MAXIM MAX19996A Technical data

General Description
The MAX19996A single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.8dB noise figure for 2000MHz to 3900MHz WCS, LTE, WiMAX™, and MMDS wireless infrastructure appli­cations. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a
2.5GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet.
In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a dou­ble-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of 0dBm, and supply current is typically 230mA at V
CC
= 5.0V,
or 150mA at VCC= 3.3V.
The MAX19996A is pin compatible with the MAX19996 2000MHz to 3000MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400MHz to 1000MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX19996A is available in a compact 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical perfor­mance is guaranteed over the extended -40°C to +85°C temperature range.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
2000MHz to 3900MHz RF Frequency Range
2100MHz to 4000MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
8.7dB Conversion Gain
9.8dB Noise Figure
+24.5dBm Typical Input IP3
11dBm Typical Input 1dB Compression Point
67dBc Typical 2LO-2RF Spurious Rejection at
P
RF
= -10dBm
Integrated LO Buffer
Integrated RF and LO Baluns for Single-Ended
Inputs
Low -3dBm to +3dBm LO Drive
Pin Compatible with the MAX19996 2000MHz to
3000MHz Mixer
Pin Similar with the MAX9993/MAX9994/MAX9996
Series of 1700MHz to 2200MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers
Single 5.0V or 3.3V Supply
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4402; Rev 1; 5/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP RANGE PIN-PACKAGE
MAX19996AETP+ -40°C to +85°C
20 Thin QFN-EP*
-40°C to +85°C
20 Thin QFN-EP*
WiMAX is a trademark of WiMAX Forum.
Pin Configuration/Functional Diagram appears at end of data sheet.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
*
EP = Exposed pad.
T = Tape and reel.
MAX19996AETP+T
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
IF+, IF-, LO to GND ....................................-0.3V to (V
CC
+ 0.3V)
RF, LO Input Power ........................................................+12dBm
RF, LO Current (RF and LO is DC shorted to GND
through a balun)...............................................................50mA
Continuous Power Dissipation (Note 1) ...............................5.0W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Notes 1, 3)................................................................13°C/W
Operating Case Temperature
Range (Note 4).........................................T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 4.75V to 5.25V, no input AC signals. TC= -40°C to +85°C, unless otherwise noted. Typical values
are at V
CC
= 5.0V, TC= +25°C, all parameters are production tested.)
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 3.0V to 3.6V, no input AC signals. TC= -40°C to +85°C, unless otherwise noted. Typical values are
at V
CC
= 3.3V, TC= +25°C, parameters are guaranteed by design and not production tested, unless otherwise noted.)
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
4.75 5.0 5.25 V
230 245 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
Total supply current, VCC = 3.3V 150 mA
3.0 3.3 3.6 V
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2600MHz to 3200MHz, fRF< fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
RF Frequency Range
LO Frequency f
IF Frequency f
LO Drive P
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Typical Application Circuit with C1 = 8.2pF,
f
RF
LO
see Table 1 for details (Note 5)
Typical Application Circuit with C1 = 1.5pF, see Table 1 for details (Note 5)
(Note 5) 2100 4000 MHz
Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
IF
Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
LO
2000 3000
3000 3900
100 500
50 250
-3 0 +3 dBm
Small-Signal Conversion Gain
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
f
= 2300MHz to 2900MHz, TC = +25°C
TC
TC
RF
(Note 7)
fRF = 2305MHz to 2360MHz 0.1
fRF = 2500MHz to 2570MHz 0.1
fRF = 2570MHz to 2620MHz 0.1
C
fRF = 2500MHz to 2690MHz 0.2
fRF = 2700MHz to 2900MHz 0.3
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.8 12
SSB
f
= 2600M H z, f
R F
= + 5.0V , TC = + 25°C , no b l ocker s p r esent
V
C C
fRF = 2300M H z to 2900M H z, si ng l e si d eb and ,
NF
no b l ocker s p r esent, T
+8dBm blocker tone applied to RF port,
= 2600MHz, fLO = 2900MHz,
f
RF
B
f
BLOCKER
V
CC
= 2400MHz, PLO = 0dBm,
= +5.0V, TC = +25°C (Note 8)
= 300M H z, P
I F
= - 40°C to + 85°C
C
= 0d Bm ,
L O
7.9 8.7 9.2 dB
9.8 10.5
0.018 dB/°C
18 22 dB
MHz
MHz
dB
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
4 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2600MHz to 3200MHz, fRF< fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation PLO = +3dBm (Note 7) 27 30 dB
LO Leakage at RF Port P
2LO Leakage at RF Port PLO = +3dBm -29.7 dBm
LO Leakage at IF Port PLO = +3dBm (Note 7) -28.4 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
1dB
C
TC = +25°C (Note 9) 9.5 11
fRF = 2600MHz TC = +25°C (Notes 7, 9) 10 11
f
- f
RF1
T
C
fRF = 2300M H z to 2900MH z, f P
RF1
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
LO
= 1MHz, P
RF2
= +25°C (Note 7)
= P
= - 5d Bm , TC = - 40°C to + 85°C
RF2
= fLO - 150MHz
= fLO - 100MHz
= +3dBm -28.6 -22.8 dBm
RF1
= P
= -5dBm,
RF2
- f
RF1
= 1M H z,
RF2
PRF = -10dBm 60 67
= -5dBm 55 62
P
RF
PRF = -10dBm 75 85
= -5dBm 65 75
P
RF
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
f
= 300MHz,
IF
L1 = L2 = 390nH
22.5 24.5 dBm
±0.3 dB
17.5 dB
19.5 dB
200 Ω
25
25
25
dBm
dBc
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 5
