MAXIM MAX14611 Technical data

EVALUATION KIT AVAILABLE
19-6276; Rev 0; 4/12
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
The MAX14611 is a quad bidirectional logic-level transla­tor that provides the level shifting necessary to allow data transfer in a multivoltage system. Externally applied volt­ages, VCC and VL, set the logic levels on either side of the device. A low-voltage logic signal present on the VL side of the device appears as a high-voltage logic signal on the VCC side of the device, and vice-versa.
The device is ideal for I2C bus as well as MDIO bus appli­cations where open-drain operation is often required. The device features a three-state output mode (TS). Drive TS high to connect the pullup to the powered I/O port. This allows for continuous, undisrupted I2C operation on the powered side of the device while the level translation function is off. The MAX14611 is a pin-to-pin compatible upgrade to the MAX3378E in the TDFN package.
The MAX14611 features enhanced high-electrostatic­discharge (ESD) protection on all I/OVCC_ ports up to ±6kV HBM. The device operates over the -40NC to +85NC extended temperature range and is available in 3mm x 3mm, 14-pin TDFN and 4.9mm x 5.1mm, 14-pin TSSOP packages.

Applications

SPI, I2C, and MDIO Level Translation
Low-Voltage ASIC Level Translation
Portable Electronics
Mobile Phones
POS Systems
Telecommunications Equipment

Benefits and Features

S Improved Interoperability
Meets I2C Specifications  10kI Internal Pullup Resistor Pin-to-Pin Compatible with the MAX3377E and
the MAX3378E 0.9V Operation on Low Voltage Supply
S Robust Logic-Level Translation
±0.5V Tolerances on All Pins ±6kV Human Body Model ESD Protection on
I/OVCC� Lines
Thermal Short-Circuit Protection Short to Ground Fault Protection on All Pins -40NC to +85NC Operating Temperature Range
S Increased Design Flexibility
Ultra-Low Supply Current Pullup Resistor Enabled with a Single Power
Supply when TS = High
10I (max) Transmission Gate FET Small, 14-Pin, 3.0mm x 3.0mm TDFN Package
and 14-Pin, 4.9mm x 5.1mm TSSOP Package
Ordering Information appears at end of data sheet.

Typical Operating Circuit

+1.8V +3.3V
+1.8V SYSTEM
CONTROLLER
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX14611.related.
����������������������������������������������������������������� Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
0.1µF 1µF V
TS
I/OVL_DATA
L
MAX14611
V
CC
I/OVCC_
+3.3V
SYSTEM
DATA
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
VCC .......................................................................... -0.5V to +6V
VL .......................................................................... -0.5V to +5.5V
TS ............................................................................-0.5V to +6V
I/OVCC_ .................................................... -0.5V to (VCC + 0.5V)
I/OVL_ .......................................................... -0.5V to (VL + 0.5V)
Short-Circuit Duration I/OVL_, I/OVCC_ to GND .......Continuous
Continuous Current ......................................................... Q50mA
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera­tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS (Note 1)
TDFN-EP
Junction-to-Ambient Thermal Resistance (qJA) ...........41°C/W
Junction-to-Case Thermal Resistance (qJC) ..................8°C/W
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Continuous Power Dissipation (TA = +70NC)
TDFN (derate 24.4mW/NC above +70NC) ...............1951.2mW
TSSOP (derate 10mW/NC above +70NC) ................. 796.8mW
Operating Temperature Range .......................... -40NC to +85NC
Maximum Junction Temperature .....................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
Soldering Temperature (reflow) .....................................+260NC
TSSOP
Junction-to-Ambient Thermal Resistance (qJA ) ......100.4°C/W
Junction-to-Case Thermal Resistance (qJC) ................30°C/W

