MAXIM MAX2042A Technical data

EVALUATION KIT AVAILABLE
19-5902; Rev 0; 6/11
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042A single, high-linearity upconversion/ downconversion mixer provides up to +33dBm input IP3, 7.25dB noise figure, and 7.2dB conversion loss for 1600MHz to 3900MHz GSM/EDGE, CDMA, TD-SCDMA, WCDMA, LTE, TD-LTE, WiMAXK, and MMDS wireless infrastructure applications. With an ultra-wide 1300MHz to 4000MHz LO frequency range, the IC can be used in either low-side or high-side LO injection architectures for virtually all 1.7GHz to 3.5GHz applications (for a 2.5GHz variant tuned specifically for low-side LO injection, refer to the MAX2042).
In addition to offering excellent linearity and noise performance, the IC also yields a high level of component integration. This device includes a double-balanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The IC requires a nominal LO drive of 0dBm, and supply current is typically 140mA at VCC = 5.0V or 122mA at VCC = 3.3V.
The MAX2042A is pin compatible with the MAX2042 2000MHz to 3000MHz mixer. The MAX2042A is also pin similar with the MAX2029/MAX2031/MAX2033 650MHz to 1550MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044 2300MHz to 4000MHz mixer, making the entire family of upconverters/ downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX2042A is available in a compact, 20-pin TQFN package (5mm x 5mm) with an exposed pad. Electrical performance is guaranteed over the extended TC = -40NC to +85NC temperature range.
Applications
Benefits and Features
S Wide-Band Coverage
1600MHz to 3900MHz RF Frequency Range 1300MHz to 4000MHz LO Frequency Range 50MHz to 500MHz IF Frequency Range
S 7.2dB Conversion Loss
S 7.25dB Noise Figure
S High Linearity
+33dBm Input IP3 +21.7dBm Input 1dB Compression Point 72dBc Typical 2LO - 2RF Spurious Rejection at
PRF = -10dBm
S Simple PCB Layout
Integrated LO Buffer Integrated LO and RF Baluns for Single-Ended
Inputs
S Low -6dBm to +3dBm LO Drive
S Pin Compatible with the MAX2042 2000MHz to
3000MHz Mixer
S Pin-Similar with the MAX2029/MAX2031/MAX2033
650MHz to 1550MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044 2300MHz to 4000MHz Mixer
S Single +5.0V or +3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
Ordering Information appears at end of data sheet.
1.8GHz/1.9GHz GSM/EDGE/CDMA Base Stations
2.1GHz WCDMA/LTE Base Stations
2.3GHz TD-SCDMA/TD-LTE Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems
����������������������������������������������������������������� Maxim Integrated Products 1
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX2042A.related.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

TABLE OF CONTENTS

Absolute Maximum Ratings ...................................................................... 4
Package Thermal Characteristics.................................................................. 4
5.0V Supply DC Electrical Characteristics ........................................................... 4
3.3V Supply DC Electrical Characteristics ........................................................... 4
Recommended AC operating conditions............................................................5
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 5
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 7
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 8
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)................................................................ 9
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)............................................................... 10
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)............................................................... 11
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) .................................................................. 12
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) .................................................................. 13
Typical Operating Characteristics ................................................................ 14
Pin Configuration ............................................................................. 46
Pin Description ............................................................................... 46
Functional Diagram ........................................................................... 47
Detailed Description........................................................................... 47
RF Input and Balun ..........................................................................47
LO Inputs, Buffer, and Balun...................................................................47
High-Linearity Mixer .........................................................................47
Differential IF Ports ..........................................................................47
Applications Information ........................................................................ 48
Input and Output Matching....................................................................48
Reduced-Power Mode .......................................................................48
Layout Considerations........................................................................48
Power-Supply Bypassing .....................................................................48
Exposed Pad RF/Thermal Considerations ........................................................48
����������������������������������������������������������������� Maxim Integrated Products 2
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS (continued)
Typical Application Circuit ......................................................................50
Ordering Information .......................................................................... 51
Chip Information .............................................................................. 51
Package Information........................................................................... 51
Revision History .............................................................................. 52

LIST OF TABLES

Table 1. Component Values—Downconverter Mode.................................................. 49
Table 2. Component Values—Upconverter Mode .................................................... 49
����������������������������������������������������������������� Maxim Integrated Products 3
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

