc164
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
IF = 300MHz
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1950 2550
LO FREQUENCY (MHz)
MAX2042A toc167
2350 2150
IF PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc165
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
1950 2550
VCC = 5.0V
VCC = 5.25V
LO FREQUENCY (MHz)
IF PORT RETURN LOSS vs. IF FREQUENCY
0
5
10
15
20
VCC = 4.75V, 5.0V, 5.25V
25
LO = 2150MHz
MAX2042A toc166
VCC = 4.75V
2350 2150
MAX2042A toc168
30
1550 2350
RF FREQUENCY (MHz)
2150 1950 1750
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
LO RETURN LOSS (dB)
40
50
1850 2650
PLO = 0dBm
PLO = -6dBm
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = +3dBm
2450 2250 2050
MAX2042A toc169
30
IF FREQUENCY (MHz)
320 230 140 50 500
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 33
MAX2042A toc170
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
11
10
9
8
CONVERSION LOSS (dB)
7
6
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
35
30
TC = -40°C
INPUT IP3 (dBm)
25
TC = +85°C
PRF = 0dBm/TONE
TC = +85°C
2050 1850 1650 2250
TC = +25°C
11
10
MAX2042A toc171
9
8
CONVERSION LOSS (dB)
7
6
35
MAX2042A toc174
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -6dBm, -3dBm, 0dBm, +3dBm
11
10
MAX2042A toc172
9
8
CONVERSION LOSS (dB)
7
6
35
MAX2042A toc175
30
INPUT IP3 (dBm)
25
CONVERSION LOSS vs. RF FREQUENCY
MAX2042A toc173
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
MAX2042A toc176
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
20
RF FREQUENCY (MHz)
2050 1850 1650 2250
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
TC = -40°C
65
60
2RF - 2LO RESPONSE (dBc)
55
50
RF FREQUENCY (MHz)
TC = +25°C
2050 1850 1650 2250
���������������������������������������������������������������� Maxim Integrated Products 34
PRF = 0dBm
TC = +85°C
20
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc177
65
60
2RF - 2LO RESPONSE (dBc)
55
50
PLO = 0dBm
PLO = -6dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
PLO = +3dBm
PLO = -3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
PRF = 0dBm
20
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc178
65
60
2RF - 2LO RESPONSE (dBc)
55
50
2050 1850 1650 2250
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc179
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
2050 1850 1650 2250
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
TC = +25°C
70
60
3RF - 3LO RESPONSE (dBc)
50
TC = -40°C
TC = +85°C
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
15
13
TC = +25°C
11
9
NOISE FIGURE (dB)
7
TC = -40°C
5
TC = +85°C
2050 1850 1650 2250
RF FREQUENCY (MHz)
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
MAX2042A toc180
70
60
3RF - 3LO RESPONSE (dBc)
50
15
13
MAX2042A toc183
11
9
NOISE FIGURE (dB)
7
5
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
MAX2042A toc181
70
60
3RF - 3LO RESPONSE (dBc)
50
15
13
MAX2042A toc184
11
9
NOISE FIGURE (dB)
7
5
PRF = 0dBm
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
2050 1850 1650 2250
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
MAX2042A toc182
MAX2042A toc185
(dBm)
1dB
P
INPUT P
24
22
20
TC = -40°C
18
16
14
vs. RF FREQUENCY
1dB
TC = +25°C
2050 1850 1650 2250
RF FREQUENCY (MHz)
TC = +85°C
INPUT P
24
22
MAX2042A toc186
20
(dBm)
1dB
P
18
16
14
vs. RF FREQUENCY
1dB
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2050 1850 1650 2250
RF FREQUENCY (MHz)
INPUT P
24
22
MAX2042A toc187
20
(dBm)
1dB
P
18
16
14
vs. RF FREQUENCY
1dB
VCC = 4.75V, 5.0V, 5.25V
2050 1850 1650 2250
RF FREQUENCY (MHz)
MAX2042A toc188
���������������������������������������������������������������� Maxim Integrated Products 35
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
TC = +25°C
-20
TC = -40°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = +85°C
1750 1550 1350 1950
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
40
RF-TO-IF ISOLATION (dB)
30
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc189
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc192
PLO = -3dBm, 0dBm, +3dBm
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1750 1550 1350 1950
LO FREQUENCY (MHz)
PLO = -6dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc190
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc193
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc191