ELECTRICAL CHARACTERISTICS

(VCC = +1.65V to +5.5V, VL = 0.9V to the lesser of V values are at VCC = +3.3V, VL = +1.8V, TA = +25NC, unless otherwise noted.) (Notes 2, 3)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER SUPPLIES
VL Supply Range V
VCC Supply Range V
VL Supply Current I
VCC Supply Current I
VCC Shutdown Mode Supply Current
VL Shutdown Mode Supply Current
I/OVCC_, I/OVL_, TS Leakage Current
TS Input Leakage Current
VL Shutdown Threshold V
VCC Shutdown Threshold V
I/OVL_ Pullup Resistor R
I/OVCC_ Pullup Resistor R
L
CC
VL
VCC
I
SHDN_VCC
I
SHDN_VL
I
LEAK
I
LEAK_TS
TH_VL
TH_VCC
VL_PU
VCC_PU
+ 0.3V and 5V. TA = TJ = -40NC to +85NC, unless otherwise noted. Typical
CC
I/OVCC_ = VCC, I/OVL_ = VL, TS = V
I/OVCC_ = VCC, I/OVL_ = VL, TS = V
TS = GND, I/OVCC = unconnected TS = VCC, VL = GND,
I/OVCC = unconnected
TS = GND TS = VL, VCC = GND,
I/OVL_ = unconnected
TA = +25NC, TS = GND
TA = +25NC
0.9 5 V
1.65 5.5 V
L
L
0.1 1
0.1 1
0.1 1
0.1 1
0.1 1
0.3 0.85 V
0.8 1.35 V
10
10
35
1
1
FA
FA
FA
FA
FA
FA
kI
kI
����������������������������������������������������������������� Maxim Integrated Products 2
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +1.65V to +5.5V, VL = 0.9V to the lesser of V values are at VCC = +3.3V, VL = +1.8V, TA = +25NC, unless otherwise noted.) (Notes 2, 3)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I/OVL_ to I/OVCC_ DC Resistance
I/OVL_ Input-Voltage High V
I/OVL_ Input-Voltage Low V
I/OVCC_ Input-Voltage High V
I/OVCC_ Input-Voltage Low V
I/OVL_ Output-Voltage High V
I/OVL_ Output-Voltage Low V
I/OVCC_ Output-Voltage High V
I/OVCC_ Output Voltage Low V
TS Input-Voltage High Threshold TS Input-Voltage Low Threshold
Accelerator Pulse Duration Inferred from timing measurements 30 ns
VL Output Accelerator Source Impedance
VCC Output Accelerator Source Impedance
Thermal-Shutdown Threshold
ESD PROTECTION
I/OVCC_
All Other Pins Human Body Model
R
IOVL_IOVCC
IHL
ILL
IHC
ILC
OHL
OLL
OHC
OLC
V
IH
V
IL
+ 0.3V and 5V. TA = TJ = -40NC to +85NC, unless otherwise noted. Typical
CC
Inferred from V
I/OVL_ source current = 10FA
I/OVL_ sink current = 2mA, V
I/OVCC_ source current = 10FA
I/OVCC_ sink current = 2mA, V
VL > 1.3V 0.2 V
VL = 0.9V 70
VL = 3.3V 15
VCC = 1.65V 50
VCC = 5.0V 10
20NC hysteresis
Human Body Model, C CVL = 0.1FF
I/OVCC_
I/OVL_
P 50mV
P 150mV
measurements 5 10
OL
VL - 0.2 V
VCC - 0.4
0.7 x V
L
0.7 x V
CC
VL - 0.2 V
+150
= 1FF,
VCC
Q6
Q2
0.15 V
0.2 V
0.4 V
0.4 V
I
V
V
V
I
I
NC
kV
kV
����������������������������������������������������������������� Maxim Integrated Products 3
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