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values
are for T
C
= +25°C, VCC= 3.3V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
C
fRF = 2300MHz to 2900MHz, any 100MHz
C
band
TC
SSB
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.6 dB
Single sideband, no blockers present,
NF
T
= -40°C to +85°C
C
(Note 9) 7.75 dBm
f
= 2600MHz, f
RF1
= P
= P
= f
= f
= -5dBm
RF2
= -5dBm,
RF2
- 150MHz
LO
- 100MHz
LO
P
RF1
f
= 2600MHz, f
RF1
P
RF1
= -40°C to +85°C
T
C
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
= 2601MHz,
RF2
= 2601MHz,
RF2
PRF = -10dBm 64
= -5dBm 59
P
RF
PRF = -10dBm 74
P
= -5dBm 64
RF
8.3 dB
0.15 dB
0.018 dB/°C
19.7 dBm
±0.5 dB
17.5 dB
19.5 dB
200 Ω
dBc
dBc
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 38 dB
LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -30 dBm
2LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -31 dBm
LO Leakage at IF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -34 dBm
shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
25
25
25
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
6 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources. P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2000MHz to 2600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2300MHz, fIF= 300MHz, all
parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2RF-2LO Spur Rejection 2 x 2 f
3RF-3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2600MHz, PLO = +3dBm 29 36 dB
LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -28 -20 dBm
2LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -29 -19 dBm
LO Leakage at IF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -24 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
fRF = 2300MHz to 2900MHz, TC = +25°C
C
(Note 7) fRF = 2300MHz to 2900MHz, any 100MHz
C
band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.5 12.5
fRF = 2600MHz, fIF = 300MHz,
SSB
P
= 0dBm, VCC = +5.0V, TC = +25°C,
LO
no blockers present
Single sideband, no blockers present,
NF
RF
LO
IF
IF
= -40°C to +85°C
T
C
TC = +25°C (Note 9) 9.5 10.7 dBm
f
- f
RF1
T
C
fRF = 2300MHz to 2900MHz, P
-5dBm, T
SPUR
SPUR
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application
Circuit; see the Typical Operating Characteristics
for performance vs. inductor values
= 1MHz, P
RF2
= +25°C (Note 7)
= -40°C to +85°C
C
= fLO + 150MHz
= fLO + 100MHz
RF1
= P
= -5dBm,
RF2
= P
RF1
RF2
PRF = -10dBm 63 68
P
= -5dBm 58 63
RF
PRF = -10dBm 79 84
P
= -5dBm 69 74
RF
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
f
= 300MHz,
IF
L1 = L2 = 390nH
8.2 8.9 9.5 dB
0.1 dB
9.5 10.5
0.018 dB/°C
22 24.05 dBm
=
±0.5 dB
19 dB
18 dB
200 Ω
25
25
25
dB
dBc
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 7
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 3100MHz to 3900MHz, fIF= 300MHz, fLO= 2800MHz to 3600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3200MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2RF-2LO Spur Rejection 2 x 2 f
3RF-3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
TC = +25°C (Note 7) 7.5 8.0 8.5 dB
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 10.5 13.5
SSB
f
= 3500M H z, f
R F
V
= + 5.0V , TC = + 25°C , no b l ocker s p r esent
C C
fRF = 3100M H z to 3900M H z, si ng l e si d eb and ,
NF
no b l ocker s p r esent, T
+8dBm blocker tone applied to RF port,
= 3500MHz, fLO = 3200MHz,
f
RF
B
f
BLOCKER
V
CC
fRF = 3500MHz (Note 9) 10 12 dBm
f
RF1
(Note 7)
fRF = 3100MHz to 3900MHz, f
IF
P
RF1
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
= 3750MHz, PLO = 0dBm,
= +5.0V, TC = +25°C (Note 8)
- f
RF2
= 300MHz, f
= P
RF2
= fLO + 150MHz
= fLO + 100MHz
= 300M H z, P
I F
= - 40°C to + 85°C
C
= 1MHz, P
RF1
= -5dBm, TC = -40°C to +85°C
- f
RF1
= 1MHz,
RF2
= P
= 0d Bm ,
L O
= -5dBm
RF2
PRF = -10dBm 60 69
P
= -5dBm 55 64
RF
PRF = -10dBm 78 86
P
= -5dBm 68 76
RF
23 25 dBm
0.15
0.3
10.5 11.6
0.018 dB/°C
18.7 21 dB
±0.3 dB
20 dB
16.5 dB
200 Ω
dB
dB
dBc
dBc
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
8 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 3100MHz to 3900MHz, fIF= 300MHz, fLO= 2800MHz to 3600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3200MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for T
C
= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3800MHz, fIF= 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2600MHz P
LO Leakage at RF Port fLO = 2800MHz to 3600MHz P
2LO Leakage at RF Port P
LO Leakage at IF Port PLO = +3dBm (Note 7) -29.5 -20 dBm
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
= +3dBm -27 dBm
LO
= +3dBm (Note 7) 23 27 dB
LO
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
= +3dBm -31 -20 dBm
LO
25
25
25
dB
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 10.9 dB
SSB
Single sideband, no blockers present,
NF
T
= -40°C to +85°C
C
(Note 9) 12.4 dBm
f
= 3500MHz, f
RF1
P
= P
RF1
f
= 3500MHz, f
RF1
P
= P
RF1
= f
SPUR
= -5dBm
RF2
= -5dBm, TC = -40°C to +85°C
RF2
- 150MHz
LO
= 3501MHz,
RF2
= 3501MHz,
RF2
PRF = -10dBm 69
= -5dBm 64
P
RF
7.6 dB
0.15
0.3
0.018 dB/°C
24.7 dBm
±0.5 dB
dB
dBc
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 9
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for T
C
= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3800MHz, fIF= 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See
the
Typical Operating Characteristics
.
Note 6: All limits reflect losses of external components, including a 0.8dB loss at f
IF
= 300MHz due to the 4:1 impedance trans-
former. Output measurements were taken at IF outputs of the
Typical Application Circuit
.
Note 7: 100% production tested for functional performance. Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50Ω source.