VCC = 4.75V, 5.0V, 5.25V
1750 1550 1350 1950
LO FREQUENCY (MHz)
MAX2042A toc194
VCC = 4.75V, 5.0V, 5.25V
20
RF FREQUENCY (MHz)
2050 1850 1650 2250
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
TC = -40°C, +25°C, +85°C
1750 1550 1350 1950
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 36
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc195
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
2050 1850 1650 2250
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1750 1550 1350 1950
LO FREQUENCY (MHz)
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc196
-20
-30
LO LEAKAGE AT RF PORT (dBm)
-40
2050 1850 1650 2250
RF FREQUENCY (MHz)
MAX2042A toc197
VCC = 4.75V, 5.0V, 5.25V
1750 1550 1350 1950
LO FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1 , VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, P RF = 0dBm, PLO = 0dBm, TC = +25N C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
-20
-30
TC = -40°C, +25°C, +85°C
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
LO FREQUENCY (MHz)
1750 1550 1350 1950
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
RF PORT RETURN LOSS (dB)
20
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc198
-20
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
LO FREQUENCY (MHz)
IF = 300MHz
MAX2042A toc201
1750 1550 1350 1950
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc199
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
VCC = 4.75V, 5.0V, 5.25V
1750 1550 1350 1950
LO FREQUENCY (MHz)
IF PORT RETURN LOSS vs. IF FREQUENCY
LO = 1950MHz
VCC = 4.75V, 5.0V, 5.25V
MAX2042A toc200
MAX2042A toc202
25
1550 2350
RF FREQUENCY (MHz)
2150 1950 1750
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
LO RETURN LOSS (dB)
40
50
1250 2050
PLO = -3dBm
PLO = -6dBm
PLO = 0dBm
PLO = +3dBm
1850 1650 1450
LO FREQUENCY (MHz)
MAX2042A toc203
30
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
410 320 230 140
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 37
MAX2042A toc204
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2 , V CC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
TC = +25°C
TC = -40°C
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
38
36
34
INPUT IP3 (dBm)
32
30
TC = +25°C
PIF = 0dBm/ TONE
TC = -40°C
TC = +85°C
9
MAX2042A toc205
MAX2042A toc208
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
40
38
36
34
INPUT IP3 (dBm)
32
30
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, 3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
9
MAX2042A toc206
MAX2042A toc209
8
7
CONVERSION LOSS (dB)
6
5
40
38
36
34
INPUT IP3 (dBm)
32
30
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2000 2900
RF FREQUENCY (MHz)
2600 2300
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
MAX2042A toc207
MAX2042A toc210
28
RF FREQUENCY (MHz)
2600 2300 2000 2900
LO - 2IF RESPONSE vs. RF FREQUENCY
85
75
65
LO - 2IF RESPONSE (dBc)
55
45
TC = +85°C
TC = +25°C
TC = -40°C
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
2600 2300
���������������������������������������������������������������� Maxim Integrated Products 38
28
85
MAX2042A toc211
75
65
LO - 2IF RESPONSE (dBc)
55
45
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = 0dBm
PLO = +3dBm
PLO = -3dBm
PLO = -6dBm
2600 2300
RF FREQUENCY (MHz)
28
85
MAX2042A toc212
75
65
LO - 2IF RESPONSE (dBc)
55
45
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
MAX2042A toc213
VCC = 4.75V, 5.0V, 5.25V
2600 2300
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2 , V CC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
TC = +85°C
75
65
LO + 2IF RESPONSE (dBc)
55
45
TC = +25°C
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
TC = -40°C
2600 2300
LO - 3IF RESPONSE vs. RF FREQUENCY
100
90
80
LO - 3IF RESPONSE (dBc)
70
TC = -40°C, +25°C, +85°C
PIF = 0dBm
85
MAX2042A toc214
75
65
LO + 2IF RESPONSE (dBc)
55
45
2000 2900
100
MAX2042A toc217
90
80
LO - 3IF RESPONSE (dBc)
70
LO + 2IF RESPONSE vs. RF FREQUENCY
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PLO = -6dBm
RF FREQUENCY (MHz)
PIF = 0dBm
2600 2300
LO - 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
85
MAX2042A toc215
75
65
LO + 2IF RESPONSE (dBc)
55
45
2000 2900
100
MAX2042A toc218
90
80
LO - 3IF RESPONSE (dBc)
70
LO + 2IF RESPONSE vs. RF FREQUENCY
VCC = 5.0V
VCC = 4.75V
VCC = 5.25V
RF FREQUENCY (MHz)