TIMING CHARACTERISTICS

(VCC = +1.65V to +5.5V, VL = +0.9V to the lesser of V C
= 15pF, TA = -40NC to +85NC, unless otherwise noted. Typical values are VCC = +3.3V, VL = +1.8V, and TA = +25NC.) (Note 4)
I/OVL_
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I/OVCC_ Rise Time t
I/OVCC_ Fall Time t
I/OVL_ Rise Time t
I/OVL_ Fall Time t
Propagation Delay
Propagation Delay
Channel-to-Channel Skew t
Maximum Data Rate
Note 2: All units are 100% production tested at TA = +25°C. Specifications over operating temperature range are guaranteed by
design.
Note 3: VL must be less than or equal to VCC during normal operation. However, VL can be greater than VCC during startup and
shutdown conditions.
Note 4: All timing is 10% to 90% for rise time and 90% to 10% for fall time. Note 5: Not production tested; guaranteed by design. Note 6: Requires the external pullup resistor.
I/O
I/O
I/O
I/O
RVCC
FVCC
RVL
FVL
VL-VCC
VL-VCC
VCC-VL
VCC-VL
SKEW
+ 0.3V and 5V, TS = VL, RL = 1Mω, C
CC
Push-pull driving (Figure 1) 40
Open-drain driving (Figure 2, Note 5) 100
Push-pull driving (Figure 1) 40
Open-drain driving (Figure 2, Note 5) 50
Push-pull driving (Figure 3) 30
Open-drain driving (Figure 4, Note 5) 105
Push-pull driving (Figure 3) 30
Open-drain driving (Figure 4, Note 5) 30
Push-pull driving (Figure 1) 40
Open-drain driving (Figure 2, Note 5) 150
Push-pull driving (Figure 3) 30
Open-drain driving (Figure 4, Note 5) 105
Input rise time/fall time < 6ns, push-pull driving
Input rise time/fall time < 6ns, open-drain driving
Push-pull operation 20
Open-drain operation (Notes 5, 6) 6
= 1µF, CVL = 0.1µF, C
VCC
I/OVCC_
20
50
= 15pF,
ns
ns
ns
ns
ns
ns
ns
Mbps
����������������������������������������������������������������� Maxim Integrated Products 4
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
R
50I
V
V
TS
S
I/OVL_
L
L
MAX14611
GND
V
CC
V
CC
I/OVCC_

Figure 1. Push-Pull Driving I/OVL_

V
L
V
L
1kI
TS
MAX14611
I/OVL_
GND
V
CC
V
CC
I/OVCC_
C
I/OVCC_RL
1kI
C
I/OVCC_RL
50%
10%
t
PDLH
t
RVCC
t
RVCC
90%
50%
90%90%
50%
90%
50%
50%
t
PDHL
50%
t
FVCC
t
FVCC
10%

Figure 2. Open-Drain Driving I/OVL_

����������������������������������������������������������������� Maxim Integrated Products 5
10%
50%
t
PDLH
50%
t
PDHL
10%
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
V
L
V
L
TS
MAX14611
I/OVL_
C
R
I/OVL_
L
GND

Figure 3. Push-Pull Driving I/OVCC_

V
CC
V
CC
I/OVCC_
V
L
t
RVL
R
S
50I
V
CC
50%
t
PDLH
10%
50%
90%
t
RVL
50%
t
PDHL
50%
t
FVL
90%
10%
t
FVL
V
1kI
C
R
I/OVL_
L
TS
I/OVL_

Figure 4. Open-Drain Driving I/OVCC_

����������������������������������������������������������������� Maxim Integrated Products 6
L
MAX14611
GND
V
CC
I/OVCC_
1kI
10%
t
PDLH
50%
50%
90%
50%
90%
t
50%
10%
PDHL
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Typical Operating Characteristics