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation fRF = 3100MHz to 3700MHz, PLO = +3dBm 26.6 dB
LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -38 dBm
2LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -13.5 dBm
LO Leakage at IF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -27 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
= fLO - 100MHz
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
PRF = -10dBm 90
= -5dBm 80
P
RF
22 dB
16.3 dB
200 Ω
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
25
25
25
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
10 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc01
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2800260024002200
7
8
9
10
11
6
2000 3000
TC = -30°C
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc02
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2800260024002200
7
8
9
10
11
6
2000 3000
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
23
24
25
26
22
2000 3000
TC = -30°C
TC = +25°C
TC = +85°C
PRF = -5dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
23
24
25
26
22
2000 3000
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
CONVERSION GAIN (dB)
7
6
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
25
24
INPUT IP3 (dBm)
23
22
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
MAX19996A toc03
2800260024002200
MAX19996A toc06
2800260024002200
NOISE FIGURE vs. RF FREQUENCY
12
TC = +85°C
11
10
9
NOISE FIGURE (dB)
8
7
TC = -30°C
2000 3000
TC = +25°C
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
MAX19996A toc07
10
9
NOISE FIGURE (dB)
8
2800260024002200
7
2000 3000
PLO = -3dBm, 0dBm, +3dBm
2800260024002200
RF FREQUENCY (MHz)
MAX19996A toc08
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19996A toc09
2800260024002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
11
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY
90
80
70
2LO-2RF RESPONSE (dBc)
60
TC = -30°C, +25°C, +85°C
50
2000 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
85
80
2LO-2RF RESPONSE vs. RF FREQUENCY
90
80
70
2LO-2RF RESPONSE (dBc)
60
VCC = 4.75V, 5.0V, 5.25V
50
2000 3000
RF FREQUENCY (MHz)
PRF = -5dBm
3LO-3RF RESPONSE vs. RF FREQUENCY
85
80
PRF = -5dBm
2800260024002200
PRF = -5dBm
2800260024002200
PRF = -5dBm
90
MAX19996A toc10
MAX19996A toc13
80
70
2LO-2RF RESPONSE (dBc)
60
50
85
80
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19996A toc11
MAX19996A toc14
MAX19996A toc12
MAX19996A toc15
75
3LO-3RF RESPONSE (dBc)
70
65
2000 3000
13
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
INPUT P
TC = -30°C
vs. RF FREQUENCY
1dB
TC = +85°C
RF FREQUENCY (MHz)
TC = +25°C
75
3LO-3RF RESPONSE (dBc)
70
MAX19996A toc16
65
13
12
(dBm)
1dB
11
INPUT P
10
2800260024002200
2800260024002200
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
INPUT P
9
2000 3000
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2800260024002200
2800260024002200
75
3LO-3RF RESPONSE (dBc)
70
65
2000 3000
13
MAX19996A toc17
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
2800260024002200
vs. RF FREQUENCY
MAX19996A toc18
2800260024002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
-20
TC = +85°C
-30
LO LEAKAGE AT IF PORT (dBm)
TC = +25°C
-40 2300 3300
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
TC = +25°C
TC = +85°C
vs. RF FREQUENCY
TC = -30°C
RF FREQUENCY (MHz)
60
50
40
RF-TO-IF ISOLATION (dBm)
30
20
2000 3000
TC = -30°C
3100290027002500
2800260024002200
MAX19996A toc19
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2300 3300
60
MAX19996A toc22
50
40
RF-TO-IF ISOLATION (dBm)
30
20
2000 3000
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX19996A toc20
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
3100290027002500
2300 3300
VCC = 4.75V, 5.0V, 5.25V
3100290027002500
LO FREQUENCY (MHz)
MAX19996A toc21
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX19996A toc23
50
40
RF-TO-IF ISOLATION (dBm)
30
2800260024002200
20
2000 3000
VCC = 5.0V, 5.25V
VCC = 4.75V
MAX19996A toc24
2800260024002200
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-15
TC = -30°C
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40 2300 3400
TC = +25°C, +85°C
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-15
MAX19996A toc25
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40
3180296027402520
2300 3400
PLO = -3dBm, 0dBm, +3dBm
3180296027402520
LO FREQUENCY (MHz)
-10
-15
MAX19996A toc26
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 5.25V
VCC = 4.75V, 5.0V
2300 3400
LO FREQUENCY (MHz)
MAX19996A toc27
3180296027402520
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
13
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
TC = -30°C
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
TC = +85°C
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
2300 3400
LO FREQUENCY (MHz)
3180296027402520
LO PORT RETURN LOSS
vs. LO FREQUENCY
PLO = +3dBm
TC = +25°C
3180296027402520
-10
MAX19996A toc28
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
0
10
MAX19996A toc31
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3180296027402520
LO FREQUENCY (MHz)
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
fLO = 2900MHz
L1, L2 = 270nH
-10
MAX19996A toc29
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
0
MAX19996A toc32
10
MAX19996A toc30
MAX19996A toc33
20
RF PORT RETURN LOSS (dB)
30
40
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
250
VCC = 5.25V
240
230
220
SUPPLY CURRENT (mA)
210
200
-35 85
VCC = 4.75V
TEMPERATURE (°C)
VCC = 5.0V
5525-5
20
20
30
L1, L2 = 390nH
IF PORT RETURN LOSS (dB)
40
L1, L2 = 470nH
2800260024002200
50
50 500
IF FREQUENCY (MHz)
L1, L2 = 120nH
410320230140
LO LEAKAGE AT IF PORT
)
C
-10
MAX19996A toc34
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2300 3300
vs. LO FREQUENCY
L3 = 0Ω
L3 = 4.7nH
31002700 29002500
LO FREQUENCY (MHz)
30
LO PORT RETURN LOSS (dB)
40
1800 4000
50
MAX19996A toc35
40
30
RF-TO-IF ISOLATION (dB)
20
2000 3000
PLO = -3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF FREQUENCY (MHz)
PLO = 0dBm
L3 = 4.7nH
L3 = 0Ω
345029002350
MAX19996A toc36
28002400 26002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
14 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 3.3V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
11
TC = -30°C
10
VCC = 3.3V
TC = +25°C
