Maxim MAX1160BCPI, MAX1160ACWI, MAX1160ACPI, MAX1160BCWI Datasheet

_______________General Description
The MAX1160 10-bit, monolithic analog-to-digital con­verter (ADC) is capable of 20Msps minimum word rates. An on-board track/hold ensures excellent dynam­ic performance without the need for external compo­nents. A 5pF input capacitance minimizes drive requirement problems.
The MAX1160 is available in 28-pin DIP and SO pack­ages in the commercial temperature range.
________________________Applications
Medical Imaging Professional Video Radar Receivers Instrumentation Digital Communications
____________________________Features
Monolithic 20Msps ConverterOn-Chip Track/Hold Bipolar, ±2V Analog Input60dB SNR at 1MHz Input5pF Input CapacitanceTTL Outputs
MAX1160
10-Bit, 20Msps, TTL-Output ADC
________________________________________________________________
Maxim Integrated Products
1
COARSE
ADC
T/H
AMPLIFIER
BANK
SUCCESSIVE INTERPOLATION
STAGE i
SUCCESSIVE INTERPOLATION
STAGE i + 1
SUCCESSIVE INTERPOLATION
STAGE N
ANALOG
PRESCALER
ANALOG INPUT
4
10
DIGITAL OUTPUT
DECODING NETWORK
.
.
.
.
________________Functional Diagram
19-1189; Rev 0; 3/97
For the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800
PART
MAX1160ACPI MAX1160BCPI MAX1160ACWI 0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
28 Wide Plastic DIP 28 Wide Plastic DIP 28 SO
MAX1160BCWI 0°C to +70°C 28 SO
______________Ordering Information
EVALUATION KIT
AVAILABLE
__________________Pin Configuration
28 27 26 25 24 23 22 21 20 19 18 17 16 15
1 2 3 4 5 6 7 8
9 10 11 12 13 14
DIP/SO
DV
CC
V
EE
AGND V
CC
VFB VSB VRM VIN VST VFT V
CC
AGND V
EE
CLK
DGND
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
D10
DGND
DV
CC
MAX1160
TOP VIEW
TOP VIEW
MAX1160
10-Bit, 20Msps, TTL-Output ADC
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC= +5.0V, VEE= -5.2V, DVCC= +5.0V, VIN= ±2.0V, VSB = -2.0V, VST = +2.0V, f
CLK
= 20MHz, 50% clock duty cycle,
T
A
= T
MIN
to T
MAX
, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
V
CC..........................................................................................................
6V
V
EE .........................................................................................................
-6V
Analog Input ......................................................VFB VIN VFT
VFT, VFB...........................................................................3V, -3V
Reference-Ladder Current..................................................12mA
CLK Input...............................................................................V
CC
Digital Outputs.....................................................30mA to -30mA
Continuous Power Dissipation (T
A
= +70°C)
Plastic DIP......................................................................1.14W
SO .......................................................................................1W
Operating Temperature Range...............................0°C to +70°C
Junction Temperature .....................................................+150°C
Storage Temperature Range.............................-65°C to +150°C
Lead Temperature (soldering, 10sec).............................+300°C
V
V
V
I
VI
V
I
VI
V
VI
VI
VI
V
VI
VI
V
VI
TEST
LEVEL
ns20TA= +25°CAcquisition Time
ps-RMS5TA= +25°CAperture Jitter Time
ns14 18TA= +25°C
Output Delay
Clock Cycle
1Pipeline Delay (Latency)
ns20Overvoltage Recovery Time
MHz20Maximum Conversion Rate
/°C0.8
Reference-Ladder Tempco
500 800
Reference-Ladder Resistance
MHz1203dB small signalInput Bandwidth
pF5Input Capacitance
k75 300TA= -55°C to +125°CInput Resistance
LSB±0.5Differential Nonlinearity
LSB±1.0
Bits10Resolution
Integral Nonlinearity
k100 300Input Resistance
µA75TA= -55°C to +125°CInput Bias Current
µA30 60VIN= 0VInput Bias Current
V±2.0Input Voltage Range
GuaranteedNo Missing Codes
UNITS
MAX1160A
MIN TYP MAX
CONDITIONSPARAMETER
20
5
14 18
1
20
20
0.8
500 800
120
5
75 300
±0.75
±1.5
10
100 300
75
30 60
±2.0
Guaranteed
MAX1160B
MIN TYP MAX
V LSB±2.0Positive Full-Scale Error ±2.0 V LSB±2.0Negative Full-Scale Error ±2.0
V ns1TA= +25°C
Aperture Delay Time
1
DC ACCURACY (± full scale, 250kHz sample rate, TA= +25°C)
ANALOG INPUT
REFERENCE INPUT
TIMING CHARACTERISTICS
MAX1160
10-Bit, 20Msps, TTL-Output ADC
_______________________________________________________________________________________
3
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5.0V, VEE= -5.2V, DVCC= +5.0V, VIN= ±2.0V, VSB = -2.0V, VST = +2.0V, f
CLK
= 20MHz, 50% clock duty cycle,
T
A
= T
MIN
to T
MAX
, unless otherwise noted.)