ABSOLUTE MAXIMUM RATINGS

VCC to GND .......................................................... -0.3V to +5.5V
IF+, IF-, LOBIAS to GND ......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power ....................................................... +20dBm
IF Input Power (50ω source) ......................................... +18dBm
RF, LO Current (RF and LO are DC shorted to
GND through a balun) ....................................................50mA
Note 1: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Note 2: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera­tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS

TQFN
Junction-to-Ambient
Thermal Resistance BJA (Notes 3, 4) ....................... +38°C/W
Operating Case Temperature Range (Note 1) ....... -40NC to +85NC
Continuous Power Dissipation (Note 2) ..............................5.0W
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering 10s) .................................+300NC
Soldering Temperature (reflow) ......................................+260NC
Junction-to-Case
Thermal Resistance BJC (Notes 2, 4) ....................... +13°C/W
Note 3: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
4.75 5 5.25 V
140 162 mA

3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC applied. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
3.0 3.3 3.6 V
122 mA
����������������������������������������������������������������� Maxim Integrated Products 4
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range Without Tuning
RF Frequency Range With Low-Band Tuning
RF Frequency Range With High-Band Tuning
LO Frequency f
IF Frequency f
LO Drive P
f
RF1
f
RF2
f
RF3
LO
IF
LO