PIF = 0dBm
2600 2300
LO - 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
MAX2042A toc216
MAX2042A toc219
60
2000 2900
RF FREQUENCY (MHz)
2600 2300
LO + 3IF RESPONSE vs. RF FREQUENCY
100
90
TC = -40°C
80
TC = +85°C
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
TC = +25°C
2600 2300
���������������������������������������������������������������� Maxim Integrated Products 39
60
2000 2900
100
MAX2042A toc220
90
80
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
2600 2300
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
60
2000 2900
100
MAX2042A toc221
90
80
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
2600 2300
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
2600 2300
RF FREQUENCY (MHz)
MAX2042A toc222
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2 , V CC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
TC = -40°C, +25°C, +85°C
-30
LO LEAKAGE AT RF PORT (dBm)
-35
LO FREQUENCY (MHz)
2900 2600 2300 3200
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
TC = -40°C
-50
-60
-70
-80
TC = +85°C
IF LEAKAGE AT RF PORT (dBm)
TC = +25°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc223
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-50
MAX2042A toc226
PLO = +3dBm
-60
-70
IF LEAKAGE AT RF PORT (dBm)
PLO = 0dBm
-80
PLO = -3dBm
PLO = -6dBm
2900 2600 2300 3200
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc224
-25
VCC = 5.25V
-30
LO LEAKAGE AT RF PORT (dBm)
-35
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-50
MAX2042A toc227
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
LO FREQUENCY (MHz)
VCC = 5.25V
VCC = 5.0V
VCC = 5.0V
VCC = 4.75V
MAX2042A toc225
VCC = 4.75V
2900 2600 2300 3200
MAX2042A toc228
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 40
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2 , V CC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
IF = 300MHz
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
LO RETURN LOSS (dB)
40
50
1000 4000
PLO = -6dBm
LO FREQUENCY (MHz)
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
0
MAX2042A toc229
2800 2600 2400 2200
5
10
VCC = 4.75V, 5.0V, 5.25V
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
IF FREQUENCY (MHz)
LO = 2900MHz
MAX2042A toc230
410 320 230 140
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
MAX2042A toc231
3400 2800 2200 1600
150
145
140
135
SUPPLY CURRENT (mA)
130
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
-40 85
EXPOSED PAD TEMPERATURE (°C)
MAX2042A toc232
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 41
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, V CC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
TC = +25°C
TC = -40°C
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
35
33
31
29
INPUT IP3 (dBm)
27
TC = +85°C
PIF = 0dBm/TONE
TC = -40°C
TC = +25°C
9
MAX2042A toc233
MAX2042A toc236
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
35
33
31
29
INPUT IP3 (dBm)
27
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, 3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
PLO = -6dBm, -3dBm, 0dBm, +3dBm
9
MAX2042A toc234
MAX2042A toc237
8
7
CONVERSION LOSS (dB)
6
5
35
33
31
29
INPUT IP3 (dBm)
27
CONVERSION LOSS vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
2000 2900
RF FREQUENCY (MHz)
2600 2300
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX2042A toc235
MAX2042A toc238
25
RF FREQUENCY (MHz)
2600 2300 2000 2900
LO - 2IF RESPONSE vs. RF FREQUENCY
85
75
65
LO - 2IF RESPONSE (dBc)
55
45
TC = +85°C
TC = -40°C
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
TC = +25°C
2600 2300
���������������������������������������������������������������� Maxim Integrated Products 42
25
85
MAX2042A toc239
75
65
LO - 2IF RESPONSE (dBc)
55
45
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = 0dBm
PLO = -6dBm
PLO = +3dBm
PLO = -3dBm
2600 2300
RF FREQUENCY (MHz)
25
85
MAX2042A toc240
75
65
LO - 2IF RESPONSE (dBc)
55
45
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
MAX2042A toc241
VCC = 3.0V, 3.3V, 3.6V
2600 2300
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, V CC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
TC = +85°C
75
65
LO + 2IF RESPONSE (dBc)
55
45
TC = +25°C
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
TC = -40°C
2600 2300
LO - 3IF RESPONSE vs. RF FREQUENCY
90
80
70