TA= +25°C TA= 0°C to +70°C,
T
A
= -25°C to +85°C
fIN= 1MHz
54 57 52 5555 58IV
57 60I
fIN= 10MHz
fIN= 3.58MHz
fIN= 1MHz
MAX1160B
MIN TYP MAX
8.7
8.3
7.0
Effective Number of Bits (ENOB)
7.5
Bits
PARAMETER CONDITIONS
MAX1160A
MIN TYP MAX
UNITS
9.2
8.8
TEST
LEVEL
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 3.58MHz
53 55 51 5354 56IV
56 58I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 10MHz
47 49 44 46
Signal-to-Noise Ratio (without harmonics) (SNR)
47 50
dB
IV
50 53I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 1MHz
54 57 51 5454 57IV
57 60I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 3.58MHz
53 55 50 5253 55IV
56 58I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 10MHz
43 45 42 44
Total Harmonic Distortion (THD)
45 47
dB
IV
46 48I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 1MHz
52 54 4952IV
55 57I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 3.58MHz
51 52 4851IV
54 55I
TA= +25°C TA= 0°C to +70°C,
TA= -25°C to +85°C
fIN= 10MHz
41 44 40
Signal-to-Noise and Distortion Ratio (SINAD)
43IV
44 47I
fIN= 1MHz 6767V
dB
Spurious-Free Dynamic Range (SFDR)
fIN= 3.58MHz and 4.35MHz
0.5V 0.7 %Differential Gain
dBTA= +25°C
TA= +25°C
fIN= 3.58MHz and 4.35MHz
0.2V 0.2 DegreesDifferential Phase TA= +25°C
DYNAMIC PERFORMANCE
MAX1160
10-Bit, 20Msps, TTL-Output ADC
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(VCC= +5.0V, VEE= -5.2V, DVCC= +5.0V, VIN= ±2.0V, VSB = -2.0V, VST = +2.0V, f
CLK
= 20MHz, 50% clock duty cycle,
T
A
= T
MIN
to T
MAX
, unless otherwise noted.)
V V2.4 4.5Logic 1 Voltage 2.4 4.0
IV µA0 5 20TA= +25°C
Maximum Input Current Low
0 5 20
V V0.8Logic 0 Voltage 0.8
Pulse Width High (CLK) ns20 300IV 20 300
Maximum Input Current High
Pulse Width Low (CLK)
µA ns20IV 20
IV 0 5 20 0 5 20TA= +25°C
TEST
LEVEL
UNITS
MAX1160A
MIN TYP MAX
CONDITIONSPARAMETER
MAX1160B
MIN TYP MAX
Logic 1 Voltage V2.4IV 2.4 Logic 0 Voltage V0.6IV 0.6
4.75 5.0 5.25IV 4.75 5.0 5.25DV
CC
4.75 5.25IV 4.75 5.25V
CC
Power Dissipation 1.0 1.3VI 1.0 1.3
-4.95 -5.2 -5.45IV -4.95 -5.2 -5.45-V
EE
Power-Supply Rejection
V
1.0V 1.0VCC= 5V ±0.25V, VEE= -5.2V ±0.25V LSB
W
40 55VI 40 55DI
CC
118 145VI 118 145I
CC
40 57VI 40 57-I
EE
mA
DIGITAL INPUTS
DIGITAL OUTPUTS
POWER-SUPPLY REQUIREMENTS
Currents
Voltages
TEST LEVEL CODES
All electrical characteristics are subject to the following conditions: All parameters having min/max specifications are guaranteed. The Test Level column indicates the specific device testing actually per­formed during production and Quality Assurance inspection. Any blank section in the data column indicates that the specification is not tested at the specified condition. Unless otherwise noted, all tests are pulsed; therefore, Tj= TC= TA.