5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, f
= 300MHz.) (Note 7)
IF
Typical Application Circuit with C1 = 8.2pF (Table 1) (Notes 5, 6)
Typical Application Circuit with C1 = 1.8pF, L1 = 12nH (Table 1) (Notes 5, 6)
Typical Application Circuit with C1 = 1.5pF (Table 1) (Notes 5, 6)
(Note 5, 6) 1300 4000 MHz
Using M/A-Com MABACT0069 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
2000 2900 MHz
1600 2000 MHz
3000 3900 MHz
50 500 MHz
-6 0 +3 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
����������������������������������������������������������������� Maxim Integrated Products 5
TC
TC
Blocking
DL
C
C
CL
SSB
NF
fRF = 2600MHz, fLO = 2900MHz 7.2
fRF = 2900MHz, fLO = 3200MHz (Note 8) 7.8
fRF = 2010MHz to 2025MHz
fRF = 2305MHz to 2360MHz
fRF = 2500MHz to 2570MHz
fRF = 2570MHz to 2620MHz
fRF = 2500MHz to 2690MHz
fRF = 2700MHz to 2900MHz
TC = -40NC to +85NC
No blockers present 7.25 dB
fRF = 2600MHz, single sideband, no blockers present, TC = -40NC to +85NC
+8dBm blocker tone applied to RF port, f
2600MHz, fLO = 2900MHz,
RF =
f
BLOCKER
= 2400MHz (Note 9)
Q0.05
Q0.05
Q0.05
Q0.05
Q0.13
Q0.02
0.007
0.022
18 dB
dB
dB
dB
dB
dB
dB
dB/NC
dB/NC
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, f
= 300MHz.) (Note 7)
IF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm (Note 8) 38 dB
LO Leakage at RF Port PLO = +3dBm (Note 8) -29 dBm
2LO Leakage at RF Port PLO = +3dBm -30.1 dBm
LO Leakage at IF Port PLO = +3dBm (Note 8) -31 dBm
C
1dB
IIP3
3 x 3
Z
(Note 10) 21.7 dBm
f
- f
RF1
(Note 8)
f
RF1
TC = -40NC to +85NC
fRF = 2600MHz, fLO = 2900MHz, f
SPUR
fRF = 2600MHz, fLO = 2900MHz, f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I
IF
using external components shown in the
Typical Application Circuit
= 1MHz, P
RF2
- f
= 1MHz, P
RF2
= 2750MHz
= 2800MHz
= P
= P
= 0dBm
RF2
= 0dBm,
RF2
RF1
RF1
PRF = -10dBm 72
PRF = 0dBm 62
PRF = -10dBm 91
PRF = 0dBm 71
33 dBm
Q0.3 dB
20 dB
19 dB
50
17.5 dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 6
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources, Typical values are for TC = +25NC, VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 38 dB
LO Leakage at RF Port PLO = +3dBm -31.5 dBm
2LO Leakage at RF Port PLO = +3dBm -30 dBm
LO Leakage at IF Port PLO = +3dBm -31.4 dBm
C
DL
TC
TC
IIP3
(Note 8) 7.4 dB
C
fRF = 2000MHz to 2900MHz, any 100MHz band
C
TC = -40NC to +85NC
CL
No blockers present 7.4 dB
SSB
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
(Note 10) 19.7 dBm
1dB
f
2600MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 2600MHz, fLO = 2900MHz, f
SPUR
fRF = 2600MHz, fLO = 2900MHz, f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
2600MHz, f
= P
= 0dBm, TC = -40NC to +85NC
RF2
= 2750MHz
= 2800MHz
RF2 =
RF2 =
2601MHz,
2601MHz,
P
-10dBm 72
RF =
P
0dBm 62
RF =
PRF = -10dBm 85
PRF = 0dBm 65
Q0.25
0.0079
0.022
31 dBm
Q0.1
16 dB
32 dB
50
18 dB
dB
dB/NC
dB/NC
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 7
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 35 dB
LO Leakage at RF Port PLO = +3dBm -29.5 dBm
2LO Leakage at RF Port PLO = +3dBm -23 dBm
LO Leakage at IF Port PLO = +3dBm -31.5 dBm
C
C
DL
C
TC
CL
SSB
TC
NF
1dB
IIP3 f
RF
LO
IF
IF
fRF = 3450MHz to 3750MHz, any 100MHz band
fRF = 3450MHz to 3750MHz, any 200MHz band
TC = -40NC to +85NC
No blockers present 7.6 dB
Single sideband, no blockers present, TC = -40NC to +85NC
(Note 10) 20.6 dBm
- f
RF1
f
RF1
TC = -40NC to +85NC
fRF = 3500MHz, fLO = 3200MHz, f
SPUR
fRF = 3500MHz, fLO = 3200MHz, f
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the
Typical Application Circuit
= 1MHz, P
RF2
- f
= 1MHz, P
RF2
= 3350MHz
= 3300MHz
= P
RF1
RF1
= 0dBm 31 dBm
RF2
= P
= 0dBm,
RF2
PRF = -10dBm 71
PRF = 0dBm 61
PRF = -10dBm 87
PRF = 0dBm 67
8.2 dB
Q0.085
Q0.17
0.0091
0.025
Q0.5
15 dB
20 dB
50
16.5 dB
dB
dB
dB/NC
dB/NC
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 8
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 35 dB LO Leakage at RF Port PLO = +3dBm -36.4 dBm 2LO Leakage at RF Port PLO = +3dBm -12.8 dBm LO Leakage at IF Port PLO = +3dBm -31 dBm
C
NF
DL
TC
TC
IIP3
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC = -40NC to +85NC
CL
No blockers present 9 dB
SSB
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
(Note 10) 18 dBm
1dB
f
