MAXIM MAX19996A Technical data

General Description
The MAX19996A single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.8dB noise figure for 2000MHz to 3900MHz WCS, LTE, WiMAX™, and MMDS wireless infrastructure appli­cations. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a
2.5GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet.
In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a dou­ble-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of 0dBm, and supply current is typically 230mA at V
CC
= 5.0V,
or 150mA at VCC= 3.3V.
The MAX19996A is pin compatible with the MAX19996 2000MHz to 3000MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400MHz to 1000MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX19996A is available in a compact 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical perfor­mance is guaranteed over the extended -40°C to +85°C temperature range.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
2000MHz to 3900MHz RF Frequency Range
2100MHz to 4000MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
8.7dB Conversion Gain
9.8dB Noise Figure
+24.5dBm Typical Input IP3
11dBm Typical Input 1dB Compression Point
67dBc Typical 2LO-2RF Spurious Rejection at
P
RF
= -10dBm
Integrated LO Buffer
Integrated RF and LO Baluns for Single-Ended
Inputs
Low -3dBm to +3dBm LO Drive
Pin Compatible with the MAX19996 2000MHz to
3000MHz Mixer
Pin Similar with the MAX9993/MAX9994/MAX9996
Series of 1700MHz to 2200MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers
Single 5.0V or 3.3V Supply
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4402; Rev 1; 5/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP RANGE PIN-PACKAGE
MAX19996AETP+ -40°C to +85°C
20 Thin QFN-EP*
-40°C to +85°C
20 Thin QFN-EP*
WiMAX is a trademark of WiMAX Forum.
Pin Configuration/Functional Diagram appears at end of data sheet.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
*
EP = Exposed pad.
T = Tape and reel.
MAX19996AETP+T
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
IF+, IF-, LO to GND ....................................-0.3V to (V
CC
+ 0.3V)
RF, LO Input Power ........................................................+12dBm
RF, LO Current (RF and LO is DC shorted to GND
through a balun)...............................................................50mA
Continuous Power Dissipation (Note 1) ...............................5.0W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Notes 1, 3)................................................................13°C/W
Operating Case Temperature
Range (Note 4).........................................T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 4.75V to 5.25V, no input AC signals. TC= -40°C to +85°C, unless otherwise noted. Typical values
are at V
CC
= 5.0V, TC= +25°C, all parameters are production tested.)
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 3.0V to 3.6V, no input AC signals. TC= -40°C to +85°C, unless otherwise noted. Typical values are
at V
CC
= 3.3V, TC= +25°C, parameters are guaranteed by design and not production tested, unless otherwise noted.)
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
4.75 5.0 5.25 V
230 245 mA
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
CC
CC
Total supply current, VCC = 3.3V 150 mA
3.0 3.3 3.6 V
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2600MHz to 3200MHz, fRF< fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
RF Frequency Range
LO Frequency f
IF Frequency f
LO Drive P
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Typical Application Circuit with C1 = 8.2pF,
f
RF
LO
see Table 1 for details (Note 5)
Typical Application Circuit with C1 = 1.5pF, see Table 1 for details (Note 5)
(Note 5) 2100 4000 MHz
Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
IF
Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
LO
2000 3000
3000 3900
100 500
50 250
-3 0 +3 dBm