LO - 3IF RESPONSE (dBc)
60
TC = -40°C, +25°C, +85°C
PIF = 0dBm
85
MAX2042A toc242
75
65
LO + 2IF RESPONSE (dBc)
55
45
2000 2900
90
MAX2042A toc245
80
70
LO - 3IF RESPONSE (dBc)
60
LO + 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
PLO = -6dBm
2600 2300
RF FREQUENCY (MHz)
LO - 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
85
MAX2042A toc243
75
65
LO + 2IF RESPONSE (dBc)
55
45
2000 2900
90
MAX2042A toc246
80
70
LO - 3IF RESPONSE (dBc)
60
LO + 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
2600 2300
RF FREQUENCY (MHz)
LO - 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX2042A toc244
MAX2042A toc247
50
2000 2900
RF FREQUENCY (MHz)
2600 2300
LO + 3IF RESPONSE vs. RF FREQUENCY
100
90
80
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
RF FREQUENCY (MHz)
PIF = 0dBm
TC = +25°C
TC = +85°C
2600 2300
���������������������������������������������������������������� Maxim Integrated Products 43
TC = -40°C
50
100
MAX2042A toc248
90
80
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2600 2300
RF FREQUENCY (MHz)
50
100
MAX2042A toc249
90
80
LO + 3IF RESPONSE (dBc)
70
60
2000 2900
2600 2300 2000 2900
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
2600 2300
RF FREQUENCY (MHz)
MAX2042A toc250
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, V CC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
TC = -40°C, +25°C, +85°C
2900 2600 2300 3200
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-50
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
TC = +85°C
TC = +25°C
TC = -40°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
MAX2042A toc251
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-50
MAX2042A toc254
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2900 2600 2300 3200
LO FREQUENCY (MHz)
PLO = -6dBm
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
MAX2042A toc252
VCC = 3.6V
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-50
MAX2042A toc255
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
MAX2042A toc253
VCC = 3.0V
VCC = 3.3V
2900 2600 2300 3200
LO FREQUENCY (MHz)
MAX2042A toc256
VCC = 3.0V, 3.3V, 3.6V
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
-90
2900 2600 2300 3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 44
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, V CC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25N C, unless otherwise noted.)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
IF = 300MHz
LO RETURN LOSS vs. LO FREQUENCY
0
10
20
30
LO RETURN LOSS (dB)
40
PLO = -6dBm
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
0
MAX2042A toc257
2800 2600 2400 2200
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
VCC = 3.0V, 3.3V, 3.6V
IF FREQUENCY (MHz)
LO = 2900MHz
MAX2042A toc258
410 320 230 140
SUPPLY CURRENT vs. TEMPERATURE (TC)
140
MAX2042A toc259
135
130
125
120
SUPPLY CURRENT (mA)
115
VCC = 3.6V
MAX2042A toc260
VCC = 3.3V
VCC = 3.0V
50
1000 4000
LO FREQUENCY (MHz)
3400 2800 2200 1600
110
-40 85
EXPOSED PAD TEMPERATURE (°C)
60 35 10 -15
���������������������������������������������������������������� Maxim Integrated Products 45
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Pin Configuration
TOP VIEW
GND
GND
GND
16
17
18
IF-
IF+
19
20
+
CC
GND
V
GND
15 14 12 11
GND
13
MAX2042A
12
RF
CC
V
3
GND
45
GND
LO
GND
GND
10
GND
9
8
V
CC
LOBIAS
7
V
6
CC
TQFN
5mm x 5mm
PIN NAME FUNCTION
1, 6, 8,14 V
2 RF
3, 4, 5, 10,
12, 13, 17
7 LOBIAS
CC
GND
Power Supply. Bypass to GND with 0.01F F capacitors as close as possible to the pin.
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a
DC-blocking capacitor if required. Capacitor also provides some RF match tuning.
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q 1% resistor
(nomi nal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA.
9, 15 GND Ground. Not internally connected. Ground these pins or leave unconnected.
11 LO
Local Oscillator Input. This input is internally matched to 50I . Requires an input DC-blocking
capacitor. Capacitor also provides some LO match tuning.
16, 20 GND Ground. Connect all ground pins and the exposed pad (EP) together.
18, 19 IF-, IF+ Mixer Differential IF Output/Input
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
— EP
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance (see the Layout
Considerations section).