TEST LEVEL
I
II III
IV
V
VI
TEST PROCEDURE
100% production tested at the specified temperature. 100% production tested at TA = +25°C, and sample tested at the specified temperatures. QA sample tested only at the specified temperatures. Parameter is guaranteed (but not tested) by design and characterization data. Parameter is a typical value for information purposes only. 100% production tested at TA = +25°C. Parameter is guaranteed over specified temperature range.
______________________________________________________________Pin Description
NAME
1, 13 DGND
2 D0
PIN
12 D10
15 CLK
3–10
FUNCTION
16, 27 V
EE
Digital Ground
D1–D8
TTL Output (LSB) TTL Outputs
11 D9 TTL Output (MSB)
14, 28 DV
CC
+5V Supply (digital)
TTL Output Overrange
Clock
-5.2V Supply (analog)
NAME
20 VST
19
PIN
VFT
21
18, 25 V
CC
VIN
FUNCTION
22
17, 26 AGND
VRM
23 VSB
Sense for Top of Reference Ladder
24 VFB
Force for Top of Reference Ladder
+5V Supply (analog)
Analog Input
Analog Ground
Middle of Voltage Reference Ladder Sense for Bottom of Reference Ladder Force for Bottom of Reference Ladder
MAX1160
10-Bit, 20Msps, TTL-Output ADC
_______________________________________________________________________________________
5
80
20
1 10 100
SIGNAL-TO-NOISE RATIO vs.
INPUT FREQUENCY
40
30
MAX1160-01
INPUT FREQUENCY (MHz)
SNR (dB)
60
50
70
fS = 20Msps
80
20
1 10 100
SIGNAL-TO-NOISE AND DISTORTION
vs. INPUT FREQUENCY
40
30
MAX1160-03
INPUT FREQUENCY (MHz)
SINAD (dB)
60
50
70
fS = 20Msps
0
-120 0 7 108 91 2 3 4 5 6
SPECTRAL RESPONSE
-60
-90
MAX1160-05
INPUT FREQUENCY (MHz)
AMPLITUDE (dB)
-30
fS = 20Msps f
IN
= 1MHz
80
20
1 10 100
SNR, THD, SINAD vs.
SAMPLE RATE
40
30
MAX1160-04
SAMPLE RATE (Msps)
SNR, THD, SINAD (dB)
60
50
70
SINAD
SNR, THD
fIN = 1MHz
65
40
-25 50 750 25
SNR, THD, SINAD vs.
TEMPERATURE
50
45
MAX1160-06
TEMPERATURE (°C)
SNR, THD, SINAD (dB)
60
55
SINAD
SNR
fS = 20Msps f
IN
= 1MHz
THD
THD
SNR
__________________________________________Typical Operating Characteristics
(TA= +25°C, unless otherwise noted.)
80
20
1 10 100
TOTAL HARMONIC DISTORTION vs.
INPUT FREQUENCY
40
30
MAX1160-02
INPUT FREQUENCY (MHz)
THD (dB)
60
50
70
fS = 20Msps
______________Detailed Description
The MAX1160 requires few external components to achieve the stated operation and performance. Figure 2 shows the typical interface requirements when using the MAX1160 in normal circuit operation. The following section provides a description of the pin functions, and outlines critical performance criteria to consider for achieving the optimal device performance.
Power Supplies and Grounding
The MAX1160 requires -5.2V and +5V analog supply voltages. The +5V supply is common to analog V
CC
and digital DVCC. A ferrite bead in series with each supply line reduces the transient noise injected into the analog VCC. Connect these beads as close to the device as possible. The connection between the beads and the MAX1160 should not be shared with any other device. Bypass each power-supply pin as close to the device as possible. Use 0.1µF for VEEand VCC, and
0.01µF for DVCC(chip capacitors are recommended).
The MAX1160 has two grounds: AGND and DGND. These internal grounds are isolated on the device. Use ground planes for optimum device performance. Use DGND for the DVCCreturn path (typically 40mA) and for the return path for all digital output logic interfaces. Separate AGND and DGND from each other, connect­ing them together only through a ferrite bead at the device.
Connect a Schottky or hot carrier diode between AGND and VEE. The use of separate power supplies between VCCand DVCCis not recommended due to potential power-supply-sequencing latchup conditions. For opti­mum performance, use the recommended circuit shown in Figure 2.