(VCC = +3.3V, VL = 1.8V, RL = 1Mω, CL = 15pF, TA = +25°C, data rate = 500kbps in open-drain operation and 8Mbps in push-pull operation, unless otherwise noted.)
VL SUPPLY CURRENT vs. SUPPLY VOLTAGE
200
DRIVING I/OVL_
175
= 1.8V
V
L
150
125
100
SUPPLY CURRENT (µA)
8Mbps,
PUSH-PULL
75
50
25
0
1.65 5.50 VCC (V)
500kbps,
OPEN-DRAIN
VCC SUPPLY CURRENT
vs. TEMPERATURE
400
DRIVING I/OVCC_
350
300
250
200
150
SUPPLY CURRENT (µA)
100
50
0
TEMPERATURE (°C)
VCC SUPPLY CURRENT
vs. CAPACITIVE LOAD
1000
DRIVING I/OVL_
900
800
700
600
500
400
300
SUPPLY CURRENT (µA)
200
100
0
500kbps,
OPEN-DRAIN
CAPACITIVE LOAD (pF)
4.954.402.20 2.75 3.30 3.85
500kbps,
OPEN-DRAIN
MAX14611 toc01
8Mbps,
PUSH-PULL
8Mbps,
PUSH-PULL
1200
1000
800
600
400
SUPPLY CURRENT (µA)
200
0
1.65 5.50
603510-15-40 85
4540353025 50
VCC SUPPLY CURRENT
vs. SUPPLY VOLTAGE
DRIVING I/OVL_
= 1.8V
V
L
8Mbps,
PUSH-PULL
MAX14611 toc04
MAX14611 toc06
VCC (V)
500kbps,
OPEN-DRAIN
4.954.402.20 2.75 3.30 3.85
SUPPLY CURRENT (µA)
RISE/FALL TIME (ns)
MAX14611 toc02
200
DRIVING I/OVL_
180
160
140
120
100
80
60
40
20
0
100
DRIVING I/OVL_
90
500kbps, OPEN-DRAIN
80
70
60
50
40
30
20
10
0
VL SUPPLY CURRENT
vs. TEMPERATURE
200
DRIVING I/OVCC_
175
150
125
100
75
SUPPLY CURRENT (µA)
50
25
0
VL SUPPLY CURRENT
vs. CAPACITIVE LOAD
8Mbps,
PUSH-PULL
500kbps,
OPEN-DRAIN
CAPACITIVE LOAD (pF)
RISE/ FALL TIME
vs. CAPACITIVE LOAD
t
HL
CAPACITIVE LOAD (pF)
8Mbps,
PUSH-PULL
500kbps,
OPEN-DRAIN
TEMPERATURE (°C)
4540353025 50
t
LH
4540353025 50
603510-15-40 85
MAX14611 toc05
MAX14611 toc07
MAX14611 toc03
����������������������������������������������������������������� Maxim Integrated Products 7
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
Typical Operating Characteristics (continued)
(VCC = +3.3V, VL = 1.8V, RL = 1Mω, CL = 15pF, TA = +25°C, data rate = 500kbps in open-drain operation and 8Mbps in push-pull operation, unless otherwise noted.)
20
DRIVING I/OVL_
18
8Mbps, PUSH-PULL
16
14
12
10
8
RISE/FALL TIME (ns)
6
4
2
0
RISE/ FALL TIME
vs. CAPACITIVE LOAD
t
LH
t
HI
CAPACITIVE LOAD (pF)
RISE/FALL TIME
vs. CAPACITIVE LOAD
150
DRIVING I/OVCC_ 500kbps, OPEN-DRAIN
125
100
75
50
RISE/FALL TIME (ns)
25
0
t
HL
CAPACITIVE LOAD (pF)
PROPAGATION DELAY vs. CAPACITIVE LOAD
6
DRIVING I/OVCC_ 500kbps, OPEN-DRAIN
5
4
3
2
PROPAGATION DELAY (ns)
1
0
t
PHL
CAPACITIVE LOAD (pF)
4540353025 50
t
PLH
8
MAX14611 toc08
t
7
6
5
4
3
PROPAGATION DELAY (ns)
2
1
0
LH
4540353025 50
4540353025 50
PROPAGATION DELAY
vs. CAPACITIVE LOAD
DRIVING I/OVL_ 500kbps, OPEN-DRAIN
CAPACITIVE LOAD (pF)
MAX14611 toc11
MAX14611 toc13
PROPAGATION DELAY vs. CAPACITIVE LOAD
6
DRIVING I/OVL_ 8Mbps, PUSH-PULL
MAX14611 toc09
t
PHL
t
PLH
4540353025 50
5
4
3
2
PROPAGATION DELAY (ns)
1
0
t
PHL
t
PLH
CAPACITIVE LOAD (pF)
4540353025 50
RISE/ FALL TIME
vs. CAPACITIVE LOAD
10
DRIVING I/OVCC_
9
8Mbps, PUSH-PULL
8
7
6
5
4
RISE/FALL TIME (ns)
3
2
1
0
t
HL
CAPACITIVE LOAD (pF)
t
LH
4540353025 50
MAX14611 toc12
PROPAGATION DELAY
vs. CAPACITIVE LOAD
4.0
DRIVING I/OVCC_
3.5
8Mbps, PUSH-PULL
3.0
2.5
2.0
1.5
PROPAGATION DELAY (ns)
1.0
0.5
0
CAPACITIVE LOAD (pF)
t
PHL
t
PLH
4540353025 50
MAX14611 toc14
MAX14611 toc10
����������������������������������������������������������������� Maxim Integrated Products 8
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
Typical Operating Characteristics (continued)
(VCC = +3.3V, VL = 1.8V, RL = 1Mω, CL = 15pF, TA = +25°C, data rate = 500kbps in open-drain operation and 8Mbps in push-pull operation, unless otherwise noted.)
50
DRIVING I/OVCC_
45
4Mbps, OPEN-DRAIN 1kI EXTERNAL PULLUP
40
35
30
25
20
RISE/FALL TIME (ns)
15
10
5
0
50
DRIVING I/OVL_
45
4Mbps, OPEN-DRAIN 1kI EXTERNAL PULLUP
40
35
30
25
20
RISE/FALL TIME (ns)
15
10
5
0
RISE/ FALL TIME
vs. CAPACITIVE LOAD
t
LH
t
HL
4540353025 50
CAPACITIVE LOAD (pF)
RISE/ FALL TIME
vs. CAPACITIVE LOAD
t
LH
t
HL
4540353025 50
CAPACITIVE LOAD (pF)
LOW-TO-HIGH TRANSITION,
OPEN-DRAIN ZOOM
MAX14611 toc19
MAX14611 toc15
MAX14611 toc17
20
16
12
8
PROPAGATION DELAY (ns)
4
0
6
4
2
0
-2
SUPPLY CURRENT (µA)
-4
-6
-8
ENTERING AND EXITING THREE-STATE MODE
PROPAGATION DELAY
vs. CAPACITIVE LOAD
DRIVING I/OVL_ 4Mbps, OPEN-DRAIN 1kI EXTERNAL PULLUP
t
PLH
t
PHL
4540353025 50
CAPACITIVE LOAD (pF)
PROPAGATION DELAY
vs. CAPACITIVE LOAD
DRIVING I/OVCC_ 4Mbps, OPEN-DRAIN 1kI EXTERNAL PULLUP
t
PHL
t
PLH
50% I/O VCC_ TO 50% I/OVL_ (SEE TOC19)
4540353025 50
CAPACITIVE LOAD (pF)
(DRIVING I/OVCC_, C
LOAD
= 50pF)
MAX14611 toc20
MAX14611 toc16
MAX14611 toc18
4ns/div
10ms/div
����������������������������������������������������������������� Maxim Integrated Products 9
TOP VIEW
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Pin Configurations