MAX19996A toc37
CONVERSION GAIN
vs. RF FREQUENCY
11
10
VCC = 3.3V
MAX19996A toc38
11
10
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc39
9
8
CONVERSION GAIN (dB)
7
6
2000 3000
21
20
INPUT IP3 (dBm)
19
18
2000 3000
12
11
TC = +85°C
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
TC = +85°C
TC = -30°C, +25°C
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
TC = +85°C
28002400 26002200
PRF = -5dBm/TONE
VCC = 3.3V
28002400 26002200
VCC = 3.3V
CONVERSION GAIN (dB)
21
MAX19996A toc40
20
INPUT IP3 (dBm)
19
18
12
11
MAX19996A toc43
9
8
7
6
2000 3000
PLO = -3dBm, 0dBm, +3dBm
28002400 26002200
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
NOISE FIGURE
vs. RF FREQUENCY
VCC = 3.3V
9
8
CONVERSION GAIN (dB)
7
6
21
MAX19996A toc41
20
INPUT IP3 (dBm)
19
18
12
11
MAX19996A toc44
VCC = 3.0V, 3.3V, 3.6V
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 3.0V, 3.3V, 3.6V
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
NOISE FIGURE
vs. RF FREQUENCY
MAX19996A toc42
MAX19996A toc45
10
9
NOISE FIGURE (dB)
8
TC = -30°C
7
2000 3000
RF FREQUENCY (MHz)
TC = +25°C
10
9
NOISE FIGURE (dB)
8
28002400 26002200
7
2000 3000
PLO = -3dBm, 0dBm, +3dBm
28002400 26002200
RF FREQUENCY (MHz)
10
9
NOISE FIGURE (dB)
8
7
2000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
28002400 26002200
3000
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
15
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 3.3V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO-2RF RESPONSE
vs. RF FREQUENCY
80
70
60
2LO-2RF RESPONSE (dBc)
50
2000 3000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
80
70
2LO-2RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 3.0V, 3.3V, 3.6V
28002400 26002200
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PRF = -5dBm
VCC = 3.3V
28002400 26002200
PRF = -5dBm
VCC = 3.3V
80
MAX19996A toc46
70
60
2LO-2RF RESPONSE (dBc)
50
2000 3000
80
MAX19996A toc49
70
2LO-2RF RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 3.3V
28002400 26002200
PRF = -5dBm
VCC = 3.3V
80
MAX19996A toc47
70
60
2LO-2RF RESPONSE (dBc)
50
2000 3000
80
MAX19996A toc50
70
MAX19996A toc48
MAX19996A toc51
60
3LO-3RF RESPONSE (dBc)
50
2000 3000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
INPUT P
1dB
vs. RF FREQUENCY
10
9
8
(dBm)
1dB
7
INPUT P
6
5
2000 3000
TC = +85°C
TC = -30°C
RF FREQUENCY (MHz)
VCC = 3.3V
TC = +25°C
60
3LO-3RF RESPONSE (dBc)
PLO = -3dBm, 0dBm, +3dBm
50
28002400 26002200
2000 3000
RF FREQUENCY (MHz)
INPUT P
28002400 26002200
1dB
vs. RF FREQUENCY
10
MAX19996A toc52
28002400 26002200
9
8
(dBm)
1dB
7
INPUT P
6
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
VCC = 3.3V
28002400 26002200
60
3LO-3RF RESPONSE (dBc)
50
2000 3000
10
MAX19996A toc53
9
8
(dBm)
1dB
7
INPUT P
6
5
2000 3000
vs. RF FREQUENCY
VCC = 3.0V
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 3.6V
VCC = 3.3V
RF FREQUENCY (MHz)
28002400 26002200
MAX19996A toc54
28002400 26002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
16 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 3.3V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
-30
TC = +85°C
VCC = 3.3V
MAX19996A toc55
-20
-30
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 3.3V
-20
MAX19996A toc56
-30
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
MAX19996A toc57
-40
LO LEAKAGE AT IF PORT (dBm)
-50
TC = +25°C
2300 3300
LO FREQUENCY (MHz)
TC = -30°C
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
VCC = 3.3V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
31002700 29002500
28002400 26002200
VCC = 3.3V
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2300 3300
60
MAX19996A toc58
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
-20
PLO = -3dBm, 0dBm, +3dBm
31002700 29002500
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2300 3300
LO FREQUENCY (MHz)
31002700 29002500
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX19996A toc59
50
40
RF-TO-IF ISOLATION (dB)
30
20
28002400 26002200
2000 3000
VCC = 3.0V, 3.3V, 3.6V
28002400 26002200
RF FREQUENCY (MHz)
MAX19996A toc60
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX19996A toc62
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
VCC = 3.0V, 3.3V, 3.6V
LO FREQUENCY (MHz)
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
MAX19996A toc61
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50
31802740 29602520
PLO = -3dBm, 0dBm, +3dBm
2300 3400
LO FREQUENCY (MHz)
31802740 29602520
MAX19996A toc63
31802740 29602520
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
17
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 3.3V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
TC = -30°C
TC = +85°C
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
TC = +25°C
31802740 29602520
VCC = 3.3V
-10
MAX19996A toc64
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
0
MAX19996A toc67
10
20
30
IF PORT RETURN LOSS (dB)
40
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
31802740 29602520
LO FREQUENCY (MHz)
IF PORT RETURN LOSS
vs. IF FREQUENCY
fLO = 2900MHz
VCC = 3.0V, 3.3V, 3.6V
-10
MAX19996A toc65
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
0
MAX19996A toc68
10
20
30
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.0V
2300 3400
VCC = 3.3V
VCC = 3.6V
31802740 29602520
LO FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
PLO = +3dBm
PLO = -3dBm
VCC = 3.3V
PLO = 0dBm
MAX19996A toc66
MAX19996A toc69
30
2000 3000
RF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
170
VCC = 3.6V
160
150
SUPPLY CURRENT (mA)
140
VCC = 3.0V
130
-35 85 TEMPERATURE (°C)
VCC = 3.3V
25 55-5
28002400 26002200
50
50 500
IF FREQUENCY (MHz)
410230 320140
LO LEAKAGE AT IF PORT
)
C
-10
MAX19996A toc70
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2300 3300
vs. LO FREQUENCY
VCC = 3.3V
L3 = 0Ω
L3 = 4.7nH
31002700 29002500
LO FREQUENCY (MHz)
40
1800 4000
50
MAX19996A toc71
40
30
RF-TO-IF ISOLATION (dB)
20
2000 3000
2900 34502350
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
L3 = 4.7nH
L3 = 0Ω
RF FREQUENCY (MHz)
VCC = 3.3V
MAX19996A toc72
28002400 26002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
18 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
11
10
TC = -30°C
CONVERSION GAIN
vs. RF FREQUENCY
TC = +25°C
MAX19996A toc73
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc74
11
10