Small-Signal Conversion Gain
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
f
= 2300MHz to 2900MHz, TC = +25°C
TC
TC
RF
(Note 7)
fRF = 2305MHz to 2360MHz 0.1
fRF = 2500MHz to 2570MHz 0.1
fRF = 2570MHz to 2620MHz 0.1
C
fRF = 2500MHz to 2690MHz 0.2
fRF = 2700MHz to 2900MHz 0.3
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.8 12
SSB
f
= 2600M H z, f
R F
= + 5.0V , TC = + 25°C , no b l ocker s p r esent
V
C C
fRF = 2300M H z to 2900M H z, si ng l e si d eb and ,
NF
no b l ocker s p r esent, T
+8dBm blocker tone applied to RF port,
= 2600MHz, fLO = 2900MHz,
f
RF
B
f
BLOCKER
V
CC
= 2400MHz, PLO = 0dBm,
= +5.0V, TC = +25°C (Note 8)
= 300M H z, P
I F
= - 40°C to + 85°C
C
= 0d Bm ,
L O
7.9 8.7 9.2 dB
9.8 10.5
0.018 dB/°C
18 22 dB
MHz
MHz
dB
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
4 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2600MHz to 3200MHz, fRF< fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation PLO = +3dBm (Note 7) 27 30 dB
LO Leakage at RF Port P
2LO Leakage at RF Port PLO = +3dBm -29.7 dBm
LO Leakage at IF Port PLO = +3dBm (Note 7) -28.4 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
1dB
C
TC = +25°C (Note 9) 9.5 11
fRF = 2600MHz TC = +25°C (Notes 7, 9) 10 11
f
- f
RF1
T
C
fRF = 2300M H z to 2900MH z, f P
RF1
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
LO
= 1MHz, P
RF2
= +25°C (Note 7)
= P
= - 5d Bm , TC = - 40°C to + 85°C
RF2
= fLO - 150MHz
= fLO - 100MHz
= +3dBm -28.6 -22.8 dBm
RF1
= P
= -5dBm,
RF2
- f
RF1
= 1M H z,
RF2
PRF = -10dBm 60 67
= -5dBm 55 62
P
RF
PRF = -10dBm 75 85
= -5dBm 65 75
P
RF
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
f
= 300MHz,
IF
L1 = L2 = 390nH
22.5 24.5 dBm
±0.3 dB
17.5 dB
19.5 dB
200 Ω
25
25
25
dBm
dBc
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 5
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values
are for T
C
= +25°C, VCC= 3.3V, PLO= 0dBm, fRF= 2600MHz, fLO= 2900MHz, fIF= 300MHz, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
C
fRF = 2300MHz to 2900MHz, any 100MHz
C
band
TC
SSB
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.6 dB
Single sideband, no blockers present,
NF
T
= -40°C to +85°C
C
(Note 9) 7.75 dBm
f
= 2600MHz, f
RF1
= P
= P
= f
= f
= -5dBm
RF2
= -5dBm,
RF2
- 150MHz
LO
- 100MHz
LO
P
RF1
f
= 2600MHz, f
RF1
P
RF1
= -40°C to +85°C
T
C
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
= 2601MHz,
RF2
= 2601MHz,
RF2
PRF = -10dBm 64
= -5dBm 59
P
RF
PRF = -10dBm 74
P
= -5dBm 64
RF
8.3 dB
0.15 dB
0.018 dB/°C
19.7 dBm
±0.5 dB
17.5 dB
19.5 dB
200 Ω
dBc
dBc
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 38 dB
LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -30 dBm
2LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -31 dBm
LO Leakage at IF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -34 dBm
shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
25
25
25
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
6 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources. P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fIF= 300MHz, fLO= 2000MHz to 2600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 2600MHz, fLO= 2300MHz, fIF= 300MHz, all
parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2RF-2LO Spur Rejection 2 x 2 f
3RF-3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2600MHz, PLO = +3dBm 29 36 dB
LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -28 -20 dBm
2LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -29 -19 dBm
LO Leakage at IF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -24 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
fRF = 2300MHz to 2900MHz, TC = +25°C
C
(Note 7) fRF = 2300MHz to 2900MHz, any 100MHz
C
band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 9.5 12.5
fRF = 2600MHz, fIF = 300MHz,
SSB
P
= 0dBm, VCC = +5.0V, TC = +25°C,
LO
no blockers present
Single sideband, no blockers present,
NF
RF
LO
IF
IF
= -40°C to +85°C
T