I/OVL1
I/OVL2
N.C.
I/OVL3
1
+
2
3
4
5
6
7
MAX14611
*EP
14
13
12
11
10
9
8
V
CC
I/OVCC1
I/OVCC2TS
N.C.
V
L
I/OVCC3I/OVL4
I/OVCC4GND
TDFN
*CONNECT EXPOSED PAD TO GND.
PIN
TDFN-EP TSSOP
NAME FUNCTION
1 2 I/OVL1 Input/Output 1. Reference to VL.
2 3 I/OVL2 Input/Output 2. Reference to VL.
Three-State Select Input. Drive TS low to place the device in three-state output mode. I/OVCC_
3 8
TS
and I/OVL_ are high impedance in three-state output mode. Note: Logic referenced to VL (for logic thresholds, see the Electrical Characteristics table).
4, 11 6,9 N.C. No Connection. Not internally connected.
5 4 I/OVL3 Input/Output 3. Reference to VL.
6 5 I/OVL4 Input/Output 4. Reference to VL.
7 7 GND Ground
8 10 I/OVCC4 Input/Output 4. Reference to V
CC.
9 11 I/OVCC3 Input/Output 3. Reference to VCC.
10 1 V
Logic Supply Voltage Input, 0.9V P VL P min (5.0V, (VCC + 0.3V)). Connect a 0.1FF ceramic
L
capacitor as close as possible to the pin.
12 12 I/OVCC2 Input/Output 2. Reference to VCC.
13 13 I/OVCC1 Input/Output 1. Reference to VCC.
14 14 V
EP
Power Supply Input. The supply range is 1.65V P VCC P 5.5V. Bypass VCC with a 1FF ceramic
CC
capacitor as close as possible to the pin to achieve higher ESD protection (Q6kV HBM).
Exposed Pad (TDFN Only). EP is internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.
I/OVL1
I/OVL2
I/OVL4
N.C.
+
1
V
L
2
3
MAX14611
4
5
6
7
14
V
CC
13
I/OVCC1
12
I/OVCC2
11
I/OVCC3I/OVL3
10
I/OVCC4
9
N.C.
8
TSGND
TSSOP