11
10
MAX19996A toc75
9
8
CONVERSION GAIN (dB)
7
6
2000 3000
26
25
24
INPUT IP3 (dBm)
23
22
2000 3000
TC = +85°C
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
28002400 26002200
PRF = -5dBm/TONE
TC = -30°C
28002400 26002200
CONVERSION GAIN (dB)
26
MAX19996A toc76
25
24
INPUT IP3 (dBm)
23
22
9
8
7
6
2000 3000
PLO = -3dBm, 0dBm, +3dBm
28002400 26002200
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19996A toc77
25
24
INPUT IP3 (dBm)
23
22
VCC = 4.75V, 5.0V, 5.25V
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
2000 3000
RF FREQUENCY (MHz)
28002400 26002200
MAX19996A toc78
NOISE FIGURE
vs. RF FREQUENCY
12
TC = +85°C
11
10
9
NOISE FIGURE (dB)
8
TC = -30°C
7
2000 3000
RF FREQUENCY (MHz)
TC = +25°C
NOISE FIGURE
vs. RF FREQUENCY
MAX19996A toc80
NOISE FIGURE (dB)
12
11
10
9
8
7
2000 3000
12
11
MAX19996A toc79
10
9
NOISE FIGURE (dB)
8
28002400 26002200
7
2000 3000
PLO = -3dBm, 0dBm, +3dBm
28002400 26002200
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19996A toc81
28002400 26002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
19
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2RF-2LO RESPONSE
vs. RF FREQUENCY
90
80
70
2RF-2LO RESPONSE (dBc)
60
TC = -30°C, +25°C, +85°C
50
2000 3000
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
85
80
2RF-2LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
28002400 26002200
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PRF = -5dBm
28002400 26002200
PRF = -5dBm
90
MAX19996A toc82
80
70
2RF-2LO RESPONSE (dBc)
60
50
2000 3000
85
MAX19996A toc85
80
2RF-2LO RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
PLO = -3dBm
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PLO = 0dBm
28002400 26002200
PRF = -5dBm
90
MAX19996A toc83
80
70
2RF-2LO RESPONSE (dBc)
60
50
2000 3000
85
MAX19996A toc86
80
MAX19996A toc84
MAX19996A toc87
75
3RF-3LO RESPONSE (dBc)
70
TC = -30°C, +25°C, +85°C
65
2000 3000
RF FREQUENCY (MHz)
INPUT P
1dB
vs. RF FREQUENCY
13
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
TC = -30°C
75
3RF-3LO RESPONSE (dBc)
70
28002400 26002200
65
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
INPUT P
28002400 26002200
1dB
vs. RF FREQUENCY
13
MAX19996A toc88
12
(dBm)
1dB
11
INPUT P
10
28002400 26002200
9
2000 3000
PLO = -3dBm, 0dBm, +3dBm
28002400 26002200
RF FREQUENCY (MHz)
75
3RF-3LO RESPONSE (dBc)
70
65
2000 3000
13
MAX19996A toc89
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
VCC = 4.75V, 5.0V, 5.25V
vs. RF FREQUENCY
VCC = 5.25V
VCC = 5.0V
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 4.75V
RF FREQUENCY (MHz)
28002400 26002200
MAX19996A toc90
28002400 26002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
20 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
TC = -30°C
-20
-30
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
-40 1700 2700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
60
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
vs. RF FREQUENCY
TC = +25°C, +85°C
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
25002100 23001900
28002400 26002200
MAX19996A toc91
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
60
MAX19996A toc94
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX19996A toc92
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
25002100 23001900
1700 2700
VCC = 4.75V, 5.0V, 5.25V
25002100 23001900
LO FREQUENCY (MHz)
MAX19996A toc93
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX19996A toc95
50
40
RF-TO-IF ISOLATION (dB)
30
20
28002400 26002200
2000 3000
VCC = 4.75V, 5.0V, 5.25V
28002400 26002200
RF FREQUENCY (MHz)
MAX19996A toc96
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-15 TC = -30°C, +25°C, +85°C
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40
1800 2900
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-15
MAX19996A toc97
26802240 24602020
PLO = -3dBm, 0dBm, +3dBm
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40 1800 2900
LO FREQUENCY (MHz)
26802240 24602020
-10
-15
MAX19996A toc98
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
1800 2900
LO FREQUENCY (MHz)
MAX19996A toc99
26802240 24602020
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
21
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
TC = -30°C
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 1800 2900
TC = +85°C
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V
VCC = 5.25V
1800 2900
LO FREQUENCY (MHz)
VCC = 5.0V
26802240 24602020
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
PLO = +3dBm
TC = +25°C
26802240 24602020
-10
MAX19996A toc100
MAX19996A toc103
PLO = -3dBm, 0dBm, +3dBm
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 1800 2900
0
10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
26802240 24602020
LO FREQUENCY (MHz)
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
fLO = 2300MHz
L1, L2 = 270nH
-10
MAX19996A toc101
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
MAX19996A toc104
10
MAX19996A toc102
MAX19996A toc105
20
PLO = -3dBm, 0dBm, +3dBm
30
RF PORT RETURN LOSS (dB)
40
2000 3000
RF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
250
VCC = 5.25V
240
230
220
SUPPLY CURRENT (mA)
210
200
-35 85
VCC = 4.75V
TEMPERATURE (°C)
VCC = 5.0V
25 55-5
20
L1, L2 = 390nH
30
IF PORT RETURN LOSS (dB)
40
28002400 26002200
50
L1, L2 = 470nH
50 500
IF FREQUENCY (MHz)
L1, L2 = 120nH
410230 320140
LO LEAKAGE AT IF PORT
)
C
MAX19996A toc106
0
-10
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
vs. LO FREQUENCY
L3 = 0Ω
L3 = 4.7nH
2100 2300 25001900
LO FREQUENCY (MHz)
20
30
LO PORT RETURN LOSS (dB)
40
1800 4000
60
MAX19996A toc107
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
PLO = 0dBm
PLO = -3dBm
2900 34502350
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX19996A toc108
L3 = 4.7nH
L3 = 0Ω
2400 2600 28002200
RF FREQUENCY (MHz)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
22 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
10
TC = -30°C
9
CONVERSION GAIN
vs. RF FREQUENCY
TC = +25°C
MAX19996A toc109
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc110
10
9
10
9
MAX19996A toc111
8
CONVERSION GAIN (dB)
7
TC = +85°C
6
3000 3900
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
27
26
25
INPUT IP3 (dBm)
24
23
TC = +85°C
TC = +25°C
3000 3900
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
13
TC = +85°C