3500MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 3500MHz, fLO = 3800MHz, f
SPUR
fRF = 3500MHz, fLO = 3800MHz, f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched impedance 18.5 dB
LO
Nominal differential impedance at the
IF
IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
3500MHz, f
= P
= 0dBm, TC = -40NC to +85NC
RF2
= 3650MHz
= 3700MHz
RF2 =
RF2 =
3501MHz,
3501MHz,
PRF = -10dBm 70
PRF = 0dBm 60
PRF = -10dBm 83
PRF = 0dBm 63
8.6 dB
Q0.1 Q0.2
0.01
0.025
28.6 dBm
Q0.5
15.5 dB
50
16 dB
dB dB
dB/NC
dB/NC
dB
dBc
dBc
I
����������������������������������������������������������������� Maxim Integrated Products 9
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 1850MHz, fLO = 2150MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2LO - 2RF Spur Rejection 2 x 2
3LO - 3RF Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
C
DL
TC
TC
IIP3
C
CL
SSB
NF
1dB
RF
LO
IF
fRF = 1650MHz to 1850MHz, any 100MHz band
fRF = 1850MHz to 2250MHz, any 100MHz band
C
fRF = 1650MHz to 1850MHz, any 200MHz band
fRF = 1850MHz to 2250MHz, any 200MHz band
TC = -40NC to +85NC
No blockers present 7 dB
Single sideband, no blockers present, TC = -40NC to +85NC
(Note 10) 23 dBm
f
1850MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 1850MHz, fLO = 2150MHz, f
SPUR
fRF = 1850MHz, fLO = 2150MHz, f
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance 25.2 dB
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
1850MHz, f
= P
= 0dBm, TC = -40NC to +85NC
RF2
= 2000MHz
= 2050MHz
RF2 =
RF2 =
1851MHz,
1851MHz,
PRF = -10dBm 83
PRF = 0dBm 73
PRF = -10dBm 94
PRF = 0dBm 74
7.5 dB
Q0.18
Q0.15
Q0.36
Q0.3
0.0067
0.021
34.8 dBm
Q0.5
16.4 dB
50
17 dB
dB/NC
dB/NC
dB
dB
dBc
dBc
I
RF-to-IF Isolation PLO = +3dBm 48.7 dB
LO Leakage at RF Port PLO = +3dBm -28.8 dBm
2LO Leakage at RF Port PLO = +3dBm -35.3 dBm
LO Leakage at IF Port PLO = +3dBm -20.8 dBm
���������������������������������������������������������������� Maxim Integrated Products 10
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 1850MHz, fLO = 1550MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss L
Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point
IIP3 Variation with T
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Return Loss RL
RF-to-IF Isolation PLO = +3dBm 44.6 dB
LO Leakage at RF Port PLO = +3dBm -29.5 dBm
2LO Leakage at RF Port PLO = +3dBm -29.5 dBm
LO Leakage at IF Port PLO = +3dBm -29.7 dBm
C
NF
DL
TC
TC
IIP3
C
fRF = 1650MHz to 1850MHz, any 100MHz band
fRF = 1850MHz to 2250MHz, any 100MHz band
C
fRF = 1650MHz to 1850MHz, any 200MHz band
fRF = 1850MHz to 2250MHz, any 200MHz band
TC = -40NC to +85NC
CL
No blockers present 8.95 dB
SSB
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
(Note 10) 17.2 dBm
1dB
f
1850MHz, f
RF1 =
P
= P
RF1
f
RF1 =
P
RF1
fRF = 1850MHz, fLO = 1550MHz, f
SPUR
fRF = 1850MHz, fLO = 1550MHz, f
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched impedance 17.3 dB
LO
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I
IF
using external components shown in the Typical
Application Circuit
= 0dBm
RF2
1850MHz, f
= P
= 0dBm, TC = -40NC to +85NC
RF2
= 1700MHz
= 1650MHz
1851MHz,
RF2 =
1851MHz,
RF2 =
PRF = -10dBm 71
PRF = 0dBm 61
PRF = -10dBm 83
PRF = 0dBm 63
8.5 dB
Q0.35
Q0.075
Q0.7
Q0.15
0.0095
0.024
26.7 dBm
Q0.5
12.4 dB
50
19.3 dB
dB/NC
dB/NC
dB
dB
dBc
dBc
I
���������������������������������������������������������������� Maxim Integrated Products 11
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Conversion Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP
Input Third-Order Intercept Point
IIP3 Variation with T
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor P
C
C
DL
C
TC
CL
1dB
IIP3 f
IIP3
fRF = 2010MHz to 2025MHz
fRF = 2305MHz to 2360MHz
fRF = 2500MHz to 2570MHz
fRF = 2570MHz to 2620MHz
fRF = 2500MHz to 2690MHz
fRF = 2700MHz to 2900MHz
TC = -40NC to +85NC
(Note 10) 22 dBm
= 300MHz, f
IF1
f
= 300MHz, f
IF1
TC = -40NC to +85NC
LO - 2IF 61
LO + 2IF 62
LO - 3IF 72
LO + 3IF 85
= 0dBm (Note 9) -163 dBm/Hz
OUT
IF2 =
IF2 =
301MHz, P
301MHz, P
0dBm/tone 32.8 dBm
IF =
0dBm/tone,
IF =
7.3 dB
Q0.05
Q0.05
Q0.05
Q0.05
Q0.15
Q0.2
0.007
Q0.5
dB
dB/NC
dB
dBc
dBc
���������������������������������������������������������������� Maxim Integrated Products 12
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)