Pin Description

���������������������������������������������������������������� Maxim Integrated Products 10
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Functional Diagram

V
L
MAX14611
PU1 PU2
I/OVL_
ONE-SHOT
BLOCK
EN CONTROL
BLOCK

Detailed Description

The MAX14611 ESD-protected level translator provides the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. A low-voltage logic signal present on the VL side of the device appears as a high-voltage logic signal on the VCC side of the device, and vice-versa.
The MAX14611 bidirectional level translator uti­lizes a transmission-gate based design (see the
Functional Diagram) to allow data translation in either
direction (VL VCC) on any single data line. The device accepts VL from +0.9V to +5.0V and VCC from +1.65V to +5.5V, making it ideal for data transfer between low­voltage ASICs/PLDs and higher voltage systems.
The device features a three-state output mode, thermal short-circuit protection, and Q6kV ESD protection on the VCC side for greater protection in applications that route signals externally.
TS V
ONE-SHOT
BLOCK
GATE DRIVE
N
CC
I/OVCC_

Level Translation

For proper operation, ensure that +1.65V P VCC P +5.5V,
0.9V P VL P 5.0V, and VL P (VCC + 0.3V). It is permissible for VL to exceed (VCC + 0.3V) during power-up sequenc­ing. During power-supply sequencing, when VCC is disconnected and VL is powered up, a current can be sourced without a latchup or any damage to the device. The maximum data rate of the MAX14611 depends heavily on load capacitance (see the Typical Operating
Characteristics), output impedance of the driver, and
the operational voltage (see the Timing Characteristics table).

Speed-Up Circuitry

The device features a one-shot generator that decreases the rise time of the output. When triggered following a ris­ing edge, MOSFETs PU1 and PU2 turn on for a short time to pull up I/OVL_ and I/OVCC_ to their respective sup­plies (see the Functional Diagram). This greatly reduces the rise time and propagation delay for the low-to-high transition.
���������������������������������������������������������������� Maxim Integrated Products 11
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Rise-Time Accelerators (Figure 5)

The device has internal rise-time accelerators, allowing operation up to 20Mbps. The rise-time accelerators are present on both sides of the device and act to speed up the rise time of the input and output of the device, regardless of the direction of the data. The triggering mechanism for these accelerators is both level and edge sensitive. To prevent false triggering of the rise-time accelerators and to take full advantage of them, signal rise/fall times of less than 2ns/V are recommended for both sides of the device in open-drain driving. The rec­ommendation applies only for fail time. Under less noisy conditions, longer signal fall times can be acceptable.