12
36003300
PRF = -5dBm/TONE
TC = -30°C
36003300
CONVERSION GAIN (dB)
27
MAX19996A toc112
26
25
INPUT IP3 (dBm)
24
23
13
12
MAX19996A toc115
8
7
6
3000 3900
PLO = -3dBm, 0dBm, +3dBm
36003300
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
3000 3900
RF FREQUENCY (MHz)
36003300
NOISE FIGURE
vs. RF FREQUENCY
8
CONVERSION GAIN (dB)
7
6
27
MAX19996A toc113
26
25
INPUT IP3 (dBm)
24
23
13
12
MAX19996A toc116
VCC = 4.75V, 5.0V, 5.25V
3000 3900
RF FREQUENCY (MHz)
36003300
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
3000 3900
RF FREQUENCY (MHz)
36003300
NOISE FIGURE
vs. RF FREQUENCY
MAX19996A toc114
MAX19996A toc117
11
10
NOISE FIGURE (dB)
9
8
3000 3900
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
36003300
11
10
NOISE FIGURE (dB)
9
8
3000 3900
PLO = -3dBm, 0dBm, +3dBm
36003300
RF FREQUENCY (MHz)
11
10
NOISE FIGURE (dB)
9
8
3000 3900
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
36003300
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
23
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2RF-2LO RESPONSE
vs. RF FREQUENCY
80
70
60
2RF-2LO RESPONSE (dBc)
TC = -30°C, +25°C, +85°C
50
3000 3900
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
85
80
2RF-2LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
36003300
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PRF = -5dBm
36003300
PRF = -5dBm
80
MAX19996A toc118
70
60
2RF-2LO RESPONSE (dBc)
50
3000 3900
85
MAX19996A toc121
80
2RF-2LO RESPONSE
vs. RF FREQUENCY
PLO = -0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
3RF-3LO RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
36003300
PRF = -5dBm
PRF = -5dBm
80
MAX19996A toc119
70
60
2RF-2LO RESPONSE (dBc)
50
3000 3900
85
MAX19996A toc122
80
MAX19996A toc120
MAX19996A toc123
75
3RF-3LO RESPONSE (dBc)
70
65
TC = -30°C, +25°C, +85°C
3000 3900
RF FREQUENCY (MHz)
INPUT P
36003300
1dB
vs. RF FREQUENCY
14
TC = +85°C
13
12
(dBm)
1dB
11
INPUT P
TC = -30°C
10
9
3000 3900
RF FREQUENCY (MHz)
TC = +25°C
36003300
75
3RF-3LO RESPONSE (dBc)
70
65
3000 3900
14
13
MAX19996A toc124
12
(dBm)
1dB
11
INPUT P
10
9
3000 3900
PLO = -3dBm, 0dBm, +3dBm
36003300
RF FREQUENCY (MHz)
INPUT P
1dB
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
36003300
RF FREQUENCY (MHz)
75
3RF-3LO RESPONSE (dBc)
70
65
3000 3900
14
13
MAX19996A toc125
12
(dBm)
1dB
11
INPUT P
10
9
3000 3900
RF FREQUENCY (MHz)
vs. RF FREQUENCY
VCC = 5.0V
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
36003300
INPUT P
1dB
VCC = 5.25V
VCC = 4.75V
36003300
MAX19996A toc126
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
24 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
-20 TC = +85°C
-30
LO LEAKAGE AT IF PORT (dBm)
TC = -30°C
-40
2700 3600
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
45
35
25
RF-TO-IF ISOLATION (dB)
15
3000 3900
vs. RF FREQUENCY
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
TC = +25°C
33003000
36003300
MAX19996A toc127
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3600
45
MAX19996A toc130
35
25
RF-TO-IF ISOLATION (dB)
15
3000 3900
PLO = -3dBm, 0dBm, +3dBm
33003000
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
36003300
RF FREQUENCY (MHz)
MAX19996A toc128
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3600
45
MAX19996A toc131
35
25
RF-TO-IF ISOLATION (dB)
15
3000 3900
VCC = 4.75V, 5.0V, 5.25V
33003000
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
36003300
RF FREQUENCY (MHz)
MAX19996A toc129
MAX19996A toc132
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-15
TC = -30°C, +25°C, +85°C
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45 2600 3800
LO FREQUENCY (MHz)
350032002900
-15
MAX19996A toc133
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45 2600 3800
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
350032002900
LO FREQUENCY (MHz)
-15
MAX19996A toc134
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2600 3800
LO FREQUENCY (MHz)
MAX19996A toc135
350032002900
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
25
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
TC = -30°C, +25°C, +85°C
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2600 3800
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
3000 4000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
PLO = -3dBm, 0dBm, +3dBm
MAX19996A toc136
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
350032002900
-50 2600 3800
LO FREQUENCY (MHz)
350032002900
-10
MAX19996A toc137
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
10
MAX19996A toc139
20
30
L1, L2 = 390nH
IF PORT RETURN LOSS (dB)
40
3800360034003200
50
L1, L2 = 470nH
50 500
VCC = 4.75V, 5.0V, 5.25V
L1, L2 = 270nH
IF FREQUENCY (MHz)
fLO = 3200MHz
L1, L2 = 120nH
410230 320140
MAX19996A toc140
10
20
30
LO PORT RETURN LOSS (dB)
40
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2600 3800
LO FREQUENCY (MHz)
350032002900
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
1800 4000
2900 34502350
LO FREQUENCY (MHz)
MAX19996A toc138
MAX19996A toc141
SUPPLY CURRENT
vs. TEMPERATURE (T
250
VCC = 5.25V
240
230
220
SUPPLY CURRENT (mA)
210
200
-35 85
VCC = 4.75V
TEMPERATURE (°C)
VCC = 5.0V
25 55-5
LO LEAKAGE AT IF PORT
)
C
-10
-20
MAX19996A toc142
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50
-60 2700 3600
vs. LO FREQUENCY
L3 = 4.7nH
L3 = 0Ω
33003000
LO FREQUENCY (MHz)
50
MAX19996A toc143
40
30
RF-TO-IF ISOLATION (dB)
20
3000 3900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
L3 = 0Ω
L3 = 4.7nH
RF FREQUENCY (MHz)
MAX19996A toc144
36003300
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
26 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
10
TC = -30°C
9
CONVERSION GAIN
vs. RF FREQUENCY
TC = +25°C
MAX19996A toc145
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc146
10
9
10
9
MAX19996A toc147
8
CONVERSION GAIN (dB)
7
6
3000 3700
TC = +85°C
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
26
TC = +85°C
25
INPUT IP3 (dBm)
24
TC = +25°C
23
3000 3700
3350 35253175
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
13
12
TC = +85°C
352533503175
PRF = -5dBm/TONE
TC = -30°C
CONVERSION GAIN (dB)
26
MAX19996A toc148
25
INPUT IP3 (dBm)
24
23
13
12
MAX19996A toc151
8
7
PLO = -3dBm, 0dBm, +3dBm
6
3000 3700
RF FREQUENCY (MHz)
352533503175
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
3000 3700
3350 35253175