Voltage Reference
The MAX1160 requires the use of two voltage refer­ences: VFT and VFB. VFT is the force for the top of the voltage-reference ladder (typically +2.5V); VFB (typical­ly -2.5V) is the force for the bottom of the voltage-refer­ence ladder. Both voltages are applied across an 800 internal reference-ladder resistance. The +2.5V voltage source for reference VFT must be current limited to 20mA (max) if a different driving circuit is used in place of the recommended reference circuit shown in Figures 2 and 3. In addition, there are three reference-ladder taps (VST, VRM, and VSB). VST is the sense for the top of the reference ladder (+2V), VRM is the midpoint of the ladder (typically 0V), and VSB is the sense for the
bottom of the reference ladder (-2V). The voltages at VST and VSB are the device’s true full-scale input volt­ages when VFT and VFB are driven to the recommend­ed voltages (typically +2.5V and -2.5V, respectively). These points should be used to monitor the device’s actual full-scale input range. When not being used, a decoupling capacitor of 0.01µF (chip capacitor pre­ferred) connected to AGND from each tap is recom­mended to minimize high-frequency noise injection.
Figure 2 shows an example of a recommended refer­ence-driver circuit. IC1 is a MAX6225, a 2.5V reference with an accuracy of 0.2%. The 10kpotentiometer R1 supports a minimum adjustable range of 0.6%. Use an OP07 or equivalent device for IC2. R2 and R3 must be matched to within 0.1% with good TC tracking to main­tain 0.3LSB matching between VFT and VFB. If 0.1% matching is not met, then R4 can be used to adjust the VFB voltage to the desired level. Adjust VFT and VFB such that VST and VSB are exactly +2V and -2V, respectively.
The analog input range scales proportionally with respect to the reference voltage if a different input range is required. The maximum scaling factor for device opera­tion is ±20% of the recommended reference voltages of VFT and VFB. However, because the device is laser trimmed to optimize performance with ±2.5V references, its accuracy degrades if operated beyond a ±2% range.
MAX1160
10-Bit, 20Msps, TTL-Output ADC
6 _______________________________________________________________________________________
CLK
t
pwH
N - 2
N - 1
N
DATA VALID
N
DATA VALID
N + 1
t
pwL
t
d
N + 1
N + 2
OUTPUT
DATA
Figure 1a. Timing Diagram
CLK
DATA VALID
t
d
OUTPUT
DATA
Figure 1b. Single-Event Clock
Table 1. Timing Parameters
DESCRIPTION UNITS
t
d
CLK to Data Valid Propagation Delay ns
t
pwH
CLK High Pulse Width ns
PARAMETER
20 300
t
pwL
CLK Low Pulse Width ns20
MIN TYP MAX
14 18
MAX1160
10-Bit, 20Msps, TTL-Output ADC
_______________________________________________________________________________________ 7
COARSE
ADC
SUCCESSIVE
INTERPOLATION
STAGE 1
SUCCESSIVE
INTERPOLATION
STAGE N
ANALOG
PRESCALER
DIGITAL OUTPUTS
DECODING NETWORK
VEEVEEAGND
AGND
VCCVCCDVCCDVCCDGND
DGND
FB
FB
FB
+5V
-5.2V
+5V
R1
10k
R2 30k
R3 30k
R4
10k
1µF
0.01µF
0.01µF
1µF
10µF 10µF
1µF
C1
0.01µF
C2
0.01µF
C3
0.01µF
C4
0.01µF
C6
0.1µF
C7
0.1µF
C8
0.1µF
C9
0.1µF
C10
0.01µF
C11
0.01µF
C5
0.01µF
VIN
(±2V)
±2.5V MAX
CLK
(TTL)
VIN
VFT
VIN
CLK
VST
VRM
VSB
VFB
GND
VOUT
VTRIM
R5
100
2.5V
1
3
2
4
67
8
R
2R
2R
2R
2R
R
D1
-5.2V
= AGND
+5V
= DGND
D10
D9 D8 D7 D6 D5 D4 D3
D2 D1 D0
2
4
5
6
NOTES:
1) D1 = SCHOTTKY OR HOT CARRIER DIODE
2) FB = FERRITE BEAD, FAIR RITE #2743001111
TO BE MOUNTED AS CLOSELY TO THE DEVICE AS POSSIBLE. THE FERRITE BEAD TO ADC CONNECTION SHOULD NOT BE SHARED WITH ANY OTHER DEVICE.