Three-State Output Mode (TS)

Drive TS low to place the device in three-state output mode. Connect TS to VL (logic-high) for normal opera­tion. Activating the three-state output mode disconnects the internal 10kI pullup resistors on the I/OVCC_ and I/OVL_ lines. This forces the I/O lines to a high-impedance state and decreases the supply current to less than 1FA. The high-impedance I/O lines in three-state output mode allow for use in a multidrop network. When in three-state output mode, keep the I/OVL_ voltage below (VL + 0.3V), and keep the I/OVCC_ voltage below (VCC + 0.3V).

Thermal Short-Circuit Protection

Thermal-overload detection protects the device from short-circuit fault conditions. In the event of a short-circuit fault and when the junction temperature (TJ) reaches +150NC (typ), a thermal sensor signals the three-state output mode logic to force the device into three-state out­put mode. When TJ has cooled to +130NC (typ), normal operation resumes.

High ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic
discharges encountered during handling and assembly. The I/OVCC_ lines have extra protection against static electricity. Maxim’s engineers have developed state-of­the-art structures to protect these pins against ESD of ±6kV without damage.
The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, the device keeps working without latchup, whereas competing products can latch and must be powered down to remove latchup. ESD pro­tection can be tested in various ways. The I/OVCC_ lines of this product family are characterized for protection.to ±6kV using the Human Body Model.

ESD Test Conditions

Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Applications Information

Power-Supply Decoupling

Bypass VL to ground with a 0.1FF capacitor to reduce ripple and ensure correct data transmission. See the
Typical Operating Circuit. To ensure full Q6kV ESD
protection, bypass VCC to ground with a 1FF capacitor. Place all capacitors as close as possible to the power­supply pins (V
The device can be driven in a push-pull configuration. The device includes internal 10kI resistors that pull up I/OVL_ and I/OVCC_ to their respective power sup­plies, allowing operation of the I/O lines with open-drain devices. See the Timing Characteristics table for maxi­mum data rates when using open-drain drivers (Figure 1,
Figure 2, Figure 3, Figure 4).
and V L).
CC

Push-Pull vs. Open-Drain Driving

���������������������������������������������������������������� Maxim Integrated Products 12
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator
VL = +1.8V V
+1.8V SYSTEM
CONTROLLER
EN
SDA
SCL
SDA
SCL

Figure 5. Open-Drain Operation

0.1µF 1µF
V
L
V
L
TS
I/OVL1
V
L
V
CC
I/OVCC1
MAX14611
I/OVL2
V
L
I/OVL3
V
L
I/OVL4
I/OVCC2
I/OVCC3
I/OVCC4
GNDGND GND
= +3.3V
CC
+3.3V
SYSTEM
V
CC
V
V
V
SDA
CC
SCL
CC
SDA
CC
SCL

Applications Circuit

+1.8V +3.3V
0.1µF 1µF
V
L
TS
V
CC
MAX14611
+1.8V SYSTEM
CONTROLLER
I/OVL1
DATA DATA
I/OVL2
I/OVL3
I/OVL4
I/OVCC1
I/OVCC2
I/OVCC3
I/OVCC4
+3.3V
SYSTEM
���������������������������������������������������������������� Maxim Integrated Products 13
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Ordering Information

PART TEMP RANGE PIN-PACKAGE
MAX14611ETD+ MAX14611EUD+**
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. **Future product—contact factory for availability.
-40NC to +85NC
-40NC to +85NC
14 TDFN-EP* 14 TSSOP

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
14 TDFN-EP T1433+2
14 TSSOP U14+1
PACKAGE
CODE
OUTLINE
NO.
21-0137 90-0063 21-0066 90-0113
LAND
PATTERN NO.
���������������������������������������������������������������� Maxim Integrated Products 14
MAX14611
Quad Bidirectional Low-Voltage
Logic-Level Translator

Revision History

REVISION
NUMBER
0 4/12 Initial release
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 15
©
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Loading...