(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Loss L
Conversion Loss Variation vs. Frequency
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP
Input Third-Order Intercept Point
IIP3 Variation with T
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor P
Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance
transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz at 100MHz offset. This specification
reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50I source.
C
C
DL
C
TC
CL
1dB
IIP3 f
IIP3
fRF = 2000MHz to 2900MHz, any 100MHz band
TC = -40NC to +85NC
(Note 10) 20.5 dBm
= 300MHz, f
IF1
f
= 300MHz, f
IF1
TC = -40NC to +85NC
LO - 2IF 60
LO + 2IF 64
LO - 3IF 68
LO + 3IF 80
= 0dBm (Note 9) -160 dBm/Hz
OUT
IF2 =
IF2 =
301MHz, P
301MHz, P
0dBm/tone 30 dBm
IF =
0dBm/tone,
IF =
7.3 dB
Q0.25
0.008
Q0.6
dB
dB/NC
dB
dBc
dBc
���������������������������������������������������������������� Maxim Integrated Products 13
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics

(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
TC = +25°C
TC = -40°C
26002300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
TC = +25°C
35
TC = -40°C
INPUT IP3 (dBm)
30
PRF = 0dBm/TONE
TC = +85°C
9
MAX2042A toc01
MAX2042A toc04
8
7
CONVERSION LOSS (dB)
6
5
2000 2900
40
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
26002300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
9
MAX2042A toc02
MAX2042A toc05
8
7
CONVERSION LOSS (dB)
6
5
40
35
INPUT IP3 (dBm)
30
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2000 2900
RF FREQUENCY (MHz)
26002300
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042A toc03
MAX2042A toc06
25
RF FREQUENCY (MHz)
260023002000 2900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
TC = +85°C
70
65
TC = -40°C
60
2LO - 2RF RESPONSE (dBc)
55
50
TC = +25°C
260023002000 2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 14
PRF = 0dBm
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc07
65
60
2LO - 2RF RESPONSE (dBc)
55
50
RF FREQUENCY (MHz)
PLO = -3dBm
RF FREQUENCY (MHz)
PLO = +3dBm
260023002000 2900
PRF = 0dBm
PLO = 0dBm
PLO = -6dBm
260023002000 2900
25
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
70
MAX2042A toc08
65
60
2LO - 2RF RESPONSE (dBc)
55
50
260023002000 2900
RF FREQUENCY (MHz)
PRF = 0dBm
MAX2042A toc09
VCC = 4.75V, 5.0V, 5.25V
260023002000 2900
RF FREQUENCY (MHz)
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
75
65
3LO - 3RF RESPONSE (dBc)
55
TC = -40°C, +25°C, +85°C
260023002000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
4
TC = +85°C
TC = +25°C
TC = -40°C
260023002000 2900
RF FREQUENCY (MHz)
PRF = 0dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
MAX2042A toc10
75
65
3LO - 3RF RESPONSE (dBc)
55
10
MAX2042A toc13
9
8
7
NOISE FIGURE (dB)
6
5
4
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
260023002000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
260023002000 2900
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
MAX2042A toc11
75
65
3LO - 3RF RESPONSE (dBc)
55
10
MAX2042A toc14
9
8
7
NOISE FIGURE (dB)
6
5
4
PRF = 0dBm
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
260023002000 2900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
260023002000 2900
RF FREQUENCY (MHz)
MAX2042A toc12
MAX2042A toc15
(dBm)
1dB
P
INPUT P
25
23
21
19
17
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
260023002000 2900
RF FREQUENCY (MHz)
TC = +85°C
MAX2042A toc16
INPUT P
25
23
(dBm)
21
1dB
PLO = -6dBm, -3dBm, 0dBm, +3dBm
P
19
17
vs. RF FREQUENCY
1dB
260023002000 2900
RF FREQUENCY (MHz)
MAX2042A toc17
(dBm)
1dB
P
25
23
21
19
17
INPUT P
VCC = 5.0V
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 4.75V
260023002000 2900
RF FREQUENCY (MHz)
MAX2042A toc18
���������������������������������������������������������������� Maxim Integrated Products 15
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
TC = +25°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = -40°C
TC = +85°C
290026002300 3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
TC = +85°C
40
RF-TO-IF ISOLATION (dB)
TC = -40°C
30
TC = +25°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc19
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc22
50
40
RF-TO-IF ISOLATION (dB)
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
290026002300 3200
LO FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc20
-20
-30
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc23
50
40
RF-TO-IF ISOLATION (dB)
30
MAX2042A toc21
290026002300 3200
LO FREQUENCY (MHz)
MAX2042A toc24
VCC = 4.75V, 5.0V, 5.25V
20
RF FREQUENCY (MHz)
260023002000 2900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
-30
TC = -40°C, +25°C, +85°C
-35
LO LEAKAGE AT RF PORT (dBm)
-40
LO FREQUENCY (MHz)
290026002300 3200
���������������������������������������������������������������� Maxim Integrated Products 16
20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc25
-25
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-35
LO LEAKAGE AT RF PORT (dBm)
-40
260023002000 2900
RF FREQUENCY (MHz)
290026002300 3200
LO FREQUENCY (MHz)
20
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc26
-25
VCC = 5.25V
-30
VCC = 4.75V
-35
LO LEAKAGE AT RF PORT (dBm)
-40
VCC = 5.0V
LO FREQUENCY (MHz)
260023002000 2900
MAX2042A toc27
290026002300 3200
Loading...
+ 36 hidden pages