Pin Description
���������������������������������������������������������������� Maxim Integrated Products 46
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Functional Diagram
RF
LO
RF BALUN
IF
LO DRIVER
LO BALUN
MAX2042A
Detailed Description
When used as a high-side LO injection mixer in the
2300MHz to 2900MHz band, the MAX2042A provides
+33dBm of IIP3, with typical conversion loss and noise
figure values of only 7.2dB and 7.25dB, respectively.
The integrated baluns and matching circuitry allow for
50I single-ended interfaces to the RF and the LO port.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
IC’s input to a -6dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing
enhanced 2LO - 2RF performance.
Specifications are over broad frequency ranges to allow
for use in GSM/EDGE, CDMA, TD-SCDMA, WCDMA, LTE,
TD-LTE, WiMAX, and MMDS base stations. The device
is specified to operate over a 1600MHz to 3900MHz
RF input range, a 1300MHz to 4000MHz LO range,
and a 50MHz to 500MHz IF range. The external IF
components set the lower frequency range (see the
Typical Operating Characteristics for details). Operation
beyond these ranges is possible (see the Typical
Operating Characteristics for additional information).
RF Input and Balun
The IC’s RF input provides a 50I match when combined
with a series DC-blocking capacitor. This DC-blocking
capacitor is required as the input is internally DC shorted
to ground through the on-chip balun. When using an
8.2pF DC-blocking capacitor, the RF port input return
loss is typically 17dB over the 2300MHz to 2900MHz
RF frequency range. A return loss of 14dB over the
3000MHz to 3900MHz range is achieved by changing
the DC-blocking capacitor to 1.5pF.
For applications spanning the 1700MHz to 2200MHz
frequency range, a 12nH shunt inductor can be used
in conjunction with a 1.8pF DC-blocking capacitor to
provide a typical return loss of 12dB. See the Typical
Application Circuit and Table 1 for details.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 1300MHz to
4000MHz, the device can be used in either low- or highside LO injection architectures for virtually all 1.7GHz to
3.5GHz receiver and transmitter applications. The LO
input is internally matched to 50I , requiring only a 2pF
DC-blocking capacitor. A two-stage internal LO buffer
allows for a -6dBm to +3dBm LO input power range. The
on-chip low-loss balun, along with an LO buffer, drives
the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are
integrated on-chip.
High-Linearity Mixer
The core of the device is a double-balanced, highperformance passive mixer. Exceptional linearity is
provided by the large LO swing from the on-chip LO buffer.
IIP3, 2LO - 2RF rejection, and noise-figure performance
are typically 33dBm, 72dBc, and 7.25dB, respectively.
Differential IF Ports
The device has a 50MHz to 500MHz IF frequency range,
where the low-end frequency depends on the frequency
response of the external IF components.
The device’s differential IF ports are ideal for providing
enhanced 2LO - 2RF performance. The user can connect
a differential IF amplifier or SAW filter to the mixer IF
port, but a DC block is required on both IF+/IF- ports to
keep external DC from entering the IF ports of the mixer.
To characterize the part, an external MABACT0069 1:1
transformer is used to transform the 50I differential IF
interface to 50I single-ended. Its loss is included in the
data presented in this data sheet. This transformer also
supplies a needed IF pin ground return for the on-chip
circuitry. If a ground return is not available on the IF pins,
the return is achievable through some off-chip resistance
to ground or large-value inductors. A 1kI to ground
on each IF pin can be used for such an application.
In addition, the IF interface directly supports singleended, AC-coupled signals into or out of IF+ by shorting
IF- to ground and using a 1kI resistor from IF+ to ground.
���������������������������������������������������������������� Maxim Integrated Products 47
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined
with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to
2900MHz. Use a 1.5pF capacitor value to match the
RF port for the 3000MHz to 3900MHz band. For RF
frequencies in the 1650MHz to 2250MHz range, use
C1 = 1.8pF and L1 = 12nH. The LO input is internally
matched to 50I , so use a 2pF DC-blocking capacitor
to cover operations spanning the 1300MHz to 4000MHz
range. The IF output impedance is 50I (differential).
For evaluation, an external low-loss 1:1 (impedance
ratio) balun transforms this impedance down to a 50I
single-ended output (see the Typical Application Circuit ).
Reduced-Power Mode
The device includes a pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal
value for this resistor is given in Tables 1 and 2 . Largervalue resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1%
resistors are not readily available, substitute with Q5%
resistors.