C
TC = +25°C (Note 9) 9.5 10.7 dBm
f
- f
RF1
T
C
fRF = 2300MHz to 2900MHz, P
-5dBm, T
SPUR
SPUR
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application
Circuit; see the Typical Operating Characteristics
for performance vs. inductor values
= 1MHz, P
RF2
= +25°C (Note 7)
= -40°C to +85°C
C
= fLO + 150MHz
= fLO + 100MHz
RF1
= P
= -5dBm,
RF2
= P
RF1
RF2
PRF = -10dBm 63 68
P
= -5dBm 58 63
RF
PRF = -10dBm 79 84
P
= -5dBm 69 74
RF
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
f
= 300MHz,
IF
L1 = L2 = 390nH
8.2 8.9 9.5 dB
0.1 dB
9.5 10.5
0.018 dB/°C
22 24.05 dBm
=
±0.5 dB
19 dB
18 dB
200 Ω
25
25
25
dB
dBc
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 7
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 3100MHz to 3900MHz, fIF= 300MHz, fLO= 2800MHz to 3600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3200MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2RF-2LO Spur Rejection 2 x 2 f
3RF-3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
TC = +25°C (Note 7) 7.5 8.0 8.5 dB
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 10.5 13.5
SSB
f
= 3500M H z, f
R F
V
= + 5.0V , TC = + 25°C , no b l ocker s p r esent
C C
fRF = 3100M H z to 3900M H z, si ng l e si d eb and ,
NF
no b l ocker s p r esent, T
+8dBm blocker tone applied to RF port,
= 3500MHz, fLO = 3200MHz,
f
RF
B
f
BLOCKER
V
CC
fRF = 3500MHz (Note 9) 10 12 dBm
f
RF1
(Note 7)
fRF = 3100MHz to 3900MHz, f
IF
P
RF1
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
= 3750MHz, PLO = 0dBm,
= +5.0V, TC = +25°C (Note 8)
- f
RF2
= 300MHz, f
= P
RF2
= fLO + 150MHz
= fLO + 100MHz
= 300M H z, P
I F
= - 40°C to + 85°C
C
= 1MHz, P
RF1
= -5dBm, TC = -40°C to +85°C
- f
RF1
= 1MHz,
RF2
= P
= 0d Bm ,
L O
= -5dBm
RF2
PRF = -10dBm 60 69
P
= -5dBm 55 64
RF
PRF = -10dBm 78 86
P
= -5dBm 68 76
RF
23 25 dBm
0.15
0.3
10.5 11.6
0.018 dB/°C
18.7 21 dB
±0.3 dB
20 dB
16.5 dB
200 Ω
dB
dB
dBc
dBc
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
8 _______________________________________________________________________________________
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 3100MHz to 3900MHz, fIF= 300MHz, fLO= 2800MHz to 3600MHz, fRF> fLO,
T
C
= -40°C to +85°C. Typical values are for TC= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3200MHz, fIF= 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for T
C
= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3800MHz, fIF= 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IF Output Return Loss RL
RF-to-IF Isolation fRF = 2600MHz P
LO Leakage at RF Port fLO = 2800MHz to 3600MHz P
2LO Leakage at RF Port P
LO Leakage at IF Port PLO = +3dBm (Note 7) -29.5 -20 dBm
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
= +3dBm -27 dBm
LO
= +3dBm (Note 7) 23 27 dB
LO
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
= +3dBm -31 -20 dBm
LO
25
25
25
dB
Small-Signal Conversion Gain G
Gain Variation vs. Frequency ΔG
Conversion Gain Temperature Coefficient
Single Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
2LO-2RF Spur Rejection 2 x 2 f
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
fRF = 3450MHz to 3750MHz, any 100MHz band
C
fRF = 3450MHz to 3750MHz, any 200MHz band
TC
TC
1dB
C
TC = -40°C to +85°C -0.012 dB/°C
CG
No blockers present 10.9 dB
SSB
Single sideband, no blockers present,
NF
T
= -40°C to +85°C
C
(Note 9) 12.4 dBm
f
= 3500MHz, f
RF1
P
= P
RF1
f
= 3500MHz, f
RF1
P
= P
RF1
= f
SPUR
= -5dBm
RF2
= -5dBm, TC = -40°C to +85°C
RF2
- 150MHz
LO
= 3501MHz,
RF2
= 3501MHz,
RF2
PRF = -10dBm 69
= -5dBm 64
P
RF
7.6 dB
0.15
0.3
0.018 dB/°C
24.7 dBm
±0.5 dB
dB
dBc
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 9
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF= 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for T
C
= +25°C, VCC= 5.0V, PLO= 0dBm, fRF= 3500MHz, fLO= 3800MHz, fIF= 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See
the
Typical Operating Characteristics
.