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
PLO = -3dBm
8
CONVERSION GAIN (dB)
7
6
26
MAX19996A toc149
25
INPUT IP3 (dBm)
24
23
13
12
MAX19996A toc152
VCC = 4.75V, 5.0V, 5.25V
3000 3700
RF FREQUENCY (MHz)
352533503175
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 4.75V, 5.0V, 5.25V
3000 3700
3350 35253175
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
MAX19996A toc150
MAX19996A toc153
11
10
NOISE FIGURE (dB)
9
TC = -30°C
8
3000 3700
RF FREQUENCY (MHz)
TC = +25°C
352533503175
11
10
NOISE FIGURE (dB)
9
8
3000 3700
PLO = 0dBm, +3dBm
352533503175
RF FREQUENCY (MHz)
11
10
NOISE FIGURE (dB)
9
8
VCC = 4.75V, 5.0V, 5.25V
3000 3700
RF FREQUENCY (MHz)
352533503175
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
27
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO-2RF RESPONSE
vs. RF FREQUENCY
80
70
60
2LO-2RF RESPONSE (dBc)
TC = -30°C
50
3000 3700
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
90
85
2LO-2RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
352533503175
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PRF = -5dBm
TC = +85°C
352533503175
PRF = -5dBm
TC = +25°C
80
MAX19996A toc154
70
60
2LO-2RF RESPONSE (dBc)
50
3000 3700
90
MAX19996A toc157
85
2LO-2RF RESPONSE
vs. RF FREQUENCY
PLO = 0dBm
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
PLO = -3dBm
PLO = +3dBm
PLO = -3dBm
PRF = -5dBm
352533503175
PRF = -5dBm
80
MAX19996A toc155
70
60
2LO-2RF RESPONSE (dBc)
50
3000 3700
90
MAX19996A toc158
85
MAX19996A toc156
MAX19996A toc159
80
3LO-3RF RESPONSE (dBc)
75
70
3000 3700
TC = -30°C
TC = +25°C
RF FREQUENCY (MHz)
INPUT P
TC = +85°C
352533503175
1dB
vs. RF FREQUENCY
14
13
12
(dBm)
1dB
11
INPUT P
10
9
3000 3700
TC = +85°C
TC = +25°C
TC = -30°C
352533503175
RF FREQUENCY (MHz)
80
3LO-3RF RESPONSE (dBc)
75
70
3000 3700
14
13
MAX19996A toc160
12
(dBm)
1dB
11
INPUT P
10
9
3000 3700
PLO = +3dBm
PLO = 0dBm
RF FREQUENCY (MHz)
INPUT P
1dB
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
80
VCC = 5.25V
3LO-3RF RESPONSE (dBc)
75
VCC = 4.75V
352533503175
70
3000 3700
VCC = 5.0V
RF FREQUENCY (MHz)
INPUT P
1dB
352533503175
vs. RF FREQUENCY
14
13
MAX19996A toc161
12
(dBm)
1dB
11
INPUT P
10
9
352533503175
3000 3700
VCC = 5.25V
MAX19996A toc162
VCC = 5.0V
VCC = 4.75V
352533503175
RF FREQUENCY (MHz)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
28 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
-20
TC = -30°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40 3300 4000
45
TC = -30°C, +25°C, +85°C
35
25
RF-TO-IF ISOLATION (dB)
15
3000 3700
TC = +25°C
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF FREQUENCY (MHz)
TC = +85°C
382536503475
352533503175
MAX19996A toc163
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 3300 4000
45
MAX19996A toc166
35
25
RF-TO-IF ISOLATION (dB)
15
3000 3700
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = 0dBm
PLO = +3dBm
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX19996A toc164
-20
-30
LO LEAKAGE AT IF PORT (dBm)
382536503475
-40
VCC = 4.75V, 5.0V, 5.25V
3300
382536503475
LO FREQUENCY (MHz)
MAX19996A toc165
4000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
45
MAX19996A toc167
35
25
RF-TO-IF ISOLATION (dB)
352533503175
15
VCC = 4.75V, 5.0V, 5.25V
3000 3700
RF FREQUENCY (MHz)
352533503175
MAX19996A toc168
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-15
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45
TC = -30°C, +25°C, +85°C
3000 4000
LO FREQUENCY (MHz)
375035003250
-15
MAX19996A toc169
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45 3000 4000
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
375035003250
LO FREQUENCY (MHz)
-15
MAX19996A toc170
-25
-35
LO LEAKAGE AT RF PORT (dBm)
-45
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
3000 4000
LO FREQUENCY (MHz)
MAX19996A toc171
375035003250
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
29
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
0
TC = -30°C, +25°C, +85°C
-10
-20
-30
2LO LEAKAGE AT RF PORT (dBm)
-40 3000 4000
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
2700 3700
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
0
MAX19996A toc172
375035003250
PLO = -3dBm, 0dBm, +3dBm
-10
-20
-30
2LO LEAKAGE AT RF PORT (dBm)
-40 3000 4000
LO FREQUENCY (MHz)
375035003250
MAX19996A toc173
-10
-20
-30
2LO LEAKAGE AT RF PORT (dBm)
-40
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
10
MAX19996A toc175
20
30
L1, L2 = 390nH
IF PORT RETURN LOSS (dB)
40
L1, L2 = 470nH
35003100 33002900
50
50 500
VCC = 4.75V, 5.0V, 5.25V
L1, L2 = 270nH
L1, L2 = 120nH
IF FREQUENCY (MHz)
fLO = 3800MHz
410230 320140
MAX19996A toc176
10
20
30
LO PORT RETURN LOSS (dB)
40
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
0
VCC = 4.75V, 5.0V, 5.25V
3000 4000
LO FREQUENCY (MHz)
375035003250
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
1800 4000
2900 34502350
LO FREQUENCY (MHz)
MAX19996A toc174
MAX19996A toc177
SUPPLY CURRENT
vs. TEMPERATURE (T
250
VCC = 5.25V
240
230
220
SUPPLY CURRENT (mA)
210
200
-35 85
VCC = 4.75V
TEMPERATURE (°C)
VCC = 5.0V
25 55-5
)
C
-20
MAX19996A toc178
-30
-40
-50
LO LEAKAGE AT IF PORT (dBm)
-60 3300 4000
vs. LO FREQUENCY
L3 = 4.7nH
L3 = 0Ω
LO FREQUENCY (MHz)
50
MAX19996A toc179
40
30
RF-TO-IF ISOLATION (dB)
20
382536503475
3000 3700
LO LEAKAGE AT IF PORT
RF-TO-IF ISOLATION
vs. RF FREQUENCY
L3 = 0Ω
L3 = 4.7nH
RF FREQUENCY (MHz)
MAX19996A toc180
352533503175
Detailed Description
When used as a high-side LO injection mixer in the 2300MHz to 2900MHz RF band, the MAX19996A pro­vides 8.7dB of conversion gain and +24.5dBm of IIP3 with a typical noise figure of 9.8dB. The integrated baluns and matching circuitry allow for 50Ω single­ended interfaces to the RF and the LO ports. The inte­grated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996A’s input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO-2RF performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996A is specified to operate over an RF input range of 2000MHz to 3900MHz, an LO range of 2100MHz to 4000MHz, and an IF range of 50MHz to 500MHz. The external IF com­ponents set the lower frequency range (see the
Typical
Operating Characteristics
for details). Operation
beyond these ranges is possible (see the
Typical
Operating Characteristics
for additional information).