Significant reductions in power consumption can also be
realized by operating the mixer with an optional supply
voltage of 3.3V. Doing so reduces the overall power
consumption by up to 42%. See the 3.3V Supply AC
Electrical Characteristics tables and the relevant 3.3V
curves in the Typical Operating Characteristics section to
evaluate the power vs. performance tradeoffs.
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package. The PCB
exposed pad MUST be connected to the ground plane
of the PCB. It is suggested that multiple vias be used to
connect this pad to the lower-level ground planes. This
method provides a good RF/thermal conduction path for
the device. Solder the exposed pad on the bottom of the
device package to the PCB.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Table 1 .
Exposed Pad RF/Thermal
Considerations
The exposed pad (EP) of the device’s 20-pin TQFN
package provides a low thermal-resistance path to the
die. It is important that the PCB on which the device is
mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a ground
plane on the PCB, either directly or through an array of
plated via holes.
���������������������������������������������������������������� Maxim Integrated Products 48
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Table 1. Component Values—Downconverter Mode
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
8.2pF microwave capacitor (0402); use for
2000MHz to 2900MHz RF frequencies
C1 1
C2, C6, C8, C11 4
C3, C9 0 Not installed, capacitors —
C5 0 Not installed, capacitor —
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
L1 1
R1 1
T1 1 1:1 IF balun MABACT0069 M/A-Com, Inc.
U1 1 MAX2042A IC (20 TQFN) Maxim Integrated Products, Inc.
1.5pF microwave capacitor (0402); use for
3000MHz to 3900MHz RF frequencies
1.8pF microwave capacitor (0402); use for
1600MHz to 2000MHz RF frequencies
0.01F F microwave capacitors (0402)
12nH microwave inductor (0402); use for 1600MHz
to 2000MHz RF frequencies (this inductor is not
used for other RF bands noted above)
698I Q 1% resistor (0402)
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
TOKO America, Inc.
—
Table 2. Component Values—Upconverter Mode
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
8.2pF microwave capacitor (0402); use for
2000MHz to 2900MHz RF frequencies
C1 1
C2, C6, C8, C11 4
C3, C9 0 Not installed, capacitors —
C5 0 Not installed, capacitor —
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
L1 1
R1 1
T1 1 1:1 IF balun MABACT0069 M/A-Com, Inc.
U1 1 MAX2042A IC (20 TQFN) Maxim Integrated Products, Inc.
1.5pF microwave capacitor (0402); use for
3000MHz to 3900MHz RF frequencies
1.8pF microwave capacitor (0402); use for
1600MHz to 2000MHz RF frequencies
0.01F F microwave capacitors (0402)
12nH microwave inductor (0402); use for 1600MHz
to 2000MHz RF frequencies (this inductor is not
used for other RF bands noted above)
698I Q 1% resistor (0402)
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
TOKO America, Inc.
—
���������������������������������������������������������������� Maxim Integrated Products 49
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Application Circuit
+5.0V
C11
IF
T1
4
5
GND
1:1
1 2
3
N.C.
C3
GND
IF-
C5
IF+
GND
+5.0V
C2 C1
15 14 12 11
16
17
18
19
20
MAX2042A
1 24 5
V
CC
CC
13
3
GND GND GND
RF
L1
RF
LO
INPUT
C10
LO
GND GND GNDV
GND
10
GND
9
V
CC
8
R1
LOBIAS
7
EP
V
CC
6
NOTES:
PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD.
THESE PINS CAN BE EXTERNALLY GROUNDED IN AN ATTEMPT
TO IMPROVE ISOLATION.
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE
EXTERNALLY GROUNDED IN AN ATTEMPT TO IMPROVE ISOLATION.
+5.0V
C8 C9
+5.0V
C6
���������������������������������������������������������������� Maxim Integrated Products 50
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX2042AETP+
MAX2042AETP+T
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
-40N C to +85N C
-40N C to +85N C
20 TQFN-EP*
20 TQFN-EP*
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages . Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
20 TQFN-EP T2055+3
PACKAGE
CODE
OUTLINE
NO.
21-0140 90-0008
LAND
PATTERN NO.
���������������������������������������������������������������� Maxim Integrated Products 51
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Revision History
REVISION
NUMBER
0 6/11 Initial release —
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 52
©
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.