3) C1–C11 = CHIP CAPACITOR (RECOMMENDED)
MOUNTED AS CLOSE TO DEVICE'S PIN AS POSSIBLE.
4) USE OF A SEPARATE SUPPLY FOR V
CC
AND DVCC
IS NOT RECOMMENDED.
5) R5 PROVIDES CURRENT LIMITING TO 45mA.
(OVERRANGE) (MSB)
(LSB)
4
-2.5V
MAX1160
IC1
IC2
OP07
MAX6225
Figure 2. Typical Operating Circuit
The following errors are defined:
+FS error = top of ladder offset voltage
= (+FS - VST + 1LSB)
-FS error = bottom of ladder offset voltage = (-FS - VSB - 1LSB)
where the +FS (full-scale) input voltage is defined as the output transition between 11 1111 1110 and 11 1111 1111, and the -FS input voltage is defined as the output transi­tion between 00 0000 0000 and 00 0000 0001 (Table 2).
Analog Input
VIN is the analog input. The full-scale input range will be 80% of the reference voltage, or ±2V with VFB =
-2.5V and VFT = +2.5V.
The analog input’s drive requirements are minimal when compared to conventional flash converters. This is due to the MAX1160’s extremely low (5pF) input capacitance and very high (300k) input resistance. For example, for an input signal of ±2Vp-p with a 10MHz input frequency, the peak output current required for the driving circuit is only 628µA.
Clock Input
The MAX1160 is driven from a single-ended TTL input (CLK). The CLK pulse width (t
pwH
) must be kept between 20ns and 300ns to ensure proper operation of the internal track/hold amplifier (Figure 1a). When oper­ating the MAX1160 at sampling rates above 3Msps, it is recommended that the clock input duty cycle be kept at
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8
___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX1160
10-Bit, 20Msps, TTL-Output ADC
50% to optimize performance, but performance will not be degraded if kept within the 40% to 60% range. The analog input signal is latched on the rising edge of CLK.
The clock input must be driven from fast TTL logic (VIH 4.5V, t
RISE
< 6ns). In the event the clock is dri­ven from a high current source, use a 100resistor (R5) in series to limit current to approximately 45mA.
Digital Outputs
The format of the output data (D0–D9) is straight binary (Table 2). The outputs are latched on the rising edge of CLK with a typical propagation delay of 14ns. There is a one-clock-cycle latency between CLK and the valid output data (Figure 1a).
The digital outputs’ rise and fall times are not symmetri­cal. Typical propagation delay is 14ns for the rise time and 6ns for the fall time (Figure 4). The nonsymmetri­cal rise and fall times create approximately 8ns of in­valid data.
Overrange Output
The overrange output (D10) is an indication that the analog input signal has exceeded the positive full-scale input voltage by 1LSB. When this condition occurs, D10 will switch to logic 1. All other data outputs (D0–D9) will remain at logic 1 as long as D10 remains at logic 1. This feature makes it possible to include the MAX1160 in higher-resolution systems.
Evaluation Board
The MAX1160 EV kit is available to help designers demonstrate the MAX1160’s full performance. This board includes a reference circuit, a clock-driver cir­cuit, output data latches, and an on-board reconstruc­tion of the digital data. A separate data sheet describing the operation of this board is also available. Contact the factory for price and availability.
VIN VFT
V
CC
V
EE
ANALOG PRESCALER
Figure 3. Analog Equivalent Input Circuit
Table 2. Output Data Information
CLK IN
DATA
OUT
(ACTUAL)
2.4V
3.5V
2.4V
0.5V
0.8V t
pd1
typ
6ns
N
N + 1
DATA OUT
(EQUIVALENT)
(N - 1) N
(N - 1)
N
t
RISE
6ns
(N - 2)
(N - 2)
14ns typ
INVALID
DATA
INVALID
DATA
INVALID
DATA
INVALID
DATA
Figure 4. Digital Output Characteristics
ANALOG
INPUT
> +2V + 1/2LSB
+2V - 1LSB
0V 0
0
1
OVERRANGE
D10
OUTPUT CODE
D9–D0
11 1111 1111
11 1111 111
Ø
ØØ ØØØØ ØØØØ
-2V + 1LSB 0 00 0000 000
Ø
< 2V 0 00 0000 0000
(Øindicates the flickering bit between logic 0 and 1.)
Loading...