RF Input and Balun
The MAX19996A RF input provides a 50Ω match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is inter­nally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 14dB over the RF fre­quency range of 2300MHz to 2900MHz. A return loss of 15dB over the 3000MHz to 3900MHz range can be achieved by changing the DC-blocking capacitor to
1.5pF.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for vir­tually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50Ω, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF out­puts are integrated on-chip.
Pin Description
30 ______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
MAX19996A
PIN NAME FUNCTION
1, 6, 8, 14 V
2RF
3, 4, 5, 10,
12, 13, 17
7 LOBIAS
9, 15 N.C. Not internally connected. Pins can be grounded.
11 LO Local O sci l l ator Inp ut. Thi s i np ut i s i nter nal l y m atched to 50Ω . Req ui r es an i np ut D C - b l ocki ng cap aci tor .
16 LEXT
18, 19 IF-, IF+
20 IFBIAS
—EP
CC
GND
Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin.
Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor.
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1% (230mA bias condition) from LOBIAS to ground.
E xter nal Ind uctor C onnecti on. C onnect an i nd uctor fr om thi s p i n to g r ound to i ncr ease the RF- to- IF and LO- to- IF i sol ati on ( see the Typ i cal Op er ati ng C har acter i sti cs for typ i cal p er for m ance vs. i nd uctor val ue) .
Mixer Differential IF Output. Connect pullup inductors from each of these pins to V Application Circuit).
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1% (230mA bias condition) from IFBIAS to GND.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
(see the Typical
CC
______________________________________________________________________________________ 31
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
MAX19996A
High-Linearity Mixer
The core of the MAX19996A is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF ampli­fiers, IIP3, 2LO-2RF rejection, and noise-figure perfor­mance are typically +24.5dBm, 67dBc, and 9.8dB, respectively.
Differential IF Output Amplifier
The MAX19996A has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX19996A mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequen­cies would require higher inductor values to maintain a good IF match. The differential, open-collector IF output ports require these inductors to be connected to V
CC
.
Note that these differential ports are ideal for providing enhanced 2LO-2RF and 2RF-2LO performance. Single­ended IF applications require a 4:1 (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer.
Applications Information
Input and Output Matching
The RF input provides a 50Ω match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. A 1.5pF capacitor value should be used to match the RF port for the 3000MHz to 3900MHz band. The LO input is internally matched to 50Ω; use a 2pF DC-blocking capacitor to cover opera­tions spanning the 2100MHz to 4000MHz LO range. The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω single­ended output (see the
Typical Application Circuit
).
Reduced-Power Mode
The MAX19996A has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1.
Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If ±1% resistors are not readily available, substitute with ±5% resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional sup­ply voltage of 3.3V. Doing so reduces the overall power consumption by up to 57%. See the
3.3V Supply AC
Electrical Characteristics—f
RF
= 2300MHz to 2900MHz,
High-Side LO Injection
table and the relevant 3.3V
curves in the
Typical Operating Characteristics
section
to evaluate the power vs. performance tradeoffs.
LEXT Inductor
Short LEXT to ground using a 0Ω resistor. For applica­tions requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the
Typical Operating Characteristics
). However, the load impedance presented to the mixer must be so that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating condi­tions. Since approximately 90mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best per­formance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to con­nect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996A evaluation kit can be used as a reference for board lay­out. Gerber files are available upon request at
www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high­frequency circuit stability. Bypass each VCCpin with the capacitors shown in the
Typical Application Circuit
and Table 1.
Table 1. Component Values
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19996A’s 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
32 ______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
MAX19996A
*Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
8.2pF microwave capacitor (0402). Use for RF frequencies
C1 1
C2, C6, C8, C11 4 0.01µF microwave capacitors (0402) Murata Electronics North America, Inc.
C3, C9 0 Not installed, capacitors
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C13, C14 2 1000pF microwave capacitors (0402) Murata Electronics North America, Inc.
C15 1 82pF microwave capacitor (0402) Murata Electronics North America, Inc.
L1, L2 2
L3 1 4.7nH wire-wound high-Q inductor (0603) Coilcraft, Inc.
R1 1
R2 1
R3 1 0Ω resistor (1206) Digi-Key Corp.
T1 1 4:1 IF balun TC4-1W-17* Mini-Circuits
U1 1 MAX19996A IC (20 TQFN-EP) Maxim Integrated Products, Inc.
ranging from 2000MHz to 3000MHz.
1.5pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 3900MHz.
390nH wire-wound high-Q inductors* (0805) (see the Typical Operating Characteristics)
698Ω ±1% resistor (0402). Use for VCC = 5.0V applications.
1.1kΩ ±1% resistor (0402). Use for V
604Ω ±1% resistor (0402). Use for VCC = 5.0V applications.
845Ω ±1% resistor (0402). Use for V
= 3.3V applications.
CC
= 3.3V applications.
CC
Murata Electronics North America, Inc.
Coilcraft, Inc.
Digi-Key Corp.
Digi-Key Corp.
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION.
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
MAX19996A
1920 18 17
768
RF
GND
GND
9
V
CC
1
2
4
5
15
14
12
11
LOBIAS
V
CC
N.C.
GND
GND
3
13
16
10
V
CC
V
CC
GND
GND
LO
N.C.
IF+
IF-
GND
LEXT
IFBIAS
EP
L1
L2
L3
C13
R3
R2
R1
C15
C10
C8
C9
C11
+5.0V
+5.0V
LO INPUT
C6
C1
RF
INPUT
+5.0V
4:1
IF OUTPUT
T1
326
14
C14
C3 C2
+5.0V
______________________________________________________________________________________ 33
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
MAX19996A
Typical Application Circuit
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
34 ______________________________________________________________________________________
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages
.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 Thin QFN-EP T2055+3
21-0140
MAX19996A
TOP VIEW
1920 18 17
768
RF
GND
GND
9
V
CC
1
2
4
5
15
14
12
11
LOBIAS
V
CC
N.C.
GND
GND
3
13
16
10
V
CC
V
CC
GND
GND
LO
N.C.
IF+
IF-
GND
LEXT
IFBIAS
EP
Pin Configuration/
Functional Diagram
Chip Information
PROCESS: SiGe BiCMOS
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
35
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
0 1/09 Initial release
1 5/09 Updated Electrical Characteristics table limits 6
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Loading...