Note 6: All limits reflect losses of external components, including a 0.8dB loss at f
IF
= 300MHz due to the 4:1 impedance trans-
former. Output measurements were taken at IF outputs of the
Typical Application Circuit
.
Note 7: 100% production tested for functional performance. Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50Ω source.
3LO-3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation fRF = 3100MHz to 3700MHz, PLO = +3dBm 26.6 dB
LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -38 dBm
2LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -13.5 dBm
LO Leakage at IF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -27 dBm
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
= fLO - 100MHz
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
IF
Application Circuit; see the Typical Operating Characteristics for
performance vs. inductor values
PRF = -10dBm 90
= -5dBm 80
P
RF
22 dB
16.3 dB
200 Ω
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
= 300MHz,
f
IF
L1 = L2 = 390nH
25
25
25
dBc
dB
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
10 ______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc01
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2800260024002200
7
8
9
10
11
6
2000 3000
TC = -30°C
TC = +25°C
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc02
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
2800260024002200
7
8
9
10
11
6
2000 3000
PLO = -3dBm, 0dBm, +3dBm
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc04
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
23
24
25
26
22
2000 3000
TC = -30°C
TC = +25°C
TC = +85°C
PRF = -5dBm/TONE
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc05
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
2800260024002200
23
24
25
26
22
2000 3000
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
CONVERSION GAIN (dB)
7
6
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
25
24
INPUT IP3 (dBm)
23
22
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
MAX19996A toc03
2800260024002200
MAX19996A toc06
2800260024002200
NOISE FIGURE vs. RF FREQUENCY
12
TC = +85°C
11
10
9
NOISE FIGURE (dB)
8
7
TC = -30°C
2000 3000
TC = +25°C
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
MAX19996A toc07
10
9
NOISE FIGURE (dB)
8
2800260024002200
7
2000 3000
PLO = -3dBm, 0dBm, +3dBm
2800260024002200
RF FREQUENCY (MHz)
MAX19996A toc08
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19996A toc09
2800260024002200
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
11
Typical Operating Characteristics (continued)
(
Typical Application Circuit
with tuning elements outlined in Table 1, VCC= 5.0V, fRF= 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, P
RF
= -5dBm, PLO= 0dBm, TC= +25°C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY
90
80
70
2LO-2RF RESPONSE (dBc)
60
TC = -30°C, +25°C, +85°C
50
2000 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
85
80
2LO-2RF RESPONSE vs. RF FREQUENCY
90
80
70
2LO-2RF RESPONSE (dBc)
60
VCC = 4.75V, 5.0V, 5.25V
50
2000 3000
RF FREQUENCY (MHz)
PRF = -5dBm
3LO-3RF RESPONSE vs. RF FREQUENCY
85
80
PRF = -5dBm
2800260024002200
PRF = -5dBm
2800260024002200
PRF = -5dBm
90
MAX19996A toc10
MAX19996A toc13
80
70
2LO-2RF RESPONSE (dBc)
60
50
85
80
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19996A toc11
MAX19996A toc14
MAX19996A toc12
MAX19996A toc15
75
3LO-3RF RESPONSE (dBc)
70
65
2000 3000
13
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
INPUT P
TC = -30°C
vs. RF FREQUENCY
1dB
TC = +85°C
RF FREQUENCY (MHz)
TC = +25°C
75
3LO-3RF RESPONSE (dBc)
70
MAX19996A toc16
65
13
12
(dBm)
1dB
11
INPUT P
10
2800260024002200
2800260024002200
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
INPUT P
9
2000 3000
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2800260024002200
2800260024002200
75
3LO-3RF RESPONSE (dBc)
70
65
2000 3000
13
MAX19996A toc17
12
(dBm)
1dB
11
INPUT P
10
9
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
2800260024002200
vs. RF FREQUENCY
MAX19996A toc18
2800260024002200
Loading...
+ 24 